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Abstract

This paper explores how we can apply various modern data mining techniques to better

understand Australian Income Protection Insurance (IPI). We provide a fast and objective

method of scoring claims into different portfolios using available rating factors. Results

from fitting several prediction models are compared based on not only the conventional

loss prediction error function, but also a modified loss function. We demonstrate that

the prediction power of all the data mining methods under consideration is clearly evident

using a misclassification plot. We also point out that this predictability can be masked by

looking at just the conventional prediction error function. We then suggest using principal

component analysis to increase understanding of the rating factors that drive claim durations

of insured lives. We also discuss and compare how different variable combining techniques

can be used to weight available predicting variables. One interesting outcome we discover is

that principal component analysis and the weighted combination prediction model together

provide very consistent results on identifying the most significant variables for explaining

claim durations.

Key words: Income Protection Insurance; data mining; principal component analysis;

weighted combination.

1 Introduction

Data mining is the type of analysis made possible by modern computers, which uses powerful

processors to mine through large databases to reveal previously unsuspected or unquantified

trends and relationships. The manual extraction of patterns from data has existed for centuries.

Some examples of identifying patterns in data include Bayes’ theorem in the 1700s and regression
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analysis in the 1800s. The increasing power of computer technology has dramatically increased

data collection, storage, and manipulation ability. As data sets have increased in scale and

complexity, indirect and automated data processing methods such as neural networks, cluster

analysis, and decision trees have become increasingly popular. In more recent years, actuaries

have started to apply data mining methods. In early 2001, Senensky and Polon founded a

consulting company called Claim Analytics with the objective of using data mining tools for

predictive modelling to assist major insurance companies with claim scoring, pricing, reserving

and fraud detection. This paper is inspired by a case study done by Senensky and Polon on

prediction of return to work for group insurance claimants with long term disabilities in 2004.

We further explore how other data mining techniques can be applied to predict duration classes

of insured lives under Income Protection Insurance (IPI). Income Protection Insurance plays

a significant role in maintaining the quality of life of individuals, of working age, who become

unable to work due to a non-work related injury or an illness. It achieves this by providing

such insured lives with a proportion of their usual salary during the time that they are unable

to work. A major risk for providers of the IPI business comes from the fact that the claim

duration can vary considerably for different IPI policies. Therefore a good understanding of the

durations of IPI claims is an important input to actuaries’ pricing and reserving calculations.

We have obtained Australian IPI claim data from the Actuaries Institute of Australia (IAAust)

income protection insurance policy database, which contains comprehensive information on

policyholders who have purchased insurance from the main Australian providers of IPI. Data

are recorded for each policyholder based on the information provided in the insurance proposal

form. The data were previously analysed by Pitt (2007) and contain all claim records beginning

in calendar year 1995. The total number of claim records in respect of calendar year 1995 is

8863. These claims were followed until termination or the end of calendar year 1998, whichever

occurred first. Available information provided in the data set includes the duration of each

policyholder’s claim, the age of the claimant at the onset of disability, the definition of disability

used in assessing whether the policyholder is eligible for a benefit under the policy, the gender

of the policyholder, the occupation class of the policyholder (classified into four levels, see the

Report of the IAAust Disability Committee, 1997), the rate of benefit payable monthly, the type

of benefits payable (increasing in line with inflation or level), the smoker status of the insured

life and the deferment period specified in the insurance contract. Table 1 provides a summary
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of the potential rating factors recorded for each of these claimants along with the coded SAS

variable name and a brief description of the variable.

Table 1: IPI Data Fields

Variable Description SAS code

Duration Duration of the claim (recorded in days). This is
the number of days from when the sickness began
until recovery (or censoring), less the deferment pe-
riod.

durn2

Age Age at the date of claim commencement age

Terminate An indicator of whether the claim was observed to
terminate or was censored

terminate

Disability Definition Own occupation for which the insured person is
reasonably suited by education, training or expe-
rience, or any occupation after an initial period.
(Indicator variable for any occupation after initial
period)

poldesnew3

Sex Indicator variable for gender; Male = 1. sex1

Occupation Class Occupation is grouped into four levels: A, B,
C or D as described in IAAust Disability Reports

occupB, occupC, occupD

Benefit Rate Monthly benefit rate in dollars benrate

Benefit Type Level or Increasing Benefits. (Indicator variable for
increasing benefits)

bentypnew2

Medical Evidence Medical Exam required or Automatic Acceptance.
(Indicator for medical exam required)

medevid1

Contract Type Level Premiums or Stepped Premiums. (Indicator
variable for Level Premiums)

conttypenew1

Sickness or Accident Sickness claim or Accident related claim. (Indica-
tor is for sickness )

sick

Deferred Period Classified according to defpd0 (0 day), defpd1 (base
level and deferment period between 1 and 27 days),
defpd2 (28 to 89 day deferment period) and defpd3
(deferment period in excess of 90 days)

defpd0 defpd2 defpd3

Smoker Indicator variable of smoker; smoker=1 smokernew

We develop a classification scale for insured lives, where 1 indicates extremely short claim

duration class and 10 indicates a very long claim duration class. Being able to identify groups

of policyholders with similar risks can help actuaries to better understand the risk portfolios

underwritten. We attempt to apply and evaluate several data mining methods to predict claim

duration class using various rating factors. Results from fitting different prediction models are

compared based on two different loss functions. We then suggest using principal component

analysis to better understand the relationship between various rating factors and how they

impact claim duration class. We also discuss and compare how different variable combining

techniques can be used to select and weight available variables used in the prediction models.

