
Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>
DOI: xxx/xxxx

SPECIAL ISSUE PAPER

Predicting Process Performance: AWhite-Box Approach
Ilya Verenich*1,2 | Marlon Dumas2,1 | Marcello La Rosa3 | HoangNguyen1 | Arthur ter
Hofstede1

1School of Information Systems, Queensland
University of Technology, Brisbane, Australia
2Institute of Computer Science, University of
Tartu, Tartu, Estonia
3School of Computing and Information
Systems, University ofMelbourne, Victoria,
Australia
Correspondence
*Corresponding author name, Corresponding
address. Email: ilya.verenich@qut.edu.au
Present Address
Present address

Abstract
Predictive business process monitoring methods exploit historical process execution logs to pro-
vide predictions about running instances of a process. These predictions enable process workers
and managers to preempt performance issues or compliance violations. A number of approaches
have beenproposed to predict quantitative process performance indicators for running instances
of a process, including remaining cycle time, cost, or probability of deadline violation. However,
these approaches adopt a black-box approach, insofar as they predict a single scalar value with-
out decomposing this prediction into more elementary components. In this paper, we propose
a white-box approach to predict performance indicators of running process instances. The key
idea is to first predict the performance indicator at the level of activities, and then to aggregate
these predictions at the level of a process instance by means of flow analysis techniques. The
paper develops this idea in the context of predicting the remaining cycle time of ongoing pro-
cess instances. The proposed approach has been evaluated on real-life event logs and compared
against several baselines.
KEYWORDS:
ProcessMining, Predictive ProcessMonitoring, Flow analysis

1 INTRODUCTION
Predictive business process monitoring techniques seek to predict the
future state or properties of ongoing executions of a process based
on models extracted from historical event logs. A wide range of pre-
dictive business process monitoring techniques have been proposed to
predict for example compliance violations 1,2, the next activity or the
remaining sequence of activities of a process instance 3,4, or quantita-
tive process performance indicators, such the remaining cycle time of
a process instance 5,6,7. These predictions can be used to alert process
workers to problematic process instances or to support resource alloca-
tion decisions, e.g. to allocate additional resources to instances that are
at risk of a deadline violation.
This article addresses the problemof predicting quantitative process

performance indicators, with a specific focus on predicting the remain-
ing cycle time of ongoing process instances. Existing approaches to this
problem adopt a “black-box” approach by building stochastic models or

regression models which, given a process instance, predict the remain-
ing execution time as a single scalar value, without seeking to explain
this prediction in terms of more elementary components. Yet, quanti-
tative performance indicators such as cost or time are aggregations of
corresponding performance indicators of the activities composing the
process. For example, the cycle time of a process instance with sequen-
tially performed activities consists of the sum of the cycle time of the
activities performed in that process instance. In this respect, existing
techniques allow us to predict the aggregate value of a performance
indicator for a running process instance, but they do not explain how
each activity contributes to this aggregate prediction.
Motivated by this observation, this article proposes a “white-box”

approach to predicting quantitative performance indicators of running
process instances based on a general technique for quantitative process
analysis known as flow analysis 8. The idea of flow analysis is to esti-
mate a quantitative performance indicator at the level of a process by
aggregating the estimated values of this performance indicator at the
level of the activities in the process, taking into account the control-
flow relations between these activities. Accordingly, in order to predict

2 I. VERENICH ET AL

a performance indicator for an ongoing process instance, we first apply
regression models to estimate the performance of each activity that
might potentially be executed within this process instance, and then we
aggregate these estimates using flow analysis.
In addition to providing predictions that can be traced down to

the level of individual activities, we show via an empirical evaluation
with real-life business process event logs, that the proposed technique
achieves comparable and sometimeshigher prediction accuracy relative
to several state-of-the-art “black-box” baselines.
The article presents the proposed approach and its evaluation in

the specific context where the performance indicator to be predicted
is the remaining time of a process instance. However, the method could
be adapted to predict other quantitative performance indicators, pro-
vided that the performance indicator can be calculated for each process
activity separately.
This article is an extended and revised version of an earlier confer-

ence paper 9. With respect to the conference version, the main addi-
tional contribution is a new variant of the proposed remaining time
prediction method, namely the adaptive flow analysis method. This new
method can handle situations where there is not enough data to build a
reliable regression model, which happens for example when an activity
occurs infrequently in a given state, and hence it has not been observed
enough times to build a reliable regression model to predict its execu-
tion time. Furthermore, in this article, we have enhanced the experi-
mental setup with additional datasets, additional features for building
the regression models, and an alternative machine learning technique,
namely XGBoost.
The remainder of the article is structured as follows. Section 2

presents the related work on process prediction, with an emphasis on
the prediction of remaining time. Section 3 introduces background con-
cepts and techniques used in the article. Section 4 outlines the details
of the proposed approach. Next, Section 5 presents an experimental
evaluation of our approach and compares it with the baseline tech-
niques. Finally, Section 6 concludes the article and outlines future work
directions.

