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ABSTRACT                           

Background: The relative index of inequality (RII) and the slope index of inequality (SII) are the 

two major indices used in epidemiological studies for the measurement of socioeconomic 

inequalities in health. Yet, the current definitions of these indices are not adapted to their main 

purpose, which is to provide summary measures of the linear association between socioeconomic 

status and health in a way that enables valid between-population comparisons. The lack of 

appropriate definitions has dissuaded the application of suitable regression methods for 

estimating the SII. 

Methods: We suggest formally defining the RII and SII as so-called least false parameters, or more 

precisely, as the parameters that provide the best approximation of the relation between 

socioeconomic status and the health outcome by log-linear and linear models, respectively. From 

this standpoint, we establish a structured regression framework for inference on these indices. 

Guidelines for implementation of the methods, including R and SAS codes, are provided. 

Results: The new definitions yield appropriate summary measures of the linear association 

across the entire socioeconomic scale, suitable for comparative studies in epidemiology. Our 

regression-based approach for estimation of the SII contributes to an advancement of the current 

methodology, which mainly consists of a heuristic formula relying on restrictive assumptions. A 

study of the educational inequalities in all-cause and cause-specific mortality in France is used for 

illustration. 

Conclusion: The proposed definitions and methods should guide the use and estimation of these 

indices in future studies. 
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BACKGROUND 

Following the World Health Organization’s call for the reduction of socioeconomic inequalities in 

health,1 there has been much debate about the meaning and measurement of these 

inequalities.2–4 One possibility is to consider inequalities that arise as a monotonic association 

between an ordered socioeconomic indicator, such as education level or income bracket, and a 

health outcome, e.g. increasing health with increasing status. Several methods have been 

proposed for measuring such socioeconomic gradients with health outcomes that quantify the 

occurrence of an event (e.g. the hazard rate or incidence rate).4–7 Simple measures comparing 

two socioeconomic groups are insightful (e.g. incidence rate ratios/differences), but not 

comparable across populations having different distributions of the socioeconomic indicator due 

to the implied differences in the relative position of each group in the population. More 

sophisticated measures are necessary for such comparisons. 

The relative index of inequality (RII) and the slope index of inequality (SII)6,8 are the two major 

measures used in epidemiological studies for comparisons, and quantify the socioeconomic 

gradient in relative and absolute terms, respectively, thus providing complementary information. 

The key to the validity of cross-population comparisons with these indices is the use of the 

socioeconomic rank 𝑥, defined as the proportion of the population with higher socioeconomic 

status, as the measure of exposure to an adverse socioeconomic position. Of note, a few authors 

use a reversed scale (the proportion with a lower socioeconomic status), thus measuring exposure 

to an advantageous position.    The socioeconomic rank is a measure of the relative socioeconomic 

position of the individual in the population, thus making valid comparisons possible across 

populations defined for instance by geographical location, time-period or birth cohort. More 

broadly, these indices facilitate comparisons through the production of one single, 

comprehensive metric, for example when comparing socioeconomic inequalities in mortality by 

cause of death within one population. 

Following Mackenbach and Kunst’s6 milestone work, the RII is usually defined in analogy to a 

relative risk as  RII1 = ℎ(1)/ℎ(0) , where ℎ(𝑥) is the health outcome quantifying event 

occurrence (e.g. the hazard rate or incidence rate) as a function of the socioeconomic rank 𝑥, and 
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0 and 1 are the positions of the hypothetical best-placed and worst-placed persons, respectively. 

Note that we use the term “relative risk” in a broad sense as discussed by Greenland et al.9 This 

definition of the RII is appealing because all the tools available for relative risk estimation may be 

used, e.g. confounder adjustment is easier than for the earlier definition proposed by Pamuk,8 

who first coined the terms RII and SII, and other related indices.5,6,10 The SII is defined as SII1 =

ℎ(1) − ℎ(0) in analogy to an “excess risk”, where this term is also used in a broad sense to 

designate a difference in health outcomes. Models for estimating excess risks are far less well 

known,11 possibly explaining the seldom use of absolute measures in studies that present the 

Mackenbach-Kunst RII.12 Studies that do present SII estimates for event occurrence outcomes 

usually use (possibly weighted) least squares regression on incidence rates,13 or a heuristic 

formula expressing the SII in terms of the RII.14–19 It is now widely acknowledged that Poisson 

regression should be used for modeling incidence rates. The heuristic formula is easy to use and 

has undeniably contributed to an increased reporting of the SII, for which estimation methods 

were lacking. However, the formula relies on some restrictive assumptions that may not be 

tenable (see details in Appendix B). 

The above definitions have further found appeal because they seem to facilitate the 

communication of findings, these indices often being described as relative and excess risks 

between two hypothetical extremes. However, what these indices are intended to measure (and 

what epidemiologists usually estimate, at least for the RII) are not the actual relative and excess 

risks comparing the hypothetical extremes of the scale as implied by these definitions, but the 

linear association across the entire socioeconomic scale in order to summarize information in a 

way that enables valid comparisons. The lack of coherence between the purpose and definition 

of these indices has further dissuaded the use of appropriate estimation methods.  

This work contributes to the existing literature in two aspects. First, we propose new definitions 

for the RII and SII that are adapted to the actual purpose of these indices and yield a concrete 

interpretation that may be used to communicate findings to a wider audience. In addition to 

making the purpose and interpretation of these indices more transparent, this new 

conceptualization facilitates estimation because it entails the measurement of solely the linear 

aspect of the association between the socioeconomic rank and the health outcome. Second, we 
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provide a structured regression framework for estimation of the RII and SII in cohort studies 

grounded on this rationale. The proposed methodology arises from the analogies of the indices 

with relative and excess risks, which are preserved with the new definitions. As discussed further 

below, the same reasoning can be applied to other study designs (e.g. cross-sectional studies), 

although the health outcomes, and thus the regression models used for estimation, will then be 

different. While for the RII the proposed methods coincide with those used currently in the 

literature, for the SII these methods constitute an alternative to the aforementioned current 

approaches. Some general guidelines for estimation are also provided. A study of the educational 

gradients in all-cause and cause-specific mortality in France is used for illustration. In the 

eAppendix we provide R (R Foundation for Statistical Computing, Vienna) and SAS (SAS Institute 

Inc., Cary) codes for implementing the proposed methods. 