While we have some understanding of the level of claim termination rates from existing industry

tables and other industry level studies (e.g. CMI 12 1991 and Ling et al. 2010), this paper will

provide a new outlook on IPI data classifications formulated using modern statistical methods
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that have not previously been used to advance our understanding of this area in Australia. We

hope that this paper will appeal not just to researchers but also to actuarial practitioners in the

insurance industry. All models are applied using SAS functions and more details can be found

in Liu (2012).

The rest of the paper is organised as follows. Section 2 presents a brief discussion of the

data mining models that are used to predict claim duration classes of insured lives. Section

3 demonstrates how principal component analysis and different variable combining techniques

can be used to better understand rating factors that drive claim durations. Section 4 presents

and compares the results of fitting different data mining models with various variable selection

and weighting techniques, and Section 5 concludes the paper.

2 Data Mining Prediction Models

We aim to provide a fast, objective method of scoring claims into different portfolios with

homogeneous risks. First of all, we define claim duration as the time difference between claim

termination and the date of claim onset. We classify the claim durations T into 10 different

classes of duration with approximately 10% of data in each class, ranging from the shortest

claim duration class G = 1 to the longest claim duration class G = 10. The goal is to use

various policyholders’ information known to the insurers to group the policies into 10 different

duration portfolios. The prediction model assigns each new claim a score from 1 to 10- the

higher the score, the longer the predicted claim duration.

We apply six different data mining techniques to create our prediction model namely Linear

Regression of an Indicator Matrix, Linear Discriminant Analysis (LDA), Quadratic Discriminant

Analysis (QDA), K-Nearest Neighbour (KNN), Log-logistic Regression and Ordered Log-logistic

Regression. Even though we explain some important mathematical details, we emphasise the

methods and their conceptual underpinnings more. For more details on model specifications

and associated mathematical details see Hastie et al. (2008).

2.1 Linear regression of an indicator matrix

We start off with this most straight forward and widely used regression model. For our anal-

ysis, the response variable duration class is denoted by G, which can take values 1, 2, . . . , 10.

This quantitative outcome is known as a categorical response. By using linear regression, we
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assume there is no explicit ordering in the classes. We record the predictors using a vector X

representing the p predictor variables which include age, gender, and occupation category etc.

Components of X are denoted Xj , j = 1, 2, . . . , p. Using N to denote the number of observa-

tions, the entire set of the predictors is a set of N input p-vectors Xi, i = 1, . . . , N recorded in

an N ×p matrix X. An indicator variable is used to code each of the response categories. Since

G has 10 classes, there will be 10 such indicators Yk, k = 1, ..., 10 with Yk = 1 if G = k else

0. The N training instances of these form an N × 10 indicator response matrix Y. Often it is

convenient to include the constant variable 1 in X, and write the linear model as

Ŷ = X>B̂,

where B̂ denotes the estimated coefficient matrix. There are many different methods to fit

the linear model to a set of training data, but by far the most popular is the method of least

squares, which minimises the sum of squared residuals and leads to a closed form expression

for the estimated parameter B. We fit a linear regression model to each of the columns of Y

simultaneously, and the fit is given by

B̂ = (X>X)−1X>Y.

A new observation with input x> = (x1, . . . , xp) is classified as follows:

• compute the fitted output f̂(x)> = (1, x>)B̂, a 10 vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈Gf̂k(x),

where f̂k(x) is the fitted linear model for the kth indicator response variable.

Hastie et al. (2008) point out there is a serious masking problem with the regression approach

when the number of classes K ≥ 3, especially prevalent when K is large. Because of the rigid

nature of the regression model, classes can be masked by others. We therefore look at Linear

Discriminant Analysis (LDA) in the next section, which can prevent this masking problem.
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2.2 Linear discriminant analysis

Discriminant analysis is a classic method of classification that has stood the test of time. It

was originally developed in 1936 by Fisher. Discriminant analysis often produces models whose

accuracy approaches and occasionally exceeds more complex modern methods. Discriminant

analysis can only be used for classification problems, not for regression. That is, the target

variable must be categorical, but may have two or more categories. Suppose that we model the

class density for each observed predictor set using a multivariate Gaussian distribution,

fk(x) =
1

2πp/2|Σk|1/2
exp−1/2(x−µk)

>Σ−1
k (x−µk), for k in 1, 2, . . . , 10,

where p is the number of predictors available, x is the predicting vector with each element

representing information such as age, gender, and occupation category etc, µ and Σk are the

mean vector and variance matrices of the multivariate Gaussian distribution. We are aware

of the fact that we have some predictors here that are categorical, which technically violates

the normality assumption. However, Manly (1986) pointed out that violation of the normality

assumption does not render discriminant analysis a waste of time. He states that discriminant

analysis may well turn out excellent even on data from non-normal distributions. We therefore

decide to look at both linear discriminant analysis (LDA) and quadratic discriminant analysis

(QDA). We will demonstrate in the results section that even though these two models do not

perform as well as methods such as k-nearest neighbour, there is still some predictability evident

when we look at the misclassification plots.

Let us denote πk as the prior probability for class k, with
∑10

k=1 πk = 1. A simple application

of Bayes’ theorem gives us the conditional probability of being in class k conditioning on a set

of observed predictors x> = (x1, x2, . . . , xp),

Pr(G = k|X = x) =
fk(x)πk∑10
l=1 fl(x)πl

.