2 RELATEDWORK
A wide range of predictive business process monitoring problems have
been studied in previouswork. A recent survey of this field byMárquez-
Chamorro et al. 10 identified 39 distinct proposals, out of which 17
focus on the prediction of time-related properties of running process
instances (herein called cases).
One group of techniques in this field address the problem of predict-

ing whether or not a given case will complete on time, i.e. predicting
deadline violations in a boolean manner and with respect to a given
maximum allowed duration of a case. Pika et al. 11 address this predic-
tion problem by training decision trees over a small number of features,
such as which activities have occurred so far and which resources have

performed these activities. Conforti et al 12 apply amulti-classifier (deci-
sion trees) at each decision point of the process, to predict the likelihood
of various types of risks, such as cost overruns and deadline violations.
Metzger et al. 13 tackle the problem of predicting deadline violations by
finding correlations between “late show” events and external variables
related to weather conditions or road traffic, and then setting thresh-
olds on these external variables (e.g. when the external variable exceeds
a threshold, a late show event is predicted).
The problem addressed in this article differs from the one addressed

in the above studies because our goal is not to predict whether a given
deadline will be fulfilled or violated, but to predict the actual remain-
ing time. In other words, this article addresses a regression problem,
whereas the above studies address a classification problem. Building
white-box (interpretable) models for classification problems is a differ-
ent problem than building such models for regression problems. Other
related work addressing classification problems in the context of pre-
dictive process monitoring include the one by Maggi et al. 1 and by
Leontjeva et al. 2, who propose methods to predict the outcome of a
case (normal vs. deviant) based on the sequence of activities executed
in a given case and the values of data attributes at each point in the
sequence.
One of the earliest studies addressing the problem of predicting the

remaining cycle time of running cases of a business process is the one
by Van Dongen et al. 14 In this work, the authors predict the remaining
time by fitting non-parametric regressionmodels based on the frequen-
cies of activities within each case, their average durations, and case
attributes. Van der Aalst et al. 5 propose a remaining time prediction
methodby constructing a transition system from the event log using set,
bag, or sequence abstractions of observed events. Polato et al. 15 refine
this method by proposing a data-aware transition system wherein each
state is annotated with a classifier to predict the next state and each
transition is annotated with a regressor to predict the remaining time
from that state. Rogge-Solti andWeske 6,7 model business processes as
stochastic Petri nets and performMonteCarlo simulation to predict the
remaining time of a case. De Leoni et al. 16 propose a general framework
to predict various characteristics of running cases, including the remain-
ing time, based on correlations with other characteristics and using
regression trees. Senderovich et al. 17 extend the approach presented
by Aalst et al. 5 by incorporating features extracted from queuing net-
works derived from the event logs. These additional features enhance
the accuracy of the regression models in the case where part of the
execution time comes from resource contention (i.e. resources being
too busy). Finally, Senderovich et al. 18 provide a comprehensive study
of how contextual attributes capturing different levels of inter-case
dependencies enable more accurate prediction of remaining time.
The methods mentioned above are “black-box” methods, insofar as

they predict a single scalar value (the remaining time) without decom-
posing this prediction into more elementary components. In the case
of regression models such as those used in Van Dongen et al. 14, it is
possible to extract regression coefficients that tell us to what extent
each feature in the model contributes to the prediction (e.g. to what

