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Summary

1. A key problem facing invasive species management is how best to allocate surveillance and con-

trol effort. Models of the establishment and spread of invasive species are widely used to predict

species’ occurrence across space and inform resource prioritization. However, the way they should

be used to direct control effort is less clear. Managers could exhaustively search and treat the few

highest priority locations or apply less thorough effort more broadly. The choice between these

options is a question of balancing resources to maximize local success while minimizing further

spread.

2. We link a spatial model predicting the likelihood of occurrence with a decision model to effi-

ciently allocate human resources to control the weed Salix cinerea in south-eastern Australia. Using

data collected during an ongoing control programme, we construct a species distribution model,

empirically estimate control effectiveness and perform a budget-constrained optimization that iden-

tifies priority regions for control.

3. Two alternative scenarios were explored against two seasonal budgets: control is equally valued

in all areas or control is doubly valuable in conservation areas.

4. Optimal control effort per site varied according to the likelihood of occurrence and site-specific

benefits of control. Prioritizing conservation areas led to a reduction in area treated because of

greater allocation of control effort.

5. Quantifying control effectiveness was critical for realistically allocating control effort. Targeting

obvious individuals and thenmoving to new sites wasmore cost-effective than attempting to control

every individual at a high-priority site.

6. Synthesis and applications. We have developed a method to identify priority locations for inva-

sive species control across a landscape. By integrating a decision model with an empirical distribu-

tion model, our method offers a better management outcome by maximizing the efficiency of

control efforts. It identifies where and how much control effort should be allocated for maximum

effect within a season. Effort is expressed as control staff time spent per site with the allocation read-

ily visualized as a map. In general, a strategy of visiting sites where the species is most likely to occur

and exerting amoderate amount of effort at these sites is most efficient.

Key-words: alpine, control effort, decision theory, detection rates, landscape scale, optimiza-

tion, Salix cinerea, species distribution model, weed management

Introduction

The strategic allocation of surveillance and control effort

across the landscape is a primary objective in invasive species*Correspondence author. E-mail: kmgi@unimelb.edu.au
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management. Recent advances in invasive speciesmanagement

include population and metapopulation models for predicting

rates and patterns of spatial spread (Auld & Coote 1980;

Moody & Mack 1988; Higgins, Richardson & Cowling 1996;

Wadsworth et al. 2000; Buckley et al. 2005) and species distri-

bution models that can be used to direct surveillance and inter-

vention efforts to areas where the species is most likely to be

(Mau-Crimmins, Schussman & Geiger 2006; Steiner et al.

2008; Williams, Hahs & Morgan 2008). Some approaches

combine distributionmodels with population or spreadmodels

to identify locations of high-priority source populations

(Brown, Spector &Wu 2008; Fox et al. 2009).

These methods successfully identify those regions where the

species is most likely to occur. However, the methods do not

take into account other factors that may affect the optimal

allocation of resources available for control efforts throughout

the landscape. For example, the ability to detect and control

the target species may also be affected by habitat type or other

environmental factors not correlated with species occurrence.

Furthermore, we may attach a different value (economic, bio-

diversity or social) to protecting different areas and their asso-

ciated environmental attributes from an invading species. The

cost of implementing surveillance and control may also vary

spatially. To maximize our efficiency, multiple factors must be

considered simultaneously.

Spatially explicit modelling is computationally intensive,

and thus, many studies have relied upon simulation modelling

to draw conclusions (Menz, Coote & Auld 1980; Higgins,

Richardson & Cowling 2000; Wadsworth et al. 2000; Grevs-

tad 2005). More recently, Burnett, Kaiser & Roumasset

(2007), Hyder, Leung & Miao (2008) and Blackwood, Has-

tings & Costello (2010) have applied optimization methods to

spatially explicit models of invasive species control. Hauser &

McCarthy (2009) addressed spatial variation in costs and ben-

efits for invasive species surveillance. They determined the

allocation of survey effort across a landscape that minimizes

the total expected cost of controlling an invasion. Their

method prioritizes sites for surveillance using spatially explicit

information on the probability of species occurrence, detect-

ability and the benefits of successful detection and control.

A key component of the model is the relationship between sur-

vey effort and the probability of detecting the species if it is

present. Sites with a high probability of species occurrence,

which have high value and where the species is moderately

hard to detect, warrant the highest survey effort. Although the

value of control and its spatial variation were modelled, a

manager’s ability to regulate the intensity of treatment effort

was not addressed.