LDA arises in the special case when we assume that the classes have the same covariance

matrix Σ for each class k. The method is called linear discriminant analysis because the

decision boundaries between any two classes are linear in the predictor vector x. We can see
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this through the log ratio of the decision boundary for classes k and l,

log
Pr(G = k|X = x)

Pr(G = l|X = x)
= log

fk(x)

fl(x)
+ log

πk
πl

(1)

= log
πk
πl
− 1

2
(µk + µl)

>Σ−1(µk − µl) + x>Σ−1(µk − µl). (2)

The predicted outcome is classified based on the decision function

G(x) = argmaxkδk(x),

where δk(x) are the conditional probabilities of being classified as class k given a set of predictors

x:

δk(x) = log {Pr(G = k|X = x)} = x>Σ−1µk −
1

2
µ>k Σ−1µk + logπk. (3)

These linear discriminant functions are equivalent to the decision rule described in Equation (2).

In practice, the parameters µ and Σ in the Gaussian distributions and the prior probability πk

are not known and therefore we need to estimate them using our training data. The algorithm

is as follows:

• Estimate the prior probability for each class π̂ = Nk/N , where Nk is the number of

observations in class k and N is the total observations in the training set.

• Estimate the mean for each class: µ̂k = Σyi=kxi/Nk, k = 1, 2, . . . , 10.

• Estimate the common covariance matrix Σ̂ = Σ10
k=1Σyi=k(xi − µ̂k)(xi − µ̂k)>/(N − 10).

With two classes there is a simple correspondence between linear discriminant analysis and

classification by linear regression introduced in earlier section. Hastie et al. (1994) showed that

with more than two classes, LDA is not the same as linear regression of the class indicator

matrix, and it avoids the masking problems associated with that approach.

2.3 Quadratic discriminant analysis

Quadratic Discriminant Analysis (QDA) is similar to LDA, except that separate covariance

matrices Σk must be estimated for each class of outcomes. If Σk are not assumed to be the

same for all 10 classes, the quadratic part in the exponents of Equation (2) do not cancel out,

and the decision boundary is therefore a quadratic function of the predictors x. Applying similar
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logic to Equation (3), we get the quadratic discriminant functions,

δk(x) = −1

2
log|Σk| −

1

2
(x− µk)>Σ−1k (x− µk) + logπk for k = 1, 2, . . . , 10.

The decision boundary between each pair of classes k and l is described by a quadratic equation

{x : δk(x) = δl(x)}.

Michie et al. (1994) demonstrated that both LDA and QDA perform well on a large and

diverse set of classification tasks. Hastie et al. (2008) suggest that the reason why LDA and QDA

to have such good performance records is not because the data are approximately Gaussian, or

the covariances are approximately equal for LDA. They suggest it is because the data can only

support simple decision boundaries such as linear or quadratic, and the estimates provided via

the Gaussian models are stable. That is, these models may have relatively high bias, but can

be estimated with much lower variance than more complicated alternatives.

2.4 Multinomial logistic regression

Logistic regression is another type of regression analysis used for predicting the categorical

outcomes based on one or more predictor variables. For categorical outcome it is inappropriate

to use linear regression because the linear regression model can generate any real number ranging

from negative infinity to positive infinity, whereas our categorical outcome can only take on

discrete values 1, 2, . . . , 10. Instead of equating the expected value of the dependent variable

to a linear combination of independent variables and their corresponding parameters like linear

regressions do, logistic regression models equate the linear component to the logit function of

the probability of a given outcome on the dependent variable. For our analysis, we have 10

discrete duration classes for the dependent variable. We will consider the 10th category to be

the omitted or baseline category, where logits of the first 9 categories are constructed with the

baseline category in the denominator. The model has the form

log
Pr(G = k|X = x)

Pr(G = 10|X = x)
= αk + β>k x, for k in 1, 2, . . . , 9,

where x still denotes the observed predicting vector x> = (x1, x2, . . . , xp), and αk and βk are

the intercepts and regression coefficient vector respectively. Although we use class 10 as the

denominator in the odds-ratios, the choice of denominator is arbitrary. Solving for Pr(G =
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k|X = x), we have

Pr(G = k|X = x) =
exp(αk + β>k x)

1 +
∑9

l=1 exp(αl + β>l x)
, for k = 1, 2, . . . , 9

Pr(G = 10|X = x) =
1

1 +
∑9

l=1 exp(αl + β>l x)
.

The probabilities of being classified in each of the 10 classes obviously sum to one. Denote G

to be the duration class random variable, which can take one of 10 possible values. For a given

set of predictors x on N observations, G can be considered a column vector of N multinomial

random variables Gi. Let Y be a N × 10 indicator response matrix with Yik = 1 if Gi = k

else 0. π is a matrix of the same dimension as Y where each element πik is the probability of

observing the kth value of the dependent variable G for any given observation in the ith row.

Thus, the likelihood function is

L(α,β|y) =

N∏
i=1

10∏
k=1

πyikik .

The log-likelihood is

l(α,β|y) =

N∑
i=1

10∑
k=1

logπyikik .

Unlike linear regression with normally distributed residuals, there is no closed-form expression

for the coefficient values that maximise the likelihood function, however we can use an iterative

process such as Newton’s method instead.

By fitting a multinomial logistic model, we ignore any ordering in the values of the duration

class. We fit the same model if the duration class is as short as 1 or as long as 10. The advantage

of the logistic regression model is that we estimate coefficients that capture differences between

all possible pairs of duration classes. However, for our analysis, the predicted outcome is clearly

ordered from short duration to long duration, therefore we also look at ordered logistic regression

in the next section.