I. VERENICH ET AL 3
extent the prediction can be explained by the type of customer, or by
the fact that a given activity has been performed multiple times). How-
ever, thesemodels donot tell uswhere thepredicted remaining timewill
be spent. In contrast, the aim of the research reported here is to build
white-box prediction models, which enable process workers and man-
agers to understand in which parts of the process the remaining time
will be spent. Concretely, in the approach proposed in this article, the
remaining cycle time of a case is decomposed into a (weighted) sum of
the predicted cycle times of the activities that are yet to be performed
in the case, thus allowing process workers to determine to what extent
each activity contributes to the prediction.
The problem of predicting remaining time has also been extensively

studied in the context of software development processes. For example,
Kikas et al. 19 predict issue resolution time in Github projects using
static, dynamic and contextual features. A later work by Rees-Jones et
al. 20 further emphasizes the importance of contextual features for pre-
dicting issue lifetime in Github projects. However, these proposals do
not seek to explain inwhichparts of theprocess thepredicted remaining
timewill be spent.
Projectmanagement software tools incorporate functionality to pre-

dict completion dates for software development projects. For example,
FogBugz1 uses Evidence-Based Scheduling based on Monte Carlo sim-
ulation to estimate completion dates 21. The resulting estimates can be
traced down to individual tasks in the project. Our work is inspired
by these latter approaches but extends them in order to handle busi-
ness processes with arbitrary structure. One of the main differences in
this setting is that business processes have conditional branching and
(conditional) loops, while project plans such as those taken as input in
FogBugz, do not contain conditional constructs. Also, our approach uses
supervised learning techniques in order to be able to take as input as
much data as possible (e.g. data attributes and resources involved in the
execution of an ongoing case).
A final group of techniques in the field of predictive process moni-

toring aim to predict future event(s) of a running case. Lakshmanan et
al. 22 use Markov chains to estimate the probability of future execution
of a given task in a running case; Breuker et al. 23 use probabilistic finite
automata to predict the next activity to be performed, while Tax et al. 24
predict the entire continuation of a running case as well as timestamps
of future events using long short-termmemory (LSTM)neural networks.
These related studies, however, do not address the problem of predict-
ing the remaining time. An exception is the technique by Tax et al. 24,
which predicts the timestamp of each remaining activity and hence can
be seen as a white-box technique to predict the remaining time – since
the timestamp of the last activity in the predicted sequence is the pre-
dicted end time of the case. However, the experiments reported by Tax
et al. 24 show that the proposed method for predicting the remaining
sequence has a low accuracy, which hinders its applicability in practice.

1http://www.fogcreek.com

3 BACKGROUND
Predictive process monitoring is a multi-disciplinary area that draws
concepts from business process management and process mining on
the one side and data mining and machine learning on the other. In
this section,we introduce concepts fromtheaforementioneddisciplines
that are used in later sections of this paper.

3.1 Event Logs, Traces and Sequences
Business processes are generally supported by information systems
that recorddata about each individual executionof aprocess (also called
a case). Each case consists of a number of events representing the exe-
cution of activities in a process. Each event has a range of attributes of
which three are mandatory, namely (i) case identifier specifying which
case generated this event, (ii) the event class (or activity name) indicat-
ing which activity the event refers to and (iii) the timestamp indicating
when the event occurred2. An event may carry additional attributes in
its payload. For example, in a patient treatment process in a hospital, the
name of a responsible nursemay be recorded as an attribute of an event
referring to activity “Perform blood test”. These attributes are referred
to as event attributes, as opposed to case attributes that belong to the case
and are therefore shared by all events relating to that case. For example,
in a patient treatment process, the age and gender of a patient can be
treated as a case attribute. In other words, case attributes are static, i.e.
their values do not change throughout the lifetime of a case, as opposed
to attributes in the event payload, which are dynamic as they change
from an event to the other.
Formally, an event record is defined as follows:

Definition1 (Event). An event is a tuple (a, c, t, (d1, v1), . . . , (dm, vm))

where a is the activity name, c is the case identifier, t is the timestamp
and (d1, v1) . . . , (dm, vm) (where m ≥ 0) are event attribute names
and the corresponding values assumed by them.
Let E be the event universe, i.e., the set of all possible event identi-

fiers, and T the time domain. Then there is a function πT ∈ E → T that
assigns timestamps to events.
The sequence of events generated by a given case forms a trace.

Formally,
Definition 2 (Trace). A trace is a non-empty sequenceσ = 〈e1, . . . , en〉
of events such that ∀i ∈ [1..n], ei ∈ E and ∀i, j ∈ [1..n] ei.c = ej .c. In
other words, all events in the trace refer to the same case.
A set of completed traces (i.e. traces recording the execution of com-

pleted cases) comprises an event log.
Definition 3 (Event log). An event logL is a set of completed traces, i.e.,
L = {σi : σi ∈ S, 1 ≤ i ≤ K}, where S is the universe of all possible
traces andK is the number of traces in the event log.