In this study, we adapt Hauser & McCarthy’s (2009) spa-

tial surveillance prioritization model to allocate control effort

for an invasive weed based on the predicted distribution of

the weed and empirical estimates of control effectiveness.

While Hauser & McCarthy modelled the relationship

between survey effort and species detection, we focus on iden-

tifying the optimal allocation of control effort that encom-

passes both the search and treatment phases and estimate its

effect on future species occurrence. We envisage a situation

where control staff are sent out to find and treat weeds in one

process. The weed occurs in moderate densities but there is

substantial uncertainty about its location. Hence, the control

process integrates effort spent searching and effort applied to

treating the individuals when they are identified. We call

the combined activity of finding and treating individuals as

‘control’.

We apply the model to the management of a highly invasive

willow Salix cinerea L. throughout the Bogong High Plains

region of the Alpine National Park in south-eastern Australia.

The species has large and expanding populations in the sur-

rounding valleys with seed known to disperse tens of kilome-

tres (Cremer 1999); it is therefore feasible that any area of

suitable habitat within the region could be colonized by the

species. The aim is to allocate time and resources to minimize

the overall likelihood of occurrence across the study area over

the course of one control season (5 months). To achieve this,

we (i) identify the areas at greatest risk of S. cinerea invasion

by creating a predictive distribution model as a function of

environmental suitability and disturbance; (ii) account for pre-

vious control efforts that have reduced the likelihood of

S. cinerea occurrence in some parts of the park; (iii) validate

the model using independently collected field data; (iv) esti-

mate control effectiveness; and (v) apply an optimization

model to identify priority regions for control.

Materials and methods

STUDY SPECIES AND REGION

Salix cinerea is an invasive dioecious Eurasian shrub willow

(ARMCANZ 2000). It is the only willow to have invaded Austra-

lia’s relatively weed-free alpine and subalpine regions (McDougall

et al. 2005), and although restricted to moist environments, it is not

limited to riparian areas. Reproducing predominantly by seed, a

light pappus facilitates long-distance seed dispersal (Cremer 1999,

2001; Pautasso 2009), allowing the rapid colonization of disparate

areas. No persistent seed bank is formed in Australia (Cremer

1999). A ready colonizer of disturbed environments, the species is

also able to regenerate after fire (Karrenberg, Edwards & Koll-

mann 2002).

The Bogong High Plains (1500–1884 m) is one of the Australia’s

largest contiguous alpine and subalpine areas comprising approxi-

mately 18 000 ha of alpine and subalpine grassland, heathland, wet

heathland, bog and snow gumEucalyptus pauciflora Sieber ex Spreng.

woodland. Annual precipitation varies between 1200 and 2400 mm,

falling as snow above 1400 m for 3 months of the year (Costin et al.

2000; Williams, Wahren & Ashton 2008). In 2003, a severe wildfire

burnt the majority of the Bogong High Plains, baring wet sediments

that were previously heavily vegetated by bog and wet heath commu-

nities. In these newly exposed substrates, mass germination of S. cine-

rea seedlings occurred. The invasion on the Bogong High Plains is

concentrated in the nationally threatened bog and wet heath vegeta-

tion communities (DEWHA 2009). The efficient detection and

removal of this invader are therefore a high priority for the National

Parkmanagement.

There are more than 1800 ha of mapped bogs and other suitable

habitat but the annual control budget is sufficient to search only a

small portion of this area. Hence, the seasonal problem faced by
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management is to decide which areas to target first and how much

area can realistically be treated given the limited budget. Will the

overall occurrence of willows be reduced if selected areas are con-

trolled exhaustively or if more areas are controlled less thoroughly?

The most effective strategy may require control to be less than 100%

thorough at all sites. The adoption of such a strategy may avoid the

managers’ past tendency to focus on doing a thorough job in a few

locations and thereby neglecting to visit others.