METHODS 

New definitions 

The purpose of the RII and SII is to quantify, in relative and absolute terms respectively, the linear 

association between the socioeconomic rank 𝑥 and the chosen health outcome 𝑦. For instance, 

as discussed by Rothman et al.20, in a cohort study the choice of health outcome (e.g. hazard rate 

or incidence rate) will depend on the type of data available (individual time-to-event data or event 

data aggregated by socioeconomic group) and the study design (fixed or varying entry and follow-

up times).  

Intuitively, a suitable measure of this linear association is given by the slope estimated when 

fitting a regression line to the set of pairs (𝑥, 𝑦)  observed under appropriate distributional 

assumptions. The estimated slope provides a summary measure of the linear aspect of the 

association even when the relation between 𝑥 and 𝑦 is manifestly not linear. Our definitions of 

the RII and SII are based on this idea of fitting a regression line to the data that possibly does not 

reflect the true shape of the association between 𝑥 and 𝑦. Before giving the formal definitions, 

two important remarks are necessary concerning estimation in such “outside-the-model” 

conditions. Firstly, the estimated regression parameter vector no longer corresponds to an 

estimate of a true population parameter, i.e. a parameter of the “true” model underlying the 
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data. It is, however, an estimate of a useful quantity called the least false parameter,21,22 which 

may be thought of as the parameter vector that minimizes a distance function between the data 

and the model, and is thus the parameter value that yields the best approximation of the data by 

the posited model (here a regression line). Secondly, “model-robust” approaches are necessary 

to obtain standard errors and perform inferences. 

We use the ideas above to define the RII and SII, remarking that a logarithmic link between 

exposure and outcome will yield a measure interpretable in relative terms, and an identity link 

will yield a measure interpretable in absolute terms. Formally, to define the RII, we consider log-

linear models of the form 𝑓𝛽(𝑥) = 𝑦0 exp(𝛽𝑥), indexed by parameter 𝛽, with 𝑦0 > 0 being a 

nuisance parameter. Setting 𝑦 = 𝑓𝛽(𝑥), the socioeconomic gradient may be characterized by the 

factor  exp(𝛽) , which indicates the magnitude of the linear association between 𝑥  and  𝑦  in 

relative terms, and its direction: above 1 if the association between 𝑥 and 𝑦 is positive and below 

1 if it is negative. We define  RII ≔ exp(𝛽∗) where 𝛽∗ is the least false parameter, that is, the 

parameter that yields the best approximation of the association between 𝑥 and 𝑦 by a log-linear 

model. For the SII, we consider linear models of the form  𝑔𝛼(𝑥) = 𝑦0 + 𝛼𝑥 . The indexing 

parameter is 𝛼  and 𝑦0 > 0  is a nuisance parameter. Setting  𝑦 = 𝑔𝛼(𝑥) , the socioeconomic 

gradient is characterized by the term 𝛼, indicating the magnitude and direction of the linear 

association in absolute terms: the further 𝛼 is from zero, the stronger the association, and the 

sign of 𝛼 indicates the direction. We define SII ≔ α∗,  where α∗ is the least false parameter, that 

is, the parameter providing the best approximation of the association between 𝑥 and 𝑦 by a linear 

model. 

The definitions of the RII and SII as least false parameters entail the use of log-linear and linear 

models to estimate these indices, respectively, regardless of the shape of the observed relation 

between 𝑥 and 𝑦. This new conceptualization thus guarantees that the RII and SII summarize, in 

one single figure, the linear association across the entire socioeconomic scale, which is the actual 

purpose of these indices.  

To obtain estimates of the RII and SII, suitable distributional assumptions need to be made, and 

these will depend on which health outcome is chosen. With the new definitions, the analogies 
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with relative and excess risks are preserved because RII = 𝑓𝛽∗(1)/𝑓𝛽∗(0) and SII = 𝑔α∗(1) −

𝑔α∗(0), which means that we can rely on regression models already available for relative and 

excess risk estimation. The models available for the health outcomes most often used in cohort 

studies are reviewed in the next section. Model-robust approaches to obtain standard errors, 

construct confidence intervals and perform tests in each case are detailed in Appendix A. The 

models of relevance with other health outcomes and study designs (e.g. cross-sectional studies) 

are briefly discussed in the concluding remarks.  

With the previous definitions, the indices were expressed as the true relative and excess risks 

comparing the extremes of the scale, i.e. RII1 = ℎ(1)/ℎ(0) and SII1 = ℎ(1) − ℎ(0), where ℎ is 

the true relation between 𝑥  and 𝑦 . Although the resulting interpretation is appealing, the 

function ℎ may not be linear, which is why these formal definitions were not adapted to the 

intended purpose of the indices. With the new definitions, the identities RII = 𝑓𝛽∗(1)/𝑓𝛽∗(0) 

and SII = 𝑔α∗(1) − 𝑔α∗(0) hold for 𝑓𝛽∗and 𝑔α∗, but are not assumed to hold for the true relation 

ℎ linking 𝑥 and 𝑦. Hence, with the new definitions the indices cannot be directly described as 

measures of the true relative and excess risks comparing the extremes of the scale. That is, the 

RII and SII are not true population parameters but simply summary measures of the linear 

association across the entire scale. In particular, these indices are not true causal parameters in 

studies where association can be endowed with a causal interpretation. The concept of the least 

false parameter thus contrasts with regression-based measures in the classical epidemiological 

setting, where regression models are built to reflect the true exposure-outcome association, e.g. 

an epidemiologist will try to model a non-linear tendency such as the U-shaped association 

between alcohol consumption and mortality.23 With the new definitions of the RII and SII we are 

therefore outside the classical setting.  

An alternative concrete and useful interpretation can however be given to the resulting indices: 

The RII and SII are the expected relative and excess risks comparing the hypothetical extremes of 

the scale under the log-linear and linear models, respectively, that best approximate the relation 

between socioeconomic status and health.  

Regression models for estimation  
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Like relative and excess risks, the RII and SII may be estimated using regression models that 

assume, respectively, multiplicative and additive effects of the exposure on the outcome. Next 

we review the available models for the health outcomes most often used in cohort studies, 

distinguishing two scenarios according to the nature of the available data as this determines 

which health outcome can or should be chosen.20 Table 1 provides a summary.  