2Hereinafter, we refer to the event completion timestamp unless other-
wise noted.

http://www.fogcreek.com

4 I. VERENICH ET AL

As a running example, let us consider an extract of an event log origi-
nating froman insurance claims handling process (Table 1). The activity
name of the first event in case 1 is A, it was completed on 1/1/2017 at
9:13AM. The additional event attributes show that the cost of the activ-
ity was 15 units and the activity was performed by John. These two are
event attributes. The events in each case also carry two case attributes:
the age of the applicant and the channel through which the application
has been submitted. The latter attributes have the same value for all
events of a case.
Event and case attributes can be categorized into at least two data

types – numeric (quantitative) and categorical (qualitative) 25. With
respect to the running example, numeric attributes are Age and Cost,
while categorical attributes areChannel, Activity andResource. Each data
type requires different preprocessing to be used in a predictive model.
Specifically, numeric attributes are typically represented as such, while
for categorical attributes, one-hot encoding is typically applied.
To illustrate how one-hot encoding works, let us consider a categor-

ical attributeAwith |A| possible values, or levels. We take an arbitrary
but consistent orderingover the set of levels ofA, anduse index ∈ A→
{1, . . . , |A|} to indicate the position of a given attribute value a in it. The
one-hot encoding assigns the value 1 to feature number index(a) and a
value of 0 to the other features 24.
As we aim to make predictions for traces of incomplete cases, rather

than for traces of completed cases, we define a function that returns the
first k events of a trace of a (completed) case.
Definition 4 (Prefix function). Given a trace σ = 〈e1, . . . , en〉 and a
positive integer k ≤ n, hdk(σ) = 〈e1, . . . , ek〉.
For example, for a sequence σ1 = 〈a, b, c, d, e〉, hd2(σ1) = 〈a, b〉.
The application of a prefix function will result in a prefix log, where

each possible prefix of an event log becomes a trace.
Definition 5 (Prefix log). Given an event log L, its prefix log L∗ is the
event log that contains all prefixes ofL, i.e.,L∗ = {hdk(σ) : σ ∈ L, 1 ≤
k ≤ |σ|}.
For example, a complete trace consisting of three events would

correspond to three traces in the prefix log – the partial trace after
executing the first, the second and the third event.

3.2 ProcessModels
Process models provide a visual representation of the underlying busi-
ness process. A process model consists of a set of activities and their
structuring using directed control flow edges and gateway nodes that
implement process routing decisions 26. Formally,
Definition 6 (Process model). A process model is a tuple (N,E, type),
whereN = NA ∪ NG is a set of nodes (NA is a nonempty set of activ-
ities and NG is a set of gateways; the sets are disjoint), E ⊆ N × N

is a set of directed edges between nodes defining control flow, type is a
functionNG → {AND,XOR,OR} is a function that assigns a control
flow construct to each gateway.

Many modeling notations have been proposed to represent pro-
cessmodels, includingEvent-drivenProcessChains (EPC), UMLActivity
Diagrams and Petri nets. Nevertheless, the definition above is rather
generic and abstracts from the specific notation.
One of themost common processmodeling notations is the Business

ProcessModel andNotation (BPMN) developed by theObjectManage-
ment Group (OMG). Figure 1 shows a subset of the core elements of
BPMN. The start and end events represent the initiation and termina-
tion of an instance of a process respectively. The tasks denote activities
to be performed. The flow represents the order among the events, gate-
ways and tasks. Finally, gateways are control flow elements and they
can represent either the splitting or merging of paths. In the case of
exclusive gateways (also known as XOR-gateways), a split has more than
one outgoing flow, but only one of them can be activated, according
to a pre-defined condition. Its counterpart, the join exclusive gateway,
merges the incoming alternative flows. Conversely, a parallel gateway
(also known as AND-gateways) denotes the parallel activation of all
the outgoing branches; whereas, the merging counterpart denotes the
synchronization of themultiple incoming paths 27.

FIGURE 1 Core BPMN elements 27.

A process model can be decomposed into process fragments. A pro-
cess fragment is a connected part of a processmodel. For the purpose of
this paper, we require a fragment to have a single entry and a single exit
point. Such fragments are referred to as SESE fragments. From a mod-
eling perspective, SESE fragments are very handy: structurally every
SESE fragment can be replaced with one aggregating activity. A model
that can be decomposed into SESE fragments, without impacting the
behavior it describes, is called a block-structured, or a structuredmodel.
A process model can be provided by the process stakeholders or

can be automatically discovered from the corresponding event log via a
process discovery algorithm 28.
Definition 7 (Process discovery algorithm). Let L be an event log as
specified inDefinition 3. A process discovery algorithm is a function that
maps L onto a processmodel such that themodel is “representative” for
the behavior seen in the event log.