DISTRIBUTION MODEL

We used modelling software Maxent (Phillips, Anderson & Schapire

2006) to estimate the potential distribution of S. cinerea. Maxent uses

a maximum entropy approach to fit species distribution models to

presence-only data and environmental variables for defining suitable

habitat. The technique is gaining popularity for estimating the distri-

bution of suitable habitat for invasive species (Brown, Spector &Wu

2008; Rodder & Lotters 2008) where the use of absence data is often

inappropriate as populations are not likely to be at equilibrium (Welk

2004; Pearson 2007). As S. cinerea is a relatively recent addition to

the flora of the BogongHigh Plains, it is unlikely that all suitable hab-

itat has been occupied.

Species data

The park management agency provided 591 presence records; 5 years

of eradication activities (458 records) were supplemented with obser-

vations from studies of willow dynamics and bog condition (133

records). These records identify locations where S. cinerea seedlings,

juveniles and the occasional mature individual were found prior to

treatment. The data set was randomly subsampled to one presence

per 100 m grid tominimize spatial autocorrelation (549 records).

Environmental variables

Twelve environmental variables were used for modelling. Six vari-

ables were derived from a 20-m digital elevation model using terrain

analysis software in ArcMap 9Æ2 (ESRI 2006): altitude, slope, aspect,

annual solar radiation (Fu & Rich 2000), topographic position

(within a 200-m window) and a steady-state topographic wetness

index (Moore, Grayson&Ladson 1993). Six other variables were also

used: geological substrate (Morand et al. 2005), radiometric soil data

U, Th and K (GADDS 2008), vegetation class (DSE 2004), and the

spatial distribution of fire severity for the 2003 wildfire and a smaller

wildfire from 2007, which re-burnt the north-western region of the

park (DSE 2003; Lau et al. 2007). The data for these six variables

were provided as spatially continuous GIS layers and converted to

20-m grid format. The entire landscape was composed of 458 342 of

these grid cells, a resolution that facilitated the best characterization

of the heterogeneous environment.

Model fitting

We used Maxent 3Æ2Æ28 with all environmental variables and default

settings to fit the model. Presence records were randomly partitioned

70:30 into training and testing categories (Fielding & Bell 1997). The

stability of model predictions was evaluated by 100 cross-validations

from which the average and standard deviation of model predictions

were calculated.We report themean relative suitability, a logistic out-

put scaled to express the likelihood of the species’ occurrence at a site

based on the site’s environmental conditions, and assuming a uniform

sampling effort was used to collect all presence records (Phillips &

Dudik 2008). Predictive accuracy was assessed with the area under

the ROC curve (AUC), which for presence-only data quantify the

ability of the model to discriminate between a suitable and a

randomly selected site (Phillips, Anderson & Schapire 2006). The

AUC statistic was interpreted according to the guidelines suggested

by Hosmer & Lemeshow (2000): a score of 0Æ7–0Æ8 acceptable, a score
of 0Æ8–0Æ9 excellent and a score>0Æ9 outstanding.

Previous control effort

Control effort over the period 2003–2008 altered willow distribution;

therefore, we modified the suitability-based predictions to account

for past control efforts. Control effort was estimated as the number of

summers that willow control had taken place within each grid cell

(20 m) based on GPS records. The likelihood of occurrence was then

modified in proportion to the amount of control undertaken. We

assumed that control effort applied to a cell in any given year resulted

in treatment of a set proportion, p, of the individuals present and that

this treatment level could be represented by a proportion reduction in

the likelihood of occurrence. Hence, if site i has been treated n times,

the likelihood of occurrence, yi, is calculated as:

yi ¼ ð1� pÞnxi eqn 1

where xi is the suitability index produced using Maxent. We esti-

mated mean proportion treated, p, as 0Æ65 (±0Æ11) using the data

collected to estimate control effectiveness in 2007–2008.

Distribution model validation

Validation of model predictions was assessed using an independent

presence–absence data set of 141 samples (19 presences and 122

absences) collected in 2008–2009. Accuracy was assessed with the

AUC statistic. Survey plots were selected using stratified sampling

across three vegetation and two wetness strata (in proportion to fre-

quency of strata) from three distinct regions of the Bogong High

Plains using ArcMap 9Æ2 (ESRI 2006) and Hawth’s Tools (Beyer

2004). Survey plots were circular with a radius of 10 m and had amin-

imum proximity of 100 m. Plots were located in the field by use of a

hand-held GPS with an accuracy of ±5 m and searched by three

independent observers.