Individual time-to-event data 

For each person 𝑖 = 1, … , 𝑁 in the study, the observed outcome data consist of a time-to-event 

𝑇𝑖 , possibly subject to right-censoring, and an indicator 𝛿𝑖  of whether 𝑇𝑖  is right-censored 

(𝛿𝑖 = 0) or not (𝛿𝑖 = 1). The hazard rate 𝜆(𝑡), defined as the rate at which events occur over an 

infinitesimal exposure time among the individuals at risk just before time 𝑡, is the preferred health 

outcome in this situation. Usually, the individual rank 𝑥𝑖  cannot be precisely known or fully 

measured, and only the socioeconomic group 𝐺𝑖  is observed (e.g. the education level or the 

income bracket). Thus, we approximate the rank of each person in the 𝑘th socioeconomic group, 

where 𝑘 = 1, … , 𝐾, by the rank 𝑥(𝑘) defined as the percentage of the population in strictly lower 

groups plus half of the percentage of the population in group 𝑘. 

The RII can be estimated by means of a Cox model,24 which specifies a log-linear relation between 

the hazard rate and the exposure: 𝜆(𝑡|𝐺 = 𝑘) = 𝛽0(𝑡) exp{𝛽𝑥(𝑘)}. Here, 𝛽0(𝑡) is the baseline 

hazard which is left unspecified. The estimate of the RII is given by RIÎ = exp (𝛽̂), where 𝛽̂ is 

usually obtained by partial maximum likelihood. The SII can be estimated by fitting an additive 

model for the hazard rate:25,26 𝜆(𝑡|𝐺 = 𝑘) = 𝛼0(𝑡) + 𝛼𝑥(𝑘), where the baseline hazard 𝛼0(𝑡) is 

unspecified. The estimate of the SII is given by  SIÎ = 𝛼̂ , where 𝛼̂  may be obtained with the 

approach of Lin and Ying,33 and has the same units as hazard rates, which are events per unit of 

time (e.g. events per 1 person-year if the failure time is measured in years). 

Event data aggregated by socioeconomic group 

For socioeconomic group  𝑘 , we observe the number of events,  𝑛𝑘 ,  and the person-time at 

risk, 𝑚𝑘. The incidence rate (also known as incidence density), which is a common epidemiological 

measure of disease occurrence suitable for studies with varying entry and follow-up times among 
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subjects, can be used as the health outcome. The crude incidence rate in group 𝑘 is given by 𝑟𝑘 =

𝑛𝑘/𝑚𝑘. The exposure variable is the rank 𝑥(𝑘). 

The RII can be estimated by fitting a multiplicative Poisson model, assuming that 𝑛𝑘 is Poisson 

distributed, with mean satisfying  𝐸(𝑛𝑘) = 𝑚𝑘 exp{𝛽0 + 𝛽𝑥(𝑘)} = exp{log(𝑚𝑘) + 𝛽0 + 𝛽𝑥(𝑘)}. 

The estimate of the RII is given by RIÎ = exp(𝛽̂), where 𝛽̂ is obtained by maximum likelihood. 

The SII can be estimated by fitting an additive Poisson model, assuming that 𝑛𝑘  is Poisson 

distributed with mean satisfying a linear model:27 𝐸(𝑛𝑘) = 𝑚𝑘{𝛼0 + 𝛼𝑥(𝑘)} = 𝛼0𝑚𝑘 +

𝛼{𝑚𝑘𝑥(𝑘)} . The estimate of the SII is given by  SIÎ = 𝛼̂ , where 𝛼̂  is obtained by maximum 

likelihood, and is expressed in events per unit of time. The review by Atkinson et al.11 about 

Poisson models can be consulted for further details. 

(Table 1 here) 

Guidelines for model-building 

Covariate adjustment 

In order to achieve a better comparability of these indices with regards to the factor of primary 

interest (i.e. socioeconomic group), the regression models used for estimation should be adjusted 

by certain covariates whose distributions may vary across populations. Covariates are adjusted 

for as usual in relative and excess risk models, and this does not perturb the definitions and 

interpretations of the RII and SII. To adjust for age with hazard models (Cox or additive), it is often 

appropriate to take age as the time-scale.28 To adjust for age with Poisson models, the event 

count and person-year calculations within each age-group should account for the fact that an 

individual changes age-group during follow-up.29  

Age-standardized SII 

When estimating the SII, simply adjusting for age may not be enough to obtain a truly comparable 

measure, particularly in mortality studies. To explain this, note that, for a fixed RII, the magnitude 

of the SII depends on the level of health in the population because it is an absolute measure. Thus, 

in mortality studies, we may expect a strong interaction between the socioeconomic rank and 
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age because the relation between age and mortality is of an undisputable exponential nature.30 

That is, we may expect higher SIIs within older age-groups, and accordingly this is what we 

observed in our illustrative example. In such scenarios, the SII estimate obtained from a single 

model neglecting this interaction will depend on the age-structure of the population, and is thus 

unsuitable for comparing populations with different age-structures. 

To overcome this issue, we propose using age-standardized SIIs, that is, weighted sums of 

estimated age-group-specific SIIs with the weights corresponding to the relative sizes of the age-

groups in a reference population. To estimate age-group-specific SIIs based on hazard rates, we 

recommend fitting a separate additive hazards model within each age-group, with age as the 

time-scale to tightly control for age. Thus, for age-group 𝑠 = 1, … , 𝑆, the model has the form 

 𝜆(𝑡|𝐺 = 𝑘) = 𝛼0𝑠(𝑡) + 𝛼𝑠𝑥(𝑘)         (1) 

where the time-scale of 𝑡 is the age. An alternative to estimate age-group-specific SIIs based on 

hazard rates would be to fit a single additive hazards model with time-on-study as the time 

variable, and the age-group, the rank 𝑥(𝑘)  and their interaction as predictors. With incidence 

rates, age-group-specific SIIs can be obtained with an additive Poisson model stratified by age-

group and allowing for different coefficients for the predictor 𝑥(𝑘)  across age-groups. That is, 

assuming that the number of events 𝑛𝑘𝑠  in socioeconomic group 𝑘 and age-group 𝑠 is Poisson 

distributed with mean satisfying: 

 𝐸(𝑛𝑘𝑠) = 𝛼0𝑠𝑚𝑘𝑠 + 𝛼𝑠{𝑚𝑘𝑠𝑥(𝑘)},         (2) 

where 𝑚𝑘𝑠 is the person-time at risk in socioeconomic group 𝑘 and age-group 𝑠.  

The age-group-specific SIIs are 𝛼1, … , 𝛼𝑆  in both (1) and (2). Given the proportion 𝑤𝑠  of the 

population in age-group 𝑠  in a reference population, and estimates  𝛼̂1, … , 𝛼̂𝑆 , the age-

standardized SII is estimated as SIÎ𝑎𝑔𝑒 = ∑ 𝑤𝑠𝛼̂𝑠
𝑆
𝑠=1 . Of course, a logical intermediate step would 

be to report the estimated age-group-specific SIIs 𝛼̂1, … , 𝛼̂𝑆 , which could be used to perform 

comparisons by age-group.  