I. VERENICH ET AL 5

TABLE 1 Extract of an event log.

Case Case attributes Event attributes
ID Channel Age Activity Timestamp Resource Cost
1 Email 37 A 1/1/2017 9:13:00 John 15
1 Email 37 B 1/1/2017 9:14:20 Mark 25
1 Email 37 D 1/1/2017 9:16:00 Mary 10
1 Email 37 C 1/1/2017 9:18:00 Mark 10
1 Email 37 F 1/1/2017 9:18:05 Kate 20
1 Email 37 G 1/1/2017 9:18:50 John 20
1 Email 37 H 1/1/2017 9:19:00 Kate 15
2 Email 52 A 2/1/2017 16:55:00 John 25
2 Email 52 D 2/1/2017 17:00:00 Mary 25
2 Email 52 B 3/1/2017 9:00:00 Mark 10
2 Email 52 C 3/1/2017 9:01:00 Mark 10
2 Email 52 F 3/1/2017 9:01:50 Kate 15

A wide range of process automated process discovery algorithms
have been proposed in the literature 29, with Petri nets andBPMNbeing
themost common output model formats.

3.3 FlowAnalysis
Flow analysis is a family of techniques that enables estimation of the
overall performance of a process given knowledge about the perfor-
manceof its activities. For example, usingflowanalysis one can calculate
the average cycle time of an entire process if the average cycle time of
each activity is known. Flow analysis can also be used to calculate the
average cost of a process instance knowing the cost-per-execution of
each activity, or calculate the error rate of a process given the error rate
of each activity 8. Since flow analysis is typically applied to structured
process models described in the BPMN notation, the estimation can be
easily explained in terms of its elementary components.
Definition 8 (Cycle time of an activity). A cycle time of an activity i is
the time it takes between the moment the activity is ready to be exe-
cuted and themoment it completes. By “ready to be executed” wemean
that all activities uponwhich the activity in question depends have com-
pleted. Formally, cycle time is the difference between the timestamp of
the activity and the timestamp of the previous activity. i.e. πT (σ(i)) −
πT (σ(i− 1)) for 1 ≤ i ≤ |σ|. Here, πT (σ(0)) denotes the start time of
the case.
The cycle time of an activity includes the processing time of the activ-

ity, as well as all waiting time prior to the execution of the activity.
Processing time refers to the time that actors spend doing actual work.
On the other hand, waiting time is the portion of the cycle time where
no work is being done to advance the process. This may include time
spent on transferring information about the case between process par-
ticipants, for example when documents are exchanged by post, as well
as time when the case is waiting for an actor to process it. In many

processes, the waiting time makes up a considerable proportion of the
overall cycle time. This situation may, for example, happen when the
work is performed in batches. In a process related to the approval of
purchase requisitions at a company, the supervisor responsible for such
approvals in a business unit may choose to batch all applications and
check them only once at the start or the end of a working day 8.
To understandhowflowanalysisworks,we startwith an example of a

process with sequential SESE fragments of events as in Figure 2 a. Each
fragment has a cycle time Ti. Since the fragments are performed one
after the other, we can intuitively conclude that the cycle time CT of a
purely sequential processwithN fragments is the sumof the cycle times
of each fragment 8:

CT =

N∑
i=1

Ti (1)

Let us nowconsider a processwith a decision point betweenN mutu-
ally exclusive fragments, represented by anXOR gateway (Figure 2 b). In
this case, the average cycle time of the process is determined by:

CT =

N∑
i=1

pi · Ti, (2)

where pi denote the branching probabilities, i.e. frequencies with
which a given branch i of a decision gateway is taken.
In case of parallel gateways where activities can be executed concur-

rently as in Figure 2 c, the combined cycle time of multiple fragments is
determined by the slowest of the fragments, that is:

CT = max
i=1...n

Ti (3)
Another recurrent pattern is the one where a fragment of a process

may be repeated multiple times, for instance, because of a failed qual-
ity control. This situation is called rework and is illustrated in Figure 2 d.
The fragment is executed once. Next, it may be repeated each timewith
a probability r referred to as the rework probability. The number of times

6 I. VERENICH ET AL

that the rework fragment will be executed follows a geometric distribu-
tion with the expected value 1/(1 − r). Thus, the average cycle time of
the fragment in this case is:

CT =
T

1− r
(4)

(a)

(b)

(c)

(d)

FIGURE 2 Typical process model patterns: sequential (a), XOR-block
(b), AND-block (c) and rework loop (d).