CONTROL EFFECTIVENESS

Control effectiveness was estimated as the proportion of the popula-

tion successfully treated as a function of the control effort applied to

the grid cell. This control effort encompasses both searching for and

treating any individuals found. The control effort function is assumed

to be an asymptotic exponential function. When a small effort is

applied, only the most obvious individuals are treated; as effort

increases, we expect that an increasing proportion of time is spent

searching for the smaller and less obvious individuals and so a larger

proportion of the populationwill be treated.

Control effectiveness was estimated from data collected in 2007–

2008. Willows were treated using a frill and fill technique (a small slit

cut in each stem of a plant and the wound filled with herbicide) mak-

ing it possible to identify treated willows subsequently. We classified

20 randomly located plants in each of five 1-ha plots as either treated

or not treated and estimated control effort as the amount of time

spent within each one-hectare grid (standardized to a team size of

three) usingGPS tracks recorded by the control team.
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Wemodelled the number of plants treated as a binomial distribution:

X � BðpðcÞ; nÞ eqn 2

where p(c) is the probability of detecting and treating a willow given it

is present and effort cwas applied, while n is the number of willows that

were monitored (20 in this case). The probability of detecting and con-

trolling an individual, p(c), is given by:

pðcÞ ¼ 1� e�kc eqn 3

where k is a control effectiveness parameter. We fit the model

using OpenBUGS 3Æ0Æ3 (http://www.openbugs.info/w/; Spiegelhalter

et al. 2007) with uninformative priors. Parameter estimates are

based on 100 000 samples after a 10 000 sample burn-in, which

was more than sufficient for OpenBUGS to converge.

SPATIAL ALLOCATION MODEL

Hauser &McCarthy’s (2009) spatial prioritization model was used to

identify high-priority regions for one season’s control (5 months).

For each 20-m grid cell, themodel uses the predicted likelihood of wil-

low occurrence, the effectiveness of willow control and the benefits of

willow control to prioritize locations. We assumed the relationship

between control effort and the proportion of willows successfully

treated is the same for all grid cells. For a given total budget of control

effort, the optimization model then identifies the amount of control

effort to be applied to each grid cell to minimize the expected total

number of grid cells containing willow.

The model can account for spatial variation in the benefit attained

by successful control.We consider two scenarios: first, we assume that

a decrease in willow density in all areas is equally valued; in the sec-

ond, decreasing willow density in mapped bogs or wet heaths is con-

sidered twice as beneficial as decreasing willow density in the rest of

the landscape.We also consider two possible budgets for total control

effort – 400 or 1000 person days per season (approximately $250 000

or $625 000). We assume 6 h of active control per day. Thus, we gen-

erated four allocation cases with unique benefit–budget combina-

tions. The model was run in Matlab 7Æ8Æ0 (The MathWorks 2009).

We present the results scaled to express the effort value allocated to

each 20-m grid in units of hours per hectares, as we find this a more

meaningful unit for managers.

Results

DISTRIBUTION MODEL

The Maxent model of control-adjusted occurrence predicts a

widespread yet patchy distribution of environmentally suitable

sites for S. cinerea. As expected, a reduction in the predicted

likelihood of occurrence resulted in areas subject to intensive

(and well documented) previous control effort (Fig. 1a,b); pre-

dictions with a high likelihood of occurrence (>0Æ75 relative

suitability) remained only in areas which received minimal or

no control. Approximately 136 ha (0Æ01% of the study

area) are still estimated to contain highly suitable habitat for

S. cinerea, a reduction of 61% from the precontrol estimate.

The three variables with the most predictive power were

topographic position, geological substrate and fire severity.

This makes ecological sense as S. cinerea readily colonizes low-

lying, high moisture sites that have experienced disturbance

(i.e. burnt bog and wet heath communities). Aspect, slope and

wetness index provided the lowest contribution to the model.

Wetness index was a surprisingly poor predictor, which is

probably because of correlation with topographic position

(Spearman’s r = )0Æ404).
Validating the control-adjusted model using the indepen-

dent data set revealed the model to have good discrimination

power [AUC: 0Æ818 (95%CI, 0Æ735, 0Æ902)]. Visual comparison

of predictions revealed a close alignment to the distribution of

bogs, wet heaths and drainage lines. A concentration of suit-

able habitat is predicted to occur in the twice-burnt north-wes-

tern region. However, as this area has also been the subject of

considerable control effort, the likelihood of occupancy is

approximately half the estimate for environmental suitability.