Competing risks 
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The RII and SII may be used to measure socioeconomic gradients in cause-specific event rates, for 

example in cause-specific mortality (e.g. cancer mortality, cardiovascular disease mortality). With 

individual time-to-event data, the health outcome is the cause-specific hazard rate, denoted by 

𝜆𝑗(𝑡) for cause 𝑗 = 1, … , 𝐽, which is the instantaneous rate of cause 𝑗 events in the presence of 

competing causes.31 Cox and additive hazards models for the cause-specific hazard may be used 

to estimate the RII and SII, respectively, by censoring individuals with other-cause events at the 

time of their event. With aggregated data, we may consider the cause-specific incidence rate,32 

given for cause 𝑗 and group 𝑘 by 𝑟𝑘
𝑗

= 𝑛𝑘
𝑗

/𝑚𝑘
𝑗

 , where 𝑛𝑘
𝑗
 is the number of cause 𝑗 events, and 𝑚𝑘

𝑗
 

is the person-time at risk calculated by censoring other-cause events at the time of event. 

Multiplicative and additive Poisson models for the cause-specific incidence rate may be used to 

estimate the RII and SII, respectively.  

The all-cause and cause-specific hazard/incidence rates satisfy 𝜆(𝑡) = ∑ 𝜆𝑗(𝑡)𝑗  and 𝑟𝑘 = ∑ 𝑟𝑘
𝑗

𝑗  . 

Hence, SIÎ ≈ ∑ SIÎ𝑗
𝑗 , where SIÎ and SIÎ𝑗 ,𝑗 = 1, … , 𝐽, are estimates of the all-cause and cause-

specific SIIs obtained either from hazard or incidence rates. An interesting measure is thus the 

percentage of the all-cause SII attributable to a given cause 𝑗.33  

Determining the group-specific ranks 𝒙(𝒌) 

In many studies, separate estimations of the RII and SII for well-defined subpopulations are 

prescribed (e.g. men and women). In such cases, a set of ranks 𝑥(𝑘) , 𝑘 = 1, … , 𝐾 , should be 

derived for each subpopulation by considering only the distribution of the socioeconomic 

indicator within it. A more subtle question is whether the ranks 𝑥(𝑘) should be derived by age-

group or birth cohort. There may be reasons to do so, as the relative position at the social 

hierarchy is determined especially vis-a-vis people of the same generation. With this approach, 

the RII and SII would be measures of the mean socioeconomic gradient across age-groups or birth 

cohorts. Such indices may be particularly pertinent when the distribution of the socioeconomic 

indicator is substantially different across the different subgroups.  

ILLUSTRATIVE EXAMPLE 
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We reanalyzed the data of a previous study34 consisting of a permanent cross-sectionally 

representative 1% sample of the French population started in 1968 by the French National 

Institute of Statistics and Economic Studies (Insee).35 For the sampled individuals, information on 

education level in the form of a four-category variable was available from exhaustive population 

censuses that took place in 1982, 1990 and 1999. The categories were: incomplete elementary 

education; completed elementary education; general and vocational qualifications with no other 

degree; and high school diploma or higher. We assessed the evolution of relative and absolute 

educational gradients in all-cause and cause-specific mortality among 30-84 year-olds in France. 

We estimated RIIs and age-standardized SIIs separately for each of three periods (1982-1988, 

1990-1996 and 1999-2005), using the methodology proposed. In addition, to examine temporal 

changes, we pooled the data from the first and last period to obtain estimates and confidence 

intervals for the ratio of the RIIs and the difference in the age-standardized SIIs of these two 

periods (see details in Appendix A). With such individual time-to-event data, the preferred health 

outcome is the (cause-specific) hazard rate and we thus used Cox and additive hazards models 

for estimation. However, for illustration purposes, we aggregated these data and also considered 

the (cause-specific) incidence rate as outcome, thus obtaining alternative estimates from Poisson 

regression models. We used the European IARC 1976 population for standardization.36  

All-cause mortality 

Figure 1 shows (log) RII estimates for all-cause mortality in men and women. Figure 2 shows the 

corresponding age-standardized SIIs. Qualitatively, both health outcomes reflected similar time-

trends for both indices, with men displaying larger RIIs and SIIs than women. According to the 

hazard-based analysis, there was an increase in the RII for men from 1.98 to 2.25 (RII ratio = 1.14 

[95% confidence interval = 1.04; 1.25]), and for women from 1.81 to 2.01 (RII ratio = 1.01 [0.90; 

1.14]). On the other hand, the SII decreased for both sexes, going from 1213 to 1008 deaths per 

100 000 person-years in men (SII difference = -204 [-352; -57]), and from 530 to 438 deaths per 

100 000 person-years in women (SII difference = -91 [-182; -1]). 

(Figure 1 here) 

(Figure 2 here) 
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Cause-specific mortality 

Table 2 shows RII estimates for cause-specific mortality in men and women in each period, and 

RII ratio estimates comparing the first and last period. Overall, cause-specific hazard and 

incidence rates reflected similar time-trends. Relative inequalities in men are higher than for 

women for cancer and external causes, and lower for cardiovascular disease. In men, substantial 

changes over time were observed for example for cancer and cardiovascular disease, with RIIs 

increasing from 1.76 to 1.91 (RII ratio = 1.21 [1.04; 1.42]) and from 1.65 to 2.36 (RII ratio = 1.43 

[1.19; 1.71]), respectively, according to the hazard-based analysis. In women, we observed 

substantial increases in the RIIs of cardiovascular disease and other cause mortality, which went 

respectively from 1.98 to 2.97 (RII ratio = 1.43 [1.14; 1.79]) and from 2.40 to 3.07 (RII ratio = 1.29 

[1.03; 1.61]) according to the hazard-based analysis. For both sexes, the highest relative 

inequalities were those associated with other-cause mortality. 

(Table 2 here) 

Table 3 shows age-standardized cause-specific SIIs and SII difference estimates comparing the 

first and last period. Cause-specific hazard and incidence rates reflected similar time-trends, with 

absolute inequalities being higher for men than for women for each cause-of-death group. 

Substantial changes in the SII over time were observed for example for other-cause mortality in 

men, which decreased from 470 to 338 deaths per 100 000 person-years (SII difference = -132 [-

206; -59]), and for cardiovascular diseases in women, which decreased from 223 to 177 deaths 

per 100 000 person-years (SII difference = -46 [-95; 3]), according to the hazard-based analysis. 