2.5 Ordered logistic regression model

Our dependent variable duration class is ordinal, that is, it is ranked from the shortest duration

class to the longest duration class. We consider a model that incorporates the ordinal nature of

our dependent variable. The ordered logistic regression model, also known as the proportional

odds model can be applied here. Ordered logistic regression models cumulative probability. For
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our analysis, the event of interest is observing a particular duration class or less. We model the

following odds ratios (McCullagh, 1980) :

log
Pr(G ≤ k|X = x)

1− Pr(G ≤ k|X = x)
= αk − β>x, for k = 1, . . . , 9,

where all the parameters and vectors are defined in the same way as logistic model defined in

Section 2.4. The last category does not have an odds associated with it since the probability of

being classified into a duration group that is less than or equal to 10 is 1. Notice the negative

sign of the β coefficients in the linear predictors above. This ensures that larger coefficients

indicate an association with a longer duration group. For a continuous variable, a positive

coefficient tells us that as the values of the variable increase, the likelihood of being in a longer

duration group increases. An association with longer duration class means smaller cumulative

probabilities for shorter duration class, since they are less likely to occur. The model is called the

proportional odds model because the log of cumulative odds ratio of making the same responses

at different x-points is proportional to the distance of the points,

log

{
Pr(G ≤ k|X = x1)

1− Pr(G ≤ k|X = x1)
× 1− Pr(G ≤ k|X = x2)

Pr(G ≤ k|X = x2)

}
= β>(x2 − x1). (4)

Maximum likelihood estimation is used to estimate the parameters αk and β. Using the re-

lationship equation Pr(G = k|X = x) = Pr(G ≤ k|X = x) − Pr(G ≤ (k − 1)|X = x), the

likelihood function can be derived in a similar way as for the logistic regression model.

The model constrains the classified group curves to have the same shape as shown in Equa-

tion (4), and therefore we cannot fit it by fitting separate logit models for each group as for

multinomial logistic regression model introduced in 2.4. We must maximise the multinomial

likelihood subject to a constraint. The model only applies to data that meet the proportional

odds assumption, that is the relationship between any two pairs of outcome groups is statisti-

cally the same.

2.6 Nearest-neighbour classifier

The k-Nearest-Neighbour Method is essentially a model-free method for classification and pat-

tern recognition. Because it is highly unstructured, it typically is not useful for understanding

the nature of the relationship between the predictors and class outcome. However, as a black

box prediction engines, it can be very effective, and is often among the best performers in real
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data problems. The k-nearest classifiers are memory-based, given a query point x0, we find the

k training points x(r), r = 1, . . . , k closest in distance to x0, and then classify using majority

vote among the k neighbors. Ties are broken at random. For simplicity we will assume that

the features are real-valued, and we use Euclidean distance in the feature space:

di = |xi − x0|.

The k-nearest neighbour fit for duration class Ŷ is defined as follows:

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi,

where Nk(x) is the neighbourhood of x defined by the k closest points xi in the training sample,

and we average the their corresponding observed class indicator outcomes. We then find the

largest fitted value among Ŷ1, . . . , Ŷ10, and assign to class Ĝ accordingly. It is not hard to under-

stand that for k-nearest-neighbour fits, the error on the training data should be approximately

an increasing function of k. The bias of the 1-nearest-neighbor estimate is often low because it

uses only the training point closest to the query point, but the variance is high. A famous result

of Cover and Hart (1967) shows that asymptotically the error rate of the 1-nearest-neighbor

classifier is never more than twice the Bayes rate. We would need an independent test set for

comparing the different methods.

Unlike the least squares methods, the k-nearest-neighbour procedures do not appear to rely

on any stringent assumptions about the underlying data. However, any particular subregion

positions of the decision boundary depends on a handful of input points and is thus too specific

to the data and unstable, resulting high variance and low bias. It seems that with a reasonably

large set of training data, we could always approximate the theoretically optimal conditional

expectation by k-nearest-neighbour averaging, since we should be able to find a fairly large

neighbourhood of observations close to any x and average them. However this approach breaks

down in high dimensions. It can be shown that, in a high dimensional space, in order to capture

a small percentage of the data to form a local average, we must cover a big range of each input

variable. Such neighbourhood is no longer “local”. This is commonly known as the curse of

dimensionality (Bellman, 1961).

11



2.7 Model assessment

We discuss the appropriate performance assessment criteria to use in order to compare models.

A loss function approach is often used to evaluate the accuracy of a categorical predictor Ĝ .

Let L(G; Ĝ) denote the loss incurred when Ĝ is used to predict a random variable G . A loss

function L(.) usually satisfies the following conditions: it is bounded below by 0 and attains 0

when correct prediction is made, i.e. Ĝ = G ; For a categorical variable G, a widely used loss

function is:

L(G; Ĝ) = I(G 6= Ĝ) (5)

where I(.) is the indicator function. For a set of test data, the prediction error e can be estimated

via

ê = Ltest =
1

M

M∑
i=1

Li

where M is the number of test data, and Li is a indicator variable for misclassification. One

disadvantage of this loss function is that it does not measure how far off the misclassification

is. In other words, misclassifying a G = 1 observation as G = 10 has the same contribution

to prediction error as misclassifying it to G = 2. We prefer the loss function to increase as

the distance between G and Ĝ increases. A more appropriate loss function for our analysis is

therefore

L(G; Ĝ) = |G− Ĝ|, (6)

and L is the loss distance between the number of class difference between the test observation

and the predicted class outcome.