CONTROL EFFECTIVENESS

Data collected to estimate control effectiveness show that con-

trol staff tend to spend 3–4 h ha)1 controlling willows and are

treating roughly 60% of individuals. Based on the data col-

lected, we estimated k as 0Æ0057 (±0Æ0007) ha min)1 (Fig. 2).

The data were fit well by the negative exponential relationship

(assuming a constant control rate, eqn 3) despite the small

sample size.

SPATIAL ALLOCATION OF CONTROL EFFORT

The output of the spatial prioritization model is the amount of

control effort (h ha)1) allocated to each 20-m grid cell that

minimizes the total expected probability of occurrence across

the landscape.We show, as an example, the allocation of effort

when we have the smaller budget of 400 person days (Fig. 1c).

The amount of effort allocated to a given area varies between 0

and 2Æ8 h ha)1 with many areas not being treated. This

amount of effort corresponds to an expected proportion of wil-

lows treated of 0–62% (Fig. 2). If reducing willows in mapped

bogs is considered a priority, then the distribution of effort

changes, with more effort concentrated in bogs (Fig. 1d).

When bogs are prioritized, effort ranges from 0 to 4Æ2 h ha)1

with a predictedmaximumproportion treated of 76% (Fig. 2).

The total area to be controlled depends on the budget avail-

able and how we value willow absence across space. When we

value all areas equally and have a budget of 400 person days,

control is allocated to 2702 ha (15% of the area). A budget of

1000 person days increases coverage to 4904 ha (27% of the

area). If we value some areas more highly (e.g. bogs), the total

area controlled tends to be reduced as effort is concentrated on

the high-benefit areas. For example, with a budget of 400

person days when twice the benefit is gained from controlling

willows in bogs, the area controlled reduces by 3% to 2166 ha.

Similarly, when the budget is 1000 person days, the area

controlled is 4343 ha or 24%of the area. Note that it is not just

the total area but also the intensity of effort at selected sites that

changes (Fig. 3a,b).

Prioritization of effort can be summarized by plotting the

recommended time spent on survey and treatment (h ha)1) as

a function of the relative environmental suitability of the site
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(Fig. 3a,b). This relationship determines which sites warrant

control, allocating longer periods as the suitability increases.

In all scenarios, there exists a suitability threshold below which

sites are not targeted for control. The threshold lowers (i.e.

more sites are targeted for control) when a larger budget is

available. The minimum likelihood of willow occurrence for

which control effort is recommended depends on the budget,

control effectiveness and whether bogs are prioritized. When

the benefits associated with removing willow from all vegeta-

tion types are equal (Fig. 3a,b, solid lines), the recommended

control time depends solely on the predicted likelihood

of occurrence. In contrast, when removing willows from bog

vegetation accrues double the benefit (i.e. bogs have higher

conservation value), the recommended control times for bog

sites are longer than for non-bog sites with equivalent environ-

mental suitability (Fig. 3a,b, compare dot-dashed line to

dotted line). This additional effort per site is substantially

larger than the reduction in effort per non-bog site because bog

sites make up only a small proportion of the landscape

(Fig. 3c).

The model tends to recommend that less effort be expended

in each area than wasmeasured whenmonitoring the effective-

ness of control activities. Greater than half a day’s effort

(>4 h) is recommended by the model only for those few sites

where the likelihood of occupancy is very high (Fig. 3a,b) and

either greater value is allocated to controlling willow in bogs

(Fig. 3a) or budgets are high (Fig. 3b).

Discussion

In a resource-constrained context, it is important to prioritize

management activities carefully. This means we must focus

on activities that are efficient (Epanchin-Niell & Hastings

2010). Landscape-scale analyses can provide managers with a

Fig. 1. Study area illustrating the (a) estimated intensity of Salix cinerea control during the years 2004–2008, (b) the potential distribution of

S. cinerea accounting for control, (c) spatially prioritized control effort assuming a budget of 400 person days, with control weighted equally

across all vegetation types and (d) the prioritization when double benefits are assigned to control in bog and wet heath vegetation.
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comprehensive overview of the potential scale of infestations

and enable exploration of alternate management strategies. In

this study, we identified high-priority locations for willow con-

trol that managers should aim to address over the course of a

season. We have shown how integrating two analytical tech-

niques, an optimization model and an empirical distribution

model, can offer a better outcome for management by increas-

ing the efficiency of invasive species control.