These results are contrasted in Figures 3 and 4 with those obtained with the aforementioned 

heuristic formula, which is further discussed in Appendix B. Compared to regression-based 

estimates, the formula-based estimates obtained for these data generally yielded similar trends 

across causes of death and time-periods, although absolute SII differences across these were less 

marked and some relative SII differences changed. 

(Figure 3 here) 

(Figure 4 here) 
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Table 3 also shows the percentage contributions of the cause-specific SIIs to the all-cause SII per 

period (column “%”). The biggest contributors to absolute inequalities are cancer and other-cause 

mortality in men, and cardiovascular and other-cause mortality in women, with the percentage 

contributions having remained relatively stable throughout all periods. 

(Table 3 here) 

CONCLUDING REMARKS 

The main purpose of the RII and SII is to summarize, in relative and absolute terms, the linear 

association between socioeconomic status and health across the entire socioeconomic scale in a 

way that enables valid cross-population comparisons. The previous formal definitions of these 

indices expressed these as the ratio or difference between the outcomes at the hypothetical 

extremes of the scale and were thus not in accordance with this purpose. New definitions were 

thus required, and we have provided these by identifying parameters that summarize the linear 

association across the entire socioeconomic scale: the least false parameters in log-linear and 

linear models. In addition to bringing coherence between the definition and purpose of these 

indices, the clear identification of the relevant target parameters dictates the methods that are 

appropriate for estimation. In particular, we have identified suitable regression methods for 

estimating the SII in cohort studies that had never been used before. An important consequence 

of the new definitions is that the fit of the log-linear or linear models to the data does not matter 

when estimating these indices. The previous definitions did raise the issue of goodness of fit7,34 

and thus led to methodological proposals that distanced from the main purpose of these indices, 

such as the work of Sergeant and Firth.27 This illustrates the importance of carefully defining the 

target parameter of interest in accordance with the purpose of the study, before moving on to 

identifying an appropriate estimation method. Often the process is done in reverse (first estimate 

using common/easy methods, and then attempt to interpret the estimate), and this leads to 

confusion regarding what we aim to measure. 

A practical implication of the new definitions is that two regression models must be fitted for 

estimation, one for each index. In order to produce comparable measures, both models should 

be correctly adjusted for the same covariates, taking into account the particularities inherent to 
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each type of model. For instance, the socioeconomic rank-age interaction mentioned earlier is 

likely to be strong in linear models for mortality outcomes, which is why age-standardization is 

required for the SII, while this interaction is usually much lower in log-linear models. The use of 

two estimation models has another consequence: the two indices could in some cases yield 

different rankings when comparing two populations of equal mean health. Although 

counterintuitive, this should not be perceived as a disadvantage as the cases where this occurs 

likely reflect a complex reality that should be explored in detail anyway. In contrast, the previous 

definitions concerned the true relation ℎ between 𝑥 and 𝑦, implying the construction of only one 

model, the predictions of which need to be used to derive at least one of the indices. This has 

other practical drawbacks: different values of a prediction-derived index are then yielded for each 

value of the vector of adjusting covariates, and the use of semi-parametric models (e.g. Cox or 

additive hazard) is precluded because part of the outcome distribution, required for prediction, 

is left unspecified. 

Here we have discussed the previous definition of the RII given by Mackenbach and Kunst and 

proposed an alternative conceptualisation. Of note, the earlier RII definition proposed by Pamuk,8 

is derived from SII1, which measures the excess risk relative to the highest position (𝑥 = 0), and 

is taken to a relative form by using as reference the mean health of the population. Hence, this 

index mixes two different reference points, making it, in our view, somewhat harder to 

understand or communicate. In particular, Pamuk’s RII cannot be alternatively conceptualized as 

a least false parameter, at least not in a straightforward way. 

In this work we have proposed regression methods for estimating these indices in cohort studies, 

and particularly with event rate outcomes which are often the most suitable health outcomes in 

such studies. In the rare situations where the entry and follow-up times are fixed for all 

individuals, one may use the prevalence/risk as health outcome. In that case, Poisson regression 

can be used as described for incidence rates, replacing the person-years by the number at risk at 

the beginning of the study. It is important to note that Poisson regression should be used only in 

studies where the event is rare. Binomial regression can be used instead with common events, 

and also for estimating these indices in cross-sectional studies of e.g. health survey data with the 

prevalence rate as health outcome.37 As before, a log link should be used for RII estimation and 
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an identity link for SII estimation. Software packages are available for fitting such models (see 

references in the eAppendix). 

Harper et al.,38 as other authors,39,40 rightly point out the need to clearly identify the value 

judgments underlying inequality indices. Concerning the RII and SII, an important remark is that 

with these indices, it is not the socioeconomic group itself that is important, but its relative size 

and position in the population, measured through the socioeconomic rank 𝑥. This is crucial for 

the comparability of these measures, but is an intrinsic value judgement. Also, in estimating these 

indices, covariate adjustment is used to isolate the association between socioeconomic rank and 

health from for example gender or age effects that are not the factors of interest and that are not 

direct or indirect consequences of socioeconomic conditions. The choice of covariates adjusted 

for to achieve this carries an implicit value judgement, particularly because it depends on the 

covariates available. 

A final remark concerns the type of inequalities measured by these indices, regardless of the 

definition adopted. Consider the example presented by Wagstaff et al.5 of a study with three 

socioeconomic groups, where the extreme groups had similar health status and the middle group 

had a markedly higher health status than the other groups, the RII and SII were close to 1 and 0, 

respectively. This is consequent with the fact that there is no linear association. Of course, one 

may argue that in this scenario there are “socioeconomic inequalities” of another kind. Other 

indices like the Index of Dissimilarity6 are available for measuring “socioeconomic inequalities” 

defined differently, that is, not as gradients. In that sense, we consider the terms “relative index 

of inequality” and “slope index of inequality”, coined by Pamuk,8 to be unfortunate because they 

do not wholly convey the particular type of “socioeconomic inequalities” measured by these 

indices. However, we will continue to use these terms for consistency with the already extensive 

literature using the RII and SII. 