3 Variable Selection

We mentioned in earlier sections that some data mining models such as k-nearest neighbour

does not provide much useful information on the relationship between the predictors and the

class outcome. We can use methods such as forward selection or backward elimination to se-

lect variables (see for example, Hocking, 1976; Wilkinson and Dallal, 1981). Forward selection

involves starting with no variables in the model, testing the addition of each variable using a

chosen model comparison criterion, adding the variable that improves the model the most, and

repeating this process until none improves the model. Backward elimination involves starting
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with all candidate variables, testing the deletion of each variable using a chosen model com-

parison criterion, deleting the variable that improves the model the most by being deleted,

and repeating this process until no further improvement is possible. However the processes of

these methods can be time consuming especially when there are many variables available. We

therefore propose two ways of selecting and weighting available variables. We suggest that both

principal component analysis and weighted combination models can be used to understand the

role of the predicting variables in explaining claim duration class, and possibly detect variables

with significant interaction.

3.1 Principal Component Analysis Model

The technique of principal component analysis was first described by Karl Pearson (1901),

although he did not propose a practical method of calculation for more than two or three vari-

ables. Hotelling (1933) described the computing methods. The object of the analysis is to take

p variables X1, X2, . . . , Xp and find combinations of these to produce components Z1, Z2, . . . , Zp

that are uncorrelated. Since Z1, Z2, . . . , Zp are uncorrelated, it means they measure different

dimensions in the data. The components are also ordered so that Z1 displays the largest amount

of variation in the response, Z2 displays the second largest amount of variation, and so on. We

aim to explain the variation in the data set using as few Z variables with variances that are not

negligible. If a smaller number of Z variables can account for the variation in the p original X

variables, we can achieve some degree of economy without worrying about which of the original

X variables are correlated or significant for the model under consideration. The method is also

useful if we think there is a good deal of redundancy in the original variables, with most of

them measuring similar things. The principal component algorithm is as follows:

• Standardise X1, . . . , Xn to have zero means and unit variances.

• Compute the correlation matrix C = 1
n

∑n
i=1(Xi−X̄)(Xi−X̄)> for the original variables.

This is a correlation matrix because Xi are standardised already.

• Compute the variances of the principal components are the eigenvalues of the matrix C.

Assuming that the eigenvalues are ordered as λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, then λi correspon-

des to the ith principal component. Find eigenvalues: λ1, λ2, . . . , λp and the corresponding
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eigenvectors a1, a2, . . . , ap. The coefficients of the ith principal component are then given

by ai while λi is its variance.

• Discard any components that only account for a small proportion of the variation in the

response.

3.2 Principal Component Analysis Results

There are a total of 16 variables available that have possible impact on claim duration. It can

be argued as to how many components to choose is appropriate. One rule is to use the mineigen

criterion, which states that only components with eigenvalues above 1 should be retained.

Components with an eigenvalue of less than 1 account for less variance than did the original

standardised variable, and so are of little use. In Table 2, the first 6 principal components

have eigenvalues over 1. We can use these six principal components for claim duration class

prediction later on. Due to the dropping of the less important components, the sum of these six

components can only explain a total variance of 8.71. This is also called the final communality

estimate, which is off course less than total variance 16 of the original correlation matrix. Notice

that the six most significant components only account for around 54% of the total variance in

the original correlation matrix. We will later on see in the Results section that if we only use

these six most significant extracted components as predictors in the data mining model, we will

not get as good predictability as using all available variables due to the information loss.
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Table 2: Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative
1 1.9949 0.3113 0.1247 0.1247
2 1.6836 0.1763 0.1052 0.2299
3 1.5073 0.2092 0.0942 0.3241
4 1.2980 0.1536 0.0811 0.4052
5 1.1444 0.0621 0.0715 0.4768
6 1.0823 0.1039 0.0676 0.5444
7 0.9784 0.0407 0.0611 0.6055
8 0.9376 0.0266 0.0586 0.6642
9 0.9110 0.0225 0.0569 0.7211
10 0.8885 0.0703 0.0555 0.7766
11 0.8182 0.0545 0.0511 0.8278
12 0.7637 0.0887 0.0477 0.8755
13 0.6750 0.0936 0.0422 0.9177
14 0.5814 0.0630 0.0363 0.9540
15 0.5184 0.3010 0.0324 0.9864
16 0.2174 0.0136 1.0000

We can normally get some useful insights on the rating factors by looking at the factor

pattern output, which is often referred to as the factor loading matrix in principal component

analysis. The elements in the loading matrix are called factor loadings. There are at least

two ways we can interpret these factor loadings. First, we can use this table to express the

observed variables as functions of the extracted components. Each row of the factor loadings

tells us the linear combination of the component scores that would yield the expected value

of the associated variable. Second, we can interpret each loading as a correlation between an

observed variable and a component, provided that the factor solution is an orthogonal one,

that is, components are uncorrelated, such as the current initial factor solution. Hence, the

factor loadings indicate how strongly the variables and the components are related. Values

greater than 0.30122 are flagged by an *, which means the corresponding components have the

largest loadings on these variables. In Table 3, the first component labelled component 1 is

highly correlated with poldesnew3 and benrate, but in opposite directions. Poldesnew3 is an

indicator variable for any occupation disability definition. Any occupation means an income

payout occurs if by reason of illness, accident or injury the insured is unable to perform any

work at all. Own Occupation definition means an income payout occurs if by reason of illness,

accident or injury the insured live is unable to perform his/her normal own occupation that the
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insured person is reasonably suited by education, training or experience. The data show that

higher benefit rate and own occupation tend to have a large positive impact on component 1.