The resulting spatial allocation suggests visiting sites where

the species is most likely to occur and exerting a moderate

amount of effort at these sites. This strategy follows the well-

accepted premise of directing effort to areas containing suitable

habitat for pest establishment and persistence (Buchan &

Padilla 2000; Underwood, Kinger & Moore 2004; Inglis et al.

2006; Fox et al. 2009). Our results go further and demonstrate

that by aiming for quantity (by covering more ground) rather

than quality, it will be possible to detect and treat a greater pro-

portion of the population. Therefore, rather than attempt to

control all individuals at each location before moving on, it is

better to apply a moderate level of effort at a number of loca-

tions. It should be noted however that ourmodel does not con-

sider the costs associated with travel; if substantial, they may

reduce the efficiency of this broad coverage approach.

The number of sites that can be managed in a day is depen-

dent upon each site’s prescribed visit length and the proximity

of sites to one another. We would recommend control efforts

are concentrated in contiguous areas for periods of at least a

day, therefore minimizing the need to account for travel time.

The area that can be covered also depends upon target species

density, team size and landscape.

Our strategy accommodates spatially varying valuation of

the landscape. When there are greater benefits attained from

conserving particular landscape elements over others, the opti-

mal visit length is influenced by the site-specific benefits of con-

trol. We should continue to invest most effort in sites with the

highest likelihood of species occurrence but also target sites

where control offers the greatest benefit for longer visits.

The budget available for control operations also affects the

number of sites included in the control plan and the time allo-

cated to each site. A budget increase lowers the control alloca-

tion threshold (as determined by the relative likelihood of

occurrence); therefore, sites where the species is less likely to

occur will receive an allocation of control effort, and all sites

can be allocated increased control time. Conversely, when

there is a budget short-fall, the sites where control is highly

effective will not have their allocation reduced as much as sites

where control is less effective.

One of the advantages of this method is that the data

requirements are modest and are typical of what managers

already collect. The species distribution model was based on

readily available presence data collected as a part of the control

programme. New methods for building empirical species dis-

tribution models such as Maxent and boosted regression trees
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can fit good models using presence-only data (Elith et al.

2006). However, because the data were collected opportunisti-

cally, they are susceptible to bias reflecting previous control

effort. Independent validation of the model showed that it pro-

vided good predictions for areas where work had not previ-

ously been carried out making us confident that the

predictions are not overly biased in this case.

Accounting for past control effort is an important aspect of

this analysis as it ensured predictions were relevant to the cur-

rent on-ground situation. Past control records were of varying

quality and were probably incomplete; hence, we used a simple

approach to modelling past control effort as we had limited

information about relative effort in different locations. This

method of accounting for past control work also makes the

model very simple to update to take future control effort into

account.

The control effectiveness rate was estimated fromGPS track

data and post-treatment estimates of effectiveness. Collecting

this data was quite challenging andmeantwe could only collect

a limited number of replicates. In part, this was because we

aimed to integrate search and treatment activities that occur

over scales of hectares. Additionally, we attempted to estimate

control effectiveness rates without the contractors’ knowledge

to minimize bias in the results. In retrospect, this bias was

probably small compared with the uncertainty associated with

the limited data collection. We would recommend a more

focussed approach to estimating these parameters through the

use of search trials (Garrard et al. 2008; Moore et al. 2011).

Estimating control effectiveness is the most challenging aspect

of the data requirements and may present the greatest barrier

to implementing this framework. However, detection rates and

control effectiveness estimates for similar species could initially

be used to address novel situations.

The high uncertainty surrounding control effectiveness high-

lights the importance of sensitivity and ⁄or robustness analyses.
In general, for budget-constrained control problems, a high

value of k allows managers to spread effort broadly with each

site receiving less attention but sufficient control (Hauser &

McCarthy 2009). When k is low, control across the landscape

is maximized by concentrating effort at fewer sites. Our estima-

tion procedure for S. cinerea yielded control effectiveness esti-

mate k = 0Æ0057 ± 0Æ0007, and the optimal allocation of

control effort does not vary substantially across this range.