SUPPLEMENTARY MATERIALS 

In the eAppendix we provide R (R Foundation for Statistical Computing, Vienna) and SAS (SAS 

Institute Inc., Cary) codes for implementing the proposed methods. Simulated data sets to run 

these codes are also provided in the eAppendix. 
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APPENDIX A – Standard errors, confidence intervals and tests  

The standard error (SE) of a least false parameter estimator is derived from so-called model-

robust approaches, that do not rely on the assumption that the model is correctly specified.21,22 

For the Cox and additive hazards models, robust SE estimators have been proposed.41,42 An 

alternative with individual time-to-event data is a non-parametric bootstrap procedure, where 

the individual independent observations are resampled with replacement.21 For Poisson 

regression, SEs that account for overdispersion may be considered. In obtaining SEs, one may also 

need to account for a possible positive autocorrelation arising from the use of the rank 

variable,10,43 although several socioeconomic groups would be required to precisely estimate the 

correlation structure. Under asymptotic conditions, robust SEs may be used to construct robust 

confidence intervals and tests as usual by taking the normal distribution as reference.  
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SEs for age-standardized SIIs need to account for the correlation between age-specific SIIs. The 

non-parametric bootstrap will yield robust SEs accounting for this correlation for the age-

standardized SII derived from (1). If the age-standardized SII is derived from (2) or from a single 

additive hazards model, appropriate robust SEs may be obtained with the delta-method using the 

age-group-specific estimates and their robust variance-covariance matrix estimated when fitting 

the model.  

Model-robust SEs should also be used when examining temporal changes in these indices, for 

example when estimating confidence intervals for the ratio of or difference in the indices of two 

periods. For this purpose, robust SE estimators and bootstrap procedures adapted for correlated 

data may be required. For instance, in our illustrative example, SEs for estimates of the ratio of 

or difference in the indices of the first and last periods based on the hazard rate had to account 

for the correlation between the individual time-to-event data of individuals who belonged to both 

cohorts. Thus, for the RII, we fitted a single Cox model for the data of these two periods with age 

as timescale and including the period, the socioeconomic rank and a socioeconomic rank-period 

product term as predictors. A robust SE estimator accounting for the aforementioned correlations 

was used to construct confidence intervals for the product term coefficient, which gives an 

estimate of the ratio of the RIIs of the two periods. For the SII, the SE for the difference in the 

age-standardized SIIs in the two periods was obtained from a nonparametric bootstrap procedure 

adapted for correlated data, in which the individuals present in either cohort were resampled 

with replacement before performing the period-specific estimations.44  

APPENDIX B – A detailed study of the heuristic formula 

Derivation of the formula 

Kunst et al.15,16 derived a formula for the SII in terms of the RII and the average health outcome 

in the study population, 𝑦̅. This formula has already been used in several studies14–19 and is given 

by:  

 SII1 =
2𝑦̅(RII1  − 1)

RII1 + 1
.         (3) 
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Formula  (3), which we refer to as the “heuristic formula”, is derived under the previous 

definitions of the RII and SII, RII1 = ℎ(1)/ℎ(0)  and SII1 = ℎ(1) − ℎ(0) where ℎ is the true 

function linking 𝑥 and 𝑦, and relies on the assumption that ℎ is a linear function, i.e. ℎ(𝑥) = 𝛼0 +

𝛼𝑥.33 To derive the formula, it is assumed that the linear relation passes through the mean of 𝑦, 

which is 𝑦̅, and the mean of 𝑥, which is 1/2 by construction. Thus, 𝑦̅ = 𝛼0 + 𝛼/2. Since SII1 = 𝛼, 

the identity 2𝛼0 = 2𝑦̅ − SII1 holds. From this and the definition of RII1 we have,  

 RII1 =
ℎ(1)

ℎ(0)
=

𝛼0 + SII1

𝛼0
=

2𝑦̅ + SII1

2𝑦̅ − SII1
.         (4) 

Rearranging terms gives formula (3). Of note, the results of Hayes and Berry45 on the sampling 

variability of the RII are based on formula (4), but inversed because they used a reversed 

socioeconomic scale (i.e. 0=poor and 1=rich).  

Note that the derivation of the heuristic formula (3) does not extend in a straightforward way to 

the scenario in which a vector 𝑍 of covariates is adjusted for (i.e. 𝛼0 = 𝛼0(𝑍)) because 𝑦̅ will then 

depend on the distribution of 𝑍, and thus the identity derived from its calculation will no longer 

hold. In practice, an age-standardized version of 𝑦̅ is used to circumvent this problem for age, and 

of course this approach could be applied to any other covariate. The derivation does not extend 

either to the scenario in which the baseline outcome 𝛼0 depends on time (i.e. 𝛼0 = 𝛼0(𝑡)), as is 

usually the case when the health outcome is the hazard rate. Indeed, the derivation requires that 

the baseline outcome 𝛼0, and thus the health outcome for a given 𝑥, be constant over time to 

ensure that 𝑦̅ is constant over time too. Otherwise, 𝑦̅ depends on time and the formula implies a 

time-dependent SII. In practice, the incidence rate, which is a sort of time-averaged measure of 

𝑦̅ when 𝑦 is the hazard rate, is used to circumvent this problem.  

Limits of the formula 

The heuristic formula (3) is practical in the sense that fitting an additional model for the SII can 

be avoided. However, its derivation relies on the previous definitions of the RII and SII, RII1 and 

SII1, which, as discussed in the main text, are not adapted to the purpose of these indices. More 

importantly, the heuristic formula relies on the assumption that the true model is a linear model 
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and derived estimates may be biased for SII1 if this assumption is violated. Of course, confidence 

intervals and p-values derived from biased estimates will also be biased. In fact, even if the linear 

model holds, the formula may still yield a biased estimation of SII1 (which in that case coincides 

with SII, i.e. with our least false parameter definition) if the RII plugged-in is estimated as usual 

from a multiplicative Poisson model or a Cox model. Indeed, the heuristic formula applies to 

RII1 = ℎ(1)/ℎ(0) under the linear model, that is, the RII of the previous definition given by the 

ratio of health between the worst-off and best-off, these outcomes being derived from the linear 

model. But RII1 does not coincide with the index derived from a log-linear model, which is the RII 

from our definition, RII. Actually, RII1  will generally be larger (RII1 ≥  RII). For a fixed mean 

health outcome 𝑦̅, the formula is an increasing function of the RII. Hence, applying the formula 

to RII leads to underestimate SII1 = SII. The bias increases as the RII increases because RII1 and 

RII diverge as deviations from the mean health increase. In the following, we investigate the bias 

of the heuristic formula as compared to the proposed regression approaches. Of note, the 

formula is no longer useful if one seeks to apply it to RII1  instead because the linear model 

required for estimating RII1 directly yields an estimate of SII1 = SII. 