We can therefore interpret component 1 as a score for the degree of professionalism. A high

degree of professionalism tends to be associated with high salary and therefore a higher benefit

rate. It is intuitive that people whose occupation are highly professional will generally take

out cover for own occupation rather than any occupation. It is quite obvious that component 2

identifies occupation class C rather than occupation class D. Component 6 identifies claims with

long deferred period (defpd3 is 1) that tend to be censored. Similarly, component 4 captures

claims due to sickness, which tend to have a short deferred period (deferred period being 0).

Table 3: Rotated Factor Pattern

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6
age -1 -2 65 * -31 * -1 14

terminate 0 -3 3 7 -12 -64 *
poldesnew3 -72 * -1 -3 10 -10 8

sex1 -9 -6 9 24 -66 * 3
occupB -1 -8 15 25 72 * 7
occupC -19 87 * -12 4 -26 -8
occupD -28 -82 * -16 -1 -30 -8
benrate 70 * -1 19 9 -16 18

bentypnew2 53 * 14 -43 * 11 6 13
medevid1 -15 -11 41 * 4 15 11

conttypenew1 7 22 54 * 6 -2 8
smokernew -14 6 -53 * -3 5 31 *

sick 1 3 17 -71 * 18 17
defpd0 -7 7 4 78 * 17 6
defpd2 52 * -4 -13 -33 * 20 -10
defpd3 6 -4 13 2 -10 70 *

In Table 4, each component is expressed as a linear combination of the standardised observed

variables. For example, the first principal component is computed as:

−0.0158 ∗ age + 0.0481 ∗ terminate− 0.4239 ∗ poldesnew3 + 0.0364 ∗ sex1

−0.0490 ∗ occupB− 0.1373 ∗ occupC− 0.0963 ∗ occupD + 0.4459 ∗ benrate

+0.2993 ∗ bentypnew2− 0.0868 ∗medevid1 + 0.0464 ∗ conttypenew1

−0.1278 ∗ smokernew− 0.0763 ∗ sick− 0.0011 ∗ defpd0.

Notice that, when applying this formula we must use the standardised observed variables (with

means 0 and standard deviations 1), but not the raw data. We can then apply each data mining

methods using these component scores as predictors. Results are provided and compared with

other variable selection methods later on in the next section.
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Table 4: Standardised Scoring Coefficients

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6
age -0.0158 0.0023 0.4054 -0.1700 -0.0469 0.0731

terminate 0.0481 -0.0139 0.0799 0.0430 -0.0590 -0.5617
poldesnew3 -0.4239 0.0275 -0.0374 0.0049 -0.0055 0.1123

sex1 0.0364 -0.0484 0.0991 0.1577 -0.5163 0.0625
occupB -0.0490 -0.0643 0.0810 0.2013 0.5696 0.0160
occupC -0.1373 0.5858 -0.0678 -0.0383 -0.1763 -0.0478
occupD -0.0963 -0.5229 -0.0997 -0.0117 -0.1997 -0.0186
benrate 0.4459 -0.0541 0.1449 0.1348 -0.2173 0.1244

bentypnew2 0.2993 0.0552 -0.2755 0.0906 0.0048 0.1211
medevid1 -0.0868 -0.0649 0.2584 0.0537 0.1085 0.0642

conttypenew1 0.0464 0.1380 0.3650 0.0766 -0.0460 0.0242
smokernew -0.1278 0.0420 -0.3909 -0.0696 0.0607 0.3210

sick -0.0763 0.0493 0.0478 -0.4796 0.1145 0.1124
defpd0 -0.0011 0.0176 0.0699 0.5454 0.1515 0.0600

3.3 Combination Prediction

Combination forecast is a technique that has been adopted by economics and finance researchers

to forecast future stock returns. As pointed out in the seminal paper by Bates and Granger

(1969), combinations of individual forecasts can outperform the individual forecasts themselves.

Forecast combination has recently received renewed attention in the macroeconomic forecasting

literature with respect to forecasting inflation and real output growth (e.g., Stock and Watson

1999, 2003, 2004). We explore the combinations of individual forecast idea and apply it to

the out-of-sample class prediction. Suppose there are N observations in the training data with

p predicting variables available. First of all, for each observation i in the training data, we

apply the data mining technique using each of the individual variables to get p estimated class

predictors Ĝj for j = 1, . . . , p. Then for variable j, we calculate estimated weight Wj as the

reciprocal of the loss value Lj defined by Equation (6),

Wj =
1

Lj
for j in 1, . . . , p. (7)

The higher the loss value, the smaller weight we wish to place on that variable. The next step

is to calculate the average weight W̄j for variable j based on the N observations in the training

data,

W̄j =
1

N

N∑
i=1

Wj ;
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The estimated combination predictor Ĝ is taken to be the weighted average of the p individual

estimated predictor based on the following equation:

Ĝ =

p∑
j=1

W̄j ∗ Ĝj

where Ĝj is the predicted class using one of the data mining techniques with an individual

variable j, and W̄j is the ex ante combining weight which is the average weight used for that

particular individual prediction for the training observations. We are going to refer this method

as weighted combination prediction method in later sections. Table 5 provides W̄j results for

j in 1, . . . , p based on different data mining methods. We flag the six variables assigned the

largest weights by ∗ to indicate the variables that are found most significant under different

data mining models. Own occupation definition (poldesnew3), Occupation class D indicator

(occupD), and deferred period 0 indicator (defpd0) are among the six most significant variables

across all models considered. If we compare this finding with the results found by principal

component analysis in Table 3, it is interesting to see that the same variables were found to be

highly correlated to the most significant components. Therefore the two methods provide fairly

consist results in terms of identifying variables that are significant.