Besides cycle time, flow analysis can also be used to calculate other
performance measures. For instance, assuming we know the average
cost of each activity, we can calculate the cost of a process more or less
in the same way as we calculate cycle time. In particular, the cost of a
sequence of activities is the sumof the costs of these activities. The only
difference between calculating cycle time and calculating cost relates to
the treatment of AND-blocks. The cost of anAND-block such as the one
shown in Figure 2 c is not the maximum of the cost of the branches of
theAND-block. Instead, the cost of such ablock is the sumof the costs of
the branches. This is because after theAND-gateway is traversed, every
branch in the AND join is executed and therefore the costs of these
branches add up to one another 8.
In case of structured process models, we can relate each fragment to

one of the four described types and use the aforementioned equations
to estimate the required performance measure. However, in case of an

unstructured process model or if a model contains other modeling con-
structs besides AND and XOR gateways, the method for calculating
performancemeasures becomesmore complicated 30.
Importantly, flow analysis equations were defined when the average

cycle time of the process is in question. However, the same equations
can also be used to predict the remaining cycle time of a given ongo-
ing instance σ based on the information available in the prefix hdk(σ).
For example, in Equation 2, branching probabilities pi returned by the
predictor can serve as confidence values 31. Thus, among the predicted
cycle times Ti for each fragment, the highest weight is given to the one
that corresponds to themost likely continuation of σ.

3.4 SupervisedMachine Learning
Machine learning is a research area of computer science concerned
with the discovery of models, patterns, and other regularities in data 32.
Closely related to machine learning is data mining. Data mining is the
"core stage of the knowledge discovery process that is aimed at the extrac-
tion of interesting – non-trivial, implicit, previously unknown and poten-
tially useful – information from data in large databases" 33. Data mining
techniques focus more on exploratory data analysis, i.e. discovering
unknown properties in the data, and are often used as a preprocessing
step inmachine learning to improvemodel accuracy.

3.4.1 Overview
Amachine learning system is characterized by a learning algorithm and
training data. The algorithm defines a process of learning from infor-
mation extracted, usually as features vectors, from the training data. In
this work, we will deal with supervised learning, meaning training data is
represented as n labeled samples:

D = {(x1, y1), . . . , (xn, yn) : n ∈ N}, (5)

where xi ∈ X arem-dimensional feature vectors (m ∈ N) and yi ∈ Y
are the corresponding labels, i.e. values of the target variable.
Feature vectors extracted from the labeled training data are used to

fit a predictivemodel that assigns labels to newdata given labeled train-
ing data while minimizing error andmodel complexity. In other words, a
model generalizes the pattern, providing a mappingX → Y . The labels
can be either continuous, e.g. cycle time of activity, or discrete, e.g. loan
grade. In the former case, themodel is referred to as regression;while in
the latter case we are talking about a classificationmodel.
From a probabilistic perspective, themachine learning objective is to

infer a conditional distributionP (Y|X). A standardapproach to tackling
this problem is to represent the conditional distribution with a para-
metric model, and then to obtain the parameters using a training set
containing {xn, yn} pairs of input feature vectors with corresponding
target output vectors. The resulting conditional distribution can be used
tomake predictions of y for new values ofx.

I. VERENICH ET AL 7

3.4.2 XGBoost
As a learning algorithm, in this paper, we apply the so-called eXtreme
Gradient Boosting (XGBoost) 34, one of the latest implementations of
Gradient Boosting Machines (GBM), which has been successfully uti-
lized across various domains 35,36,37 as well as in machine learning com-
petitions such as Kaggle3. Olson et al. 38 performed a thorough analysis
of 13 state-of-the-art, commonly usedmachine learning algorithms on a
set of 165 publicly available classification problems and found that gra-
dient tree boosting achieves the best accuracy for the highest number
of problems.
XGBoost is based on the theory of boosting, wherein the predictions

of several “weak” learners (models whose predictions are slightly better
than random guessing), are combined to produce a “strong” learner 39.
In GBMs, these “weak” learners are combined by following a gradient
learning strategy. At the beginning of the calibration process, a “weak”
learner is fit to the whole space of data, and then, a second learner is
fit to the residuals of the first one. This process of fitting a model to
the residuals of the previous one goes on until some stopping criterion
is reached. Finally, the output of the GBM is a kind of weighted mean
of the individual predictions of each weak learner. Regression trees are
typically selected as “weak” learners 40.
The main challenge of boosting learning in general, and of GBMs in

particular, is the risk of overfitting, as a consequence of the additive cal-
ibration process. Typically, this issue is faced by including different reg-
ularization criteria in order to control the complexity of the algorithm.
However, the computational complexity of these type of mechanisms is
rather high 40. In this context, the main objective of XGBoost is to con-
trol the complexity of the algorithm without excessively increasing the
computational cost. To this end, XGBoost aims tominimize the following
Loss+Penalty objective function:

R(Θ) =

n∑
i=1

l(yi, ŷi) +

k∑
i=1

Ω(fi), (6)
where Θ includes the model parameters to be learned during train-

ing, l is the loss function,whichmeasures the cost between ground truth
yi and prediction ŷi, andΩ(fi) is the regularization term. The loss func-
tion for the predictive term can be specified by the user, and it is always
truncated up to the second term of its Taylor series expansion for com-
putational reasons. The regularization term is obtained with an analytic
expression based on the number of leaves of the tree and the scores of
each leaf. The key point of the calibration process of XGBoost is that
both terms are ultimately rearranged in the following expression 40:

R(Θ) = −
1

2

T∑
j=1

G2
j

Hj + λ
+ γT, (7)

whereG andH are obtained from the Taylor series expansion of the
loss function, λ is the L2 regularization parameter and T is the num-
ber of leaves. This analytic expression of the objective function allows
a rapid scan from left to right of the potential divisions of the tree, but
always taking into account the complexity.

3https://www.kaggle.com

3.4.3 Hyperparameter optimization
Each prediction technique is characterized by model parameters and
by hyperparameters 41. While model parameters are learned during the
training phase so as to fit the data, hyperparameters are set outside the
training procedure and are used for controlling howflexible themodel is
in fitting the data. For instance, the number of weak learners is a hyper-
parameter of the XGBoost algorithm. The impact of hyperparameter
values on the accuracy of the predictions can be extremely high. Opti-
mizing their value is therefore important, but, at the same time, optimal
values depend on the specific dataset under examination 41.
A traditional way of performing hyperparameter optimization is grid

search, which is an exhaustive search through a manually specified sub-
set of the hyperparameter space of a learning algorithm. A grid search
algorithm must be guided by some performance metric, typically mea-
sured by cross-validation on the training set or evaluation on a held-out
validation set 32. However, in a large, multi-dimensional, search space,
random search is often more effective, given a fixed number of itera-
tions. 41 In randomsearch, hyperparameters are sampled froma random
uniform distribution.

4 APPROACH
In this section, we describe the proposed approach to predict the
remaining time. We first provide an overview of the entire solution
framework and then focus on the key parts of our approach.

4.1 Overview
Our approach exploits historical execution traces in order to discover
a structured process model. Once the model has been discovered, we
identify its set of activities and decision points and train two fami-
lies of machine learning models: one to predict the cycle time of each
activity, and the other to predict the branching probabilities of each
decision point. To speed up the performance at runtime, these steps are
performed offline (Figure 3).
At runtime, given an ongoing process instance, we align its partial

trace with the discovered process model to determine the current state
of the instance. Next, we traverse the process tree obtained from the
model starting from the state up to the process end and deduce a
formula for remaining time using rules described in Section 3.3. The
formula includes cycle times of activities and branching probabilities
of decision points that are reachable from the current execution state.
These components are predicted using previously trained regression
and classification models. Finally, we evaluate the formula and obtain
the expected value of the remaining cycle time.

4.2 Discovering ProcessModels from Event Logs
The proposed approach relies on a process model as input. However,
since the model is not always known or might not conform to the real

https://www.kaggle.com

8 I. VERENICH ET AL

FIGURE 3 Overview of the proposed approach.
process, generally we need to discover the model from event logs. For
that, we use a two-step automated process discovery technique pro-
posed in 42 that has been shown to outperform traditional approaches
with respect to a range of accuracy and complexity measures. The tech-
nique has been implemented as a standalone tool 4 as well as a ProM
plugin, namely StructuredMiner.
The technique in 42 pursues a two-phase “discover and structure”

approach. In the first phase, a model is discovered from the log using
either the Heuristics Miner or Fodina Miner. They have been shown
to consistently produce accurate, but potentially unstructured or even
unsound models. In the second phase, the discovered model is trans-
formed into a sound and structured model by applying two techniques:
a technique to maximally block-structure an acyclic process model and
an extended version of a technique for block-structuring flowcharts.
A structured model is internally represented as a process tree. A pro-

cess tree is a tree where each leaf is labeled with an activity and each
internal node is labeled with a control-flow operator: sequence, exclusive
choice, non-exclusive choice, parallelism, or iteration.