Bias assessment 

We performed a small-scale simulation study where we considered estimation of the SII from 

health outcomes across four socioeconomic groups. The sizes of the groups, from the highest to 

the lowest level, were 10%, 20%, 30% and 40%. We performed Monte Carlo simulations based on 

two data generation models, one for aggregated data and one for time-to-event data. We 

considered the case where the true model is linear, so that the proposed and previous definitions 

of the SII (least false parameter and ℎ(1) − ℎ(0)) coincide, i.e. SII1 = SII. This way, the study of 

bias was independent of the definition adopted. Thus, to generate aggregated data, we assumed 

an additive Poisson model for the incidence rates with conditional mean satisfying 𝐸(𝑛𝑘) =

𝛼01 + 𝛼𝑥(𝑘) (i.e. 𝑚𝑘 = 1 for all 𝑘). For individual time-to-event data, we assumed an additive 

model for the hazard rates with a Weibull baseline hazard function, i.e. 𝜆(𝑡|𝑥) = 𝛼02𝛼03𝑡𝛼03−1 +

𝛼𝑥 . For the latter, data sets of size 𝑁 = 500 were generated on which around 50% uniform 

censoring was superimposed. Thus, in both cases a linear model held and the SII was given by 



25 
 

parameter 𝛼  regardless of the definition of the SII adopted (least false parameter or ℎ(1) −

ℎ(0)). The baseline parameter 𝛼01 in the additive Poisson model represents the incidence rate 

per 100 000 person-years when 𝑥 = 0. In the additive hazards model, 𝛼02 is a scale parameter 

fixed at 100 in all simulations, and 𝛼03 is a shape parameter such that the hazard rate increases 

with time when 𝛼03 > 1. 

In each case, we generated data for four different populations (A through D) with an SII fixed at 

100 per 100 000 person-years, but different values of the baseline parameters such that the 

expected RII fluctuated between 2 and 10. The SII in each population was estimated by either 

fitting regression models as described in the previous sections (SIÎ𝑀) or by using the heuristic 

formula (3) (SIÎ𝐹 ). The estimate of the RII used in the formula,  RIÎ , was obtained from a 

multiplicative Poisson model or a Cox model, depending on the nature of the data generated 

(aggregated or individual time-to-event). For each data generation model, population and 

estimation approach, the mean SII estimate across 1000 datasets was computed.  

Table A1 shows the results obtained. For both generation models, the regression-based estimates 

were unbiased as expected. On the other hand, as expected, the formula-based estimates were 

biased in all cases even though the true model was linear, with a bias that increased with the 

underlying RII. The extent of the bias was similar with aggregated data and individual time-to-

event data. Similar biases in the formula-based estimates were observed in additional simulations 

(results omitted), in which the true model was multiplicative and the proposed least-false 

parameter definition of the SII was adopted, so that the regression-based estimates were the 

reference to assess bias. 

(Table A1 here) 

Practical implications 

In the simulation study, the heuristic formula (3) always resulted in a downward bias, and the 

extent of the bias depended on the underlying generation model and RII. In practice, such a 

downward bias will result in the absolute differences in the SIIs across populations being less 

marked when using the formula. If the magnitude of the bias is the same across populations, then 
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relative SII differences will remain the same. Otherwise, relative SII differences may change, but 

qualitative conclusions may still remain unchanged as the direction of the bias is the same. This 

was illustrated in Figures 3 and 4 for the French data analyzed in the main text. Qualitative 

conclusions could change in situations where the extent of the bias in each population is very 

different, e.g. when the RIIs or the true models underlying the populations compared greatly 

differ. This situation is probably uncommon. Therefore, the qualitative conclusions from previous 

studies using the formula will likely remain unchanged as observed for the French data. It would 

nevertheless be desirable to assess this in cross-country comparisons. 

Conclusion 

As mentioned before, the heuristic formula (3) provided a helpful tool for SII estimation when 

appropriate methods were lacking and even inaccessible. Indeed, software for fitting additive 

Poisson or additive hazard models were unstable or unavailable until very recently. The methods 

proposed in this paper represent an advancement of the methodology in that they guarantee 

unbiased estimates under less restrictive assumptions, and respond to the recent availability of 

these regression methods in mainstream statistical software. Even though the qualitative 

conclusions yielded by the formula and regression-based approaches may be similar, it is 

undoubtedly preferable to use unbiased approaches for estimation.  
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FIGURES 

Figure 1 (Log) RII estimates and 95% confidence intervals for all-cause mortality in men and 

women based on two different health outcomes: the hazard rate and the incidence rate.  
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Figure 2 Age-standardized SII estimates and 95% confidence intervals for all-cause mortality in 

men and women based on two different health outcomes: the hazard rate and the incidence rate.  
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Figure 3 Age-standardized SII estimates for cause-specific mortality in men obtained with (A) 

additive hazards regression models and (B) the heuristic formula.
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Figure 4 Age-standardized SII estimates for cause-specific mortality in women obtained with (A) 

additive hazards regression models and (B) the heuristic formula.  
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TABLES 

Table 1 Regression models for estimation of the RII and SII with event rate outcomes 

Available data Health outcome 
Estimation 

RII SII 

Individual time-to-
event data 

Single event: 
Hazard rate  

Cox model Additive 
hazards model  

 

Competing risks: 
Cause-specific 
hazard rate 
 

Event data 
aggregated by socio-
economic group 

Single event: 
Incidence rate  

Multiplicative 
Poisson model 

Additive 
Poisson model 

 

Competing risks: 
Cause-specific 
incidence rate 
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Table 2 RII estimates and 95% confidence intervals (CI) obtained with cause-specific hazard and incidence rates for each period and 
major cause-of-death groups. Estimates of RII ratios comparing the first and last periods are also provided. 