Table 5: Weights Table

age terminate poldesnew3 sex1 occupB occupC occupD
KNN 0.0650 0.0589 0.0654 0.0364 0.0956 0.0569 0.0805
LDA 0.0498 0.0650 0.0672 0.0402 0.1088 0.0555 0.0808

Linear 0.0558 0.0592 0.0705 0.0642 0.0585 0.0525 0.0756
Loglog 0.0596 0.0633 0.0744 0.0684 0.0624 0.0558 0.0796
OLL 0.0672 0.0661 0.0686 0.0634 0.0628 0.0690 0.0697
QDA 0.0553 0.0635 0.0674 0.0388 0.1041 0.0586 0.0814

benrate bentypnew2 medevid1 conttypenew1 smokernew sick defpd0 defpd2
KNN 0.0663 0.0723 0.1047 0.0592 0.0346 0.0585 0.1029 0.0429
LDA 0.0464 0.0722 0.1053 0.0663 0.0387 0.0576 0.1035 0.0427

Linear 0.0564 0.0554 0.0574 0.0561 0.0570 0.0522 0.1147 0.0565
Loglog 0.0598 0.0586 0.0613 0.0598 0.0606 0.0553 0.1210 0.0601
OLL 0.0642 0.0683 0.0622 0.0632 0.0640 0.0691 0.0724 0.0697
QDA 0.0415 0.0731 0.1064 0.0633 0.0371 0.0602 0.1044 0.0448

Rapach et al. (2010a) also explained two other more simple combining methods for com-

bination forecast. The methods only differ in how the weights are determined. One of them

uses simple averaging mean weight. The mean combination prediction sets Wj = 1/p, for

j = 1, . . . , p. Therefore each individual variable predictor gets the same weight when com-

bined together. The other method is called the trimmed mean combination forecast, which sets
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Wj = 0 for the individual prediction with the smallest and largest value and Wj = 1/(p − 2)

for the remaining individual prediction. We will apply the data mining models using all of the

above mentioned variable combining methods to predict duration classes and compare their

performances in the next section.

4 Data Mining Prediction Model Results

In order to build and test the model, we randomly divide the data into training and test sets

according to the ratio of 80% to 20%. Data mining models are applied to the training data and

a prediction model is constructed. As the test data are not used in the training of a model, they

provide an independent way to evaluate the model. The test data are also used to compare and

rank various models considered. For each data mining method, we obtain five sets of results.

Firstly, we apply the data mining methods with all 16 available variables to do out-of-sample

duration class prediction. Secondly, we apply the principal component analysis to extract a

few significant components that explain most variation in the variables, we then apply the data

mining techniques using the principal components found. The last three approaches we adopt

are the weighted combination prediction, the mean combination prediction, and the trimmed

mean combination prediction. We apply the data mining method using each individual variable

and then use these three different combining methods to predict claim class for test data.

Table 6 to Table 8 provide the results on the prediction power of each data mining method.

Total loss is defined as the total number of mis-classifications based on the test data using

the modified loss function defined by Equation (6). The average number of mis-classifications

together with the standard error of the mis-classifications are also given. Notice that, these are

all based on the modified loss function defined by Equation 6. If we define the loss function

using Equation (5), it would result in very high prediction error over 80%, which overlooks the

true prediction power of data mining. The predictability of data mining methods is clearly

evident in the plot for misclassification. In Figure 1 to Figure 6, it is demonstrated that for

every data mining method with every variable selection approach, there is a clear decreasing

trend of policy numbers as the number of misclassifications increases. This suggests that even

though the data mining methods cannot get the duration class prediction exactly right, most of

the predicted outcomes are close to what we expect. This predictability can only be detected if

we use the loss function defined by Equation (6).
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Table 6: Data Mining Results with All variables

total loss mean loss standard deviation prediction error

linear regression 5028 2.8375 2.4556 0.8053

linear discriminant analysis 4365 2.4633 2.1555 0.8138

quadratic discriminant analysis 5241 2.9577 2.4605 0.8200

k-nearest neighbour 4434 2.5023 2.1889 0.8121

loglogistic regression 5003 2.8234 2.4351 0.8070

ordered loglogistic regression 5112 2.8849 2.4187 0.8070

Table 7: Data Mining Results with principal Components

total loss mean loss standard deviation prediction error

linear regression 5432 3.0655 2.5336 0.8222

linear discriminant analysis 4882 2.7553 2.3271 0.8149

quadratic discriminant analysis 4739 2.6744 2.2351 0.8442

k-nearest neighbour 4576 2.5824 2.1488 0.8358

loglogistic regression 5055 2.8527 2.3995 0.8188

ordered loglogistic regression 5336 3.0113 2.3755 0.8369

Table 8: Data Mining Results with Weighted Combination Prediction

total loss mean loss standrad deviation prediction error

linear regression 4621 2.6078 1.8118 0.8888

linear discriminant analysis 4122 2.3262 1.4732 0.8883

quadratic discriminant analysis 4127 2.3290 1.4677 0.8900

k-nearest neighbour 4091 2.3087 1.4598 0.8860

loglogistic regression 4570 2.5790 1.7792 0.8900

ordered loglogistic regression 4377 2.4701 1.6805 0.8860

Table 9: Data Mining Results with Mean Combination Prediction

total loss mean loss standard deviation prediction error
linear regression 4929 2.7816 1.9653 0.8911