Ideally, occurrence and control effectiveness data will con-

tinue to be collected as management proceeds and can be used

to update estimates for future resource allocation. In most

circumstances, we expect that periodic updating and prioriti-

zation, e.g. once per season for S. cinerea, will be more feasible

than continuous adaption. Furthermore, our control

optimization operates on a single time-step. If the model was

extended to minimize willow presence across multiple

time-steps, then the strategy may change – for instance, it

could be worthwhile to allocate more effort to fewer sites in

any given time-step.

When developing a weed control strategy, it would be ideal

to predict abundance, as opposed to likelihood of occurrence;

however, sufficient data tomodel abundance through the land-

scape are rarely collected. This is unfortunate as it would

enable the spatial allocationmodel tominimize expected abun-

dance rather than presence. Nevertheless, the model developed

has been useful for identifying areas of high suitability that had

not been previously considered by themanagement agency.

Themodel also neglects dispersal or demographic processes.

Other efforts to address invasive species management often

include a dynamic dispersal or demographic component (Hig-

gins, Richardson & Cowling 2000; Taylor & Hastings 2004;

Buckley et al. 2005; Brown, Spector & Wu 2008). Although

obtaining the data required for these steps is often expensive

and time-consuming, the simulations form a crucial link in

consideration of how rates and patterns of spread may impact

upon the feasibility of eradication or containment efforts. The

focus of this study is to control an existing population that

established in response to fire. Until there is another fire, levels

of establishment and spread on the Bogong High Plains are

expected to be low. Hence, the problem we considered here is

essentially a static one, and we did not attempt to include dis-

persal dynamics.

Conclusions and recommendations for
management

Allocating control activities across a landscape that con-

tains spatially disparate areas at risk, and where conserva-

tion agendas can preference actions to particular parts of

the landscape, is a time-consuming and arduous task

(Wadsworth et al. 2000). We have shown how a spatial

model and a decision model can be combined to make this

allocation. The output is measured as staff time and can

be readily mapped to the landscape, allowing managers to

visualize and interpret results.

The spatial allocation required a model that predicted inva-

sive species occurrence across the landscape and another

model of the relationship between control effort and control

effectiveness. Obtaining these models can be resource inten-

sive. While data to develop a species distribution model are

often available, obtaining data to develop control effectiveness

rates can be more difficult, and in some cases, expert judgment

may be the only feasible option (Hauser & McCarthy 2009).

Yet, as more studies of detection and control rates are com-

pleted, it is likely that estimates for similar species will become

available.

The approach does not explicitly incorporate spread dynam-

ics or identify optimal allocations through time, so it is a partic-

ularly useful approach for allocating effort in short-term cases

or to situations where the system is relatively static, as it is in

this case (S. cinerea germination on the Bogong High Plains is

strongly dependent on rare fire events). However, the approach

may have further utility when embedded into a broader deci-

sion framework. Long-term dynamic weed spread and man-

agement could be modelled by other means to identify how

resources should be directed over space and time. Subse-

quently, our approach could be used for relatively static

subsets of that management, such as allocating a control bud-

get to a high-priority local area within a season. In either case,
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implementing invasive species management within a decision

framework enables consistent data collection and allows the

integration of budgetary constraints, ecology andmanagement

with the aim ofmaximizingmanagement efficiency.

The framework highlights the importance of control effec-

tiveness when allocating scarce resources to weed manage-

ment. This requires that we audit the effectiveness of control

through either field studies or experiments. Measures of how

control effectiveness changes with effort (Fig. 3) enable a real-

istic assessment of how effective control methods can be. Fur-

thermore, these rates can be used to identify the optimal

allocation across space. Implementing these recommendations

will require clearly stated strategies set by management for

control staff (e.g. no action, control site for x hours, control

until all removed), yet it may still be challenging for control

staff to modify their effort. In particular, implementing a ‘con-

trol for x hours only even if there is more to remove’ strategy is

likely to require an attitude shift from control staff. Control

staff undertaking willow control have indicated that morale

can drop if personnel feel that they are not finding or treating

everything. Ensuring that control staff understand the larger

picture would be crucial to the successful implementation of an

intermediate-effort approach.

This allocation model provides an estimate of the area at

high risk of invasion and tells us both where to start looking

and also when to stop control efforts at one location and move

on to another. By optimally distributing control effort when

we have limited resources, themodel reduces the subjectivity of

decisions such as which populations to target immediately and

which to control if time andmoney permit.
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