      1982-1988a   1990-1996a   1999-2005a   Change (first to last period)b 
      RII CI   RII CI   RII CI   RII ratio CI 

Men             
 Cancer Hazard rate 1.76 (1.56; 1.98)  1.81 (1.62; 2.02)  1.91 (1.71; 2.14)  1.21 (1.04; 1.42) 
  Incidence rate 1.83 (1.59; 2.10)  1.82 (1.53; 2.17)  1.98 (1.67; 2.34)  1.20 (0.95; 1.51) 
 Cardiovascular Hazard rate 1.65 (1.47; 1.86)  1.99 (1.76; 2.26)  2.36 (2.04; 2.72)  1.43 (1.19; 1.71) 
  Incidence rate 1.71 (1.48; 1.98)  2.08 (1.71; 2.52)  2.40 (1.93; 2.98)  1.40 (1.09; 1.79) 
 External Hazard rate 2.40 (1.89; 3.05)  2.89 (2.30; 3.64)  2.50 (1.96; 3.19)  0.97 (0.70; 1.34) 
  Incidence rate 2.37 (1.85; 3.03)  2.97 (2.24; 3.92)  2.63 (1.84; 3.77)  1.03 (0.70; 1.50) 
 Other Hazard rate 2.71 (2.36; 3.11)  2.81 (2.43; 3.25)  2.62 (2.29; 3.01)  0.96 (0.80; 1.16) 
    Incidence rate 2.70 (2.29; 3.19)   2.97 (2.42; 3.63)   2.89 (2.38; 3.52)   1.06 (0.83; 1.34) 

Women             
 Cancer Hazard rate 1.16 (0.99; 1.37)  1.32 (1.13; 1.54)  1.04 (0.89; 1.20)  0.87 (0.70; 1.07) 
  Incidence rate 1.16 (0.99; 1.37)  1.41 (1.21; 1.65)  1.03 (0.89; 1.20)  0.86 (0.70; 1.07) 
 Cardiovascular Hazard rate 1.98 (1.73; 2.27)  2.27 (1.95; 2.65)  2.97 (2.46; 3.58)  1.43 (1.14; 1.79) 
  Incidence rate 2.15 (1.84; 2.52)  2.54 (2.07; 3.12)  3.39 (2.60; 4.42)  1.43 (1.04; 1.96) 
 External Hazard rate 1.83 (1.32; 2.54)  1.95 (1.41; 2.70)  2.33 (1.62; 3.36)  1.02 (0.65; 1.60) 
  Incidence rate 1.85 (1.31; 2.62)  2.14 (1.46; 3.15)  2.71 (1.84; 4.00)  1.08 (0.67; 1.76) 
 Other Hazard rate 2.40 (2.04; 2.82)  2.41 (2.03; 2.85)  3.07 (2.58; 3.65)  1.29 (1.03; 1.61) 
    Incidence rate 2.69 (2.13; 3.40)   2.92 (2.30; 3.72)   3.79 (3.05; 4.72)   1.39 (1.02; 1.89) 

a Results for each period obtained from a separate multiplicative model. 
b Results obtained from pooled data of the first and last period using a multiplicative model with a product term for the socioeconomic rank and 

period (see Appendix A for details). 
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Table 3 Age-standardized SII estimates in deaths per 100 000 person-years, 95% confidence intervals (CI) and percentage (%) 
contribution to the all-cause SII, obtained with cause-specific hazard and incidence rates for each period and major cause-of-death 
groups. Estimates of age-standardized SII differences comparing the first and last periods are also provided.  

      1982-1988a 1990-1996a 1999-2005a Change (first to last period)b 
      SII CI % SII CI % SII CI % SII diff. CI 

Men             
 Cancer Hazard rate 329 (262; 404) 27.1 322 (254; 390) 27.8 326 (272; 381) 32.3 -3 (-87; 81) 
  Incidence rate 306 (250; 362) 31.0 279 (201; 356) 30.3 287 (236; 338) 33.8 -19 (-96; 59) 
 Cardiovascular Hazard rate 296 (228; 363) 24.4 312 (257; 366) 26.9 260 (212; 303) 25.8 -36 (-114; 41) 
  Incidence rate 231 (179; 284) 23.4 243 (203; 284) 26.4 189 (146; 233) 22.3 -42 (-116; 32) 
 External Hazard rate 117 (84; 147) 9.7 131 (104; 160) 11.3 85 (60; 108) 8.4 -32 (-74; 9) 
  Incidence rate 102 (73; 132) 10.3 113 (78; 148) 12.3 92 (58; 126) 10.8 -11 (-57; 36) 
 Other Hazard rate 470 (403; 539) 38.8 393 (340; 437) 33.9 338 (290; 379) 33.5 -132 (-206; -59) 
    Incidence rate 348 (301; 395) 35.3 286 (227; 345) 31.1 281 (233; 328) 33.1 -67 (-134; -1) 

Women             
 Cancer Hazard rate 37 (-1; 77) 7.0 78 (43; 118) 15.2 10 (-26; 43) 2.3 -28 (-83; 28) 
  Incidence rate 27 (-6; 61) 6.7 69 (35; 103) 18.4 15 (-14; 45) 4.7 -12 (-57; 33) 
 Cardiovascular Hazard rate 223 (184; 267) 42.1 196 (162; 231) 38.1 177 (150; 206) 40.3 -46 (-95; 3) 
  Incidence rate 169 (140; 197) 41.7 133 (107; 158) 35.4 111 (86; 135) 34.5 -58 (-96; -20) 
 External Hazard rate 38 (20; 57) 7.2 41 (22; 57) 8.0 34 (18; 47) 7.7 -4 (-27; 19) 
  Incidence rate 28 (11; 45) 6.9 35 (18; 52) 9.3 34 (21; 48) 10.6 6 (-15; 28) 
 Other Hazard rate 232 (194; 268) 43.8 199 (166; 234) 38.7 218 (185; 249) 49.7 -14 (-62; 34) 
    Incidence rate 181 (148; 214) 44.7 139 (101; 178) 37.0 162 (136; 187) 50.3 -19 (-61; 22) 

a Results for each period obtained from a separate additive model. 
b Results obtained from pooled data of the first and last period; for the hazard rate, using a non-parametric bootstrap procedure; for the 

incidence rate, using an additive model with a  product term for the socioeconomic rank, age-group and period (see Appendix A for details). 
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Table A1 Simulation study results: Expected values of regression-based estimators (𝐒𝐈𝐈̂𝐌) and 

formula-based SII estimators (𝐒𝐈𝐈̂𝐅). 

  
Population 

Baseline 
parametera 

True SII Mean 𝐑𝐈𝐈̂ Mean 𝐒𝐈𝐈̂𝐌 Mean 𝐒𝐈𝐈̂𝐅 

Additive Poisson 
model A 75 100 2 100 90 

 B 30 100 4 100 82 

 C 10 100 8 100 73 

  D 5 100 10 100 69 
Additive hazards 
model A 1 100 2 100 97 

 B 1.25 100 4 100 89 

 C 1.65 100 8 100 79 

  D 2 100 10 100 76 
aRefers to 𝛼01 for the additive Poisson model and 𝛼03 for the additive hazards model. 

Parameter 𝛼02 for the latter was fixed at 100 for all populations. 

 

 

 

 

 

 

 

 