LDA 4122 2.3262 1.4666 0.8916

QDA 4144 2.3386 1.4834 0.8928

KNN 4101 2.3143 1.4567 0.8866

loglogistic regression 4748 2.6795 1.9051 0.8821

Ordered loglogistic regression 4420 1.7051 1.7051 0.8900

Table 10: Data Mining Results with Trimmed Mean Combination Prediction

total loss mean loss standard deviation prediction error

linear regression 5369 3.0299 2.1551 0.8900

LDA 4260 2.4041 1.5684 0.8939

QDA 4281 2.4159 1.5792 0.8945

KNN 4187 2.3629 1.5311 0.8933

loglogistic regression 5369 3.0299 2.1551 0.8900

Ordered loglogistic regression 4651 2.6247 1.8583 0.8775
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Figure 1: Misclassification plot Using Linear Regression Model

Figure 2: Misclassification plot Using Linear Discriminant Model

Figure 3: Misclassification plot Using Quadratic Discriminant Model
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Figure 4: Misclassification plot Using K-nearest Neighbour Model

Figure 5: Misclassification plot Using Logistic Model

Figure 6: Misclassification plot Using Ordered Logistic Model
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Figure 7: Total Loss on Different Data Mining Models

Figure 7 provides the total loss plots for different data mining models together with various

variable selection methods. It is a good way to compare across different data mining models or

to compare the variable selection methods we have used. There are a few interesting findings

based on Figure 7.

• First of all, if we look along each line, k-nearest neighbour always gives the minimum loss

value for all six variable selection methods compared to the other data mining models.

This proves that as a black box prediction engine, k-nearest neighbour can be very ef-

fective, and is often among the best performers in real data problems. However, as we

pointed out earlier, because it is highly unstructured, it is hard to understand the nature

of the relationship between the predictors and class outcome. To better understand the

significance and relationship of various available rating factors, we can use principal com-

ponent analysis or look at the weighting results from the weighted combination method

explained earlier. Secondly, if we compare across different variable selection/weighting

methods, the weighted combination method is the lowest line, meaning it consistently

outperforms the other five variable selection methods no matter which data mining model

we use. This out performance is also clearly evident in the misclassification histogram we

saw previously in Figure 1 to Figure 6. The weighted combination prediction performs es-

pecially well for eliminating very large misclassification, that is misclassification being 7 to

10 when compared with other variable weighting methods. Again, this strong predictabil-

ity of weighted combination method is masked when we only look at the conventional
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prediction error provided in Table 6 to Table 10 calculated based on Loss Equation (5).

Even though the weighted combination method did not predict the duration class per-

fectly, that is having fewer misclassifications being zero compared to the other variable

selection methods, it does a very good job in getting the predicted outcome close to the

true duration class rather than getting it far off track. Therefore, we stress the point that

using the modified loss function from Equation (6) gives more information while assessing

data mining performance.

• Finally, if we compare the first approach (all variables) with the second approach (principal

component analysis), using only six principal components extracted as predictors for data

mining models performs worse than using all variables available most of the time. This

is what we expected as we have seen in Table 2, the six most significant components

only account for around 54% of the total variance in the original correlation matrix.

Nevertheless, it was still useful to look at the factor loading matrix provided in Table 3

to better understand how different rating factors impact duration classes.

We have also plotted the standard deviations of loss values for different data mining models

considered. Again, the weighted combination method is the best performer in terms of having

the smallest standard deviation. Comparing along each line, k-nearest neighbour is always

among the best two data mining methods in terms of having the smallest loss standard deviation

across different variable selection methods.

Figure 8: Loss Standard Deviation for Different Data Mining Models
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5 Conclusion

This paper demonstrates how data mining can be applied to Income Protection Insurance data

to classify insured lives into portfolios with homogeneous risks. We provide a fast, objective

method of scoring claims into different claim duration classes. Being able to identify groups

of policyholders with similar risks can help actuaries to better understand the risk portfolios

underwritten. Results from fitting different prediction models are compared based on two dif-

ferent loss functions. The predictability of all the data mining methods considered is clearly

evident when we look at the plot of misclassification. However this predictability can be masked

if we only look at the conventional prediction error rate. k-nearest neighbour was found to be

the best performer among all the different data mining models considered in terms of having

the smallest mean loss value and the smallest loss standard deviation no matter which variable

selection or combining method we use. However one of the limitations of such a black box model

is that there is not much useful information provided for understanding the relationship between

rating factors. We therefore suggest principal component analysis as a way of understanding

factor patterns. Moreover, we discuss and compare how different combination models can be

used to weight available predicting variables. Principal component analysis and weighted com-

bination prediction model provide very consistent results on identifying the significant variables

in explaining claim durations. We find that the occupation definition used to assess whether a

policyholder is eligible for a benefit payment, occupation class and deferred period are the most

important information to predict claim duration class. All in all, we suggest that data mining

techniques can provide some useful insights for informing claim termination rate estimation,

and this paper should appeal to both researchers and practitioners.
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