4.3 Replaying Partial Traces on the ProcessModel
For a given partial trace, to predict its remaining time, we need to deter-
mine the current state of the trace relative to the process model. For
that, we map, or align, a trace to the process model using the technique
described in 43 which is available as a plugin for the open-source process
analytics platformApromore5.
The technique treats a process model as a graph that is composed of

activities as nodes and their order dependencies as arcs. A case replay
can be seen as a series of coordinated moves, including those over the
model activities and gateways and those over the trace events. In that
sense, a case replay is also termed an alignment of a processmodel and a
trace. Ideally, this alignment should result in as many matches between
activity labels on the model and event labels in the trace as possible.
However, practically, the replay may choose to skip a number of activi-
ties or events in search of more matches in later moves. Moves on the
modelmust observe the semantics of the underlyingmodeling language
which is usually expressed by the notion of tokens. For example, for a

4Available at http://apromore.org/platform/tools
5http://apromore.org

BPMN model, a move of an incoming token over a XOR split gateway
will result in a single token produced on one of the gateway outgoing
branches, while a move over an AND split gateway will result in a sep-
arate token produced on each of the gateway outgoing branches. The
set of tokens located on a process model at a point in time is called a
marking. On the other hand, a move in the trace is sequential over suc-
cessive events of the trace ordered by timestamps, one after another.
Thus, after every move, either on the model or in the trace, the align-
ment comes to a state consisting of the currentmarkingof themodel and
the index of the current event in the trace.
In 43, cases are replayed using a heuristics-based backtracking

algorithm that searches for the best alignment between themodel and a
partial trace. The algorithm can be illustrated by a traversal of a process
tree starting from the root node, e.g. using depth-first search, where
nodes represent partial candidate solution states (Figure 4). Here the
state represents the aforementioned alignment state of the case replay.
At each node, the algorithm checkswhether the alignment state till that
node is good enough, based on costs accumulated along the path from
the root to the current node. If the alignment is good, it generates a
set of child nodes of that node and continues down that path; other-
wise, it stops at that node, i.e. it prunes the branch under the node, and
backtracks to the parent node to traverse other branches.

FIGURE 4 Backtracking algorithm (taken from 43).

4.4 Obtaining the FlowAnalysis Formulas
Having determined the current state of the case execution, we traverse
the process model starting from that state until the process completion
in order to obtain the flow analysis formulas.
As a running example, let us consider a simple process model in

Figure 5 . Applying the flow analysis formulas described in Section 3.3,
the average cycle time of this process can be decomposed as follows:

CT = TA + max(TB + TC , TD) + TF + p2

(
TG +

TH

1− r

)
(8)

http://apromore.org/platform/tools
http://apromore.org

I. VERENICH ET AL 9

x32x31x21 end

A

start x11

B

D

C

x12
F HG

x22

p2

p1

r

FIGURE 5 Example process model. Highlighted is the current marking

Note that one of the branches of gateway X21 is empty and there-
fore does not contribute to the cycle time. Therefore, only the branch
with the probability p2 is included in the equation.
The components of the formula – cycle times of individual activities

and branching and rework probabilities – can be estimated as averages
of their historical values. However, since we deal with ongoing process
cases, we can use the information that is already available from the case
prefix to predict the above components.
Consider, we have a partial trace hd(σ) = 〈A,D,B〉. Replaying this

trace on the givenmodel as described in the Section 4.3, we find the cur-
rentmarking to be in the statesB andDwithin theAND-block. Travers-
ing the process model starting from these states until the process end,
for the remaining cycle time of hd(σ), we obtain the formula:

CTrem = 0 + max(0 + TC , 0) + TF + p2

(
TG +

TH

1− r

)
=

= TC + TF + p2

(
TG +

TH

1− r

)
.

(9)

Since activitiesA,B andD have already been executed, they do not
contribute to the remaining cycle time. Thus, they are not a part of the
formula. All the other formula terms need to be predicted using the data
from hd(σ).
Similarly, if a current marking is inside an XOR block, its branch-

ing probabilities need not be predicted. Instead, the probability of the
branch that has actually been taken is set to 1while the other probabili-
ties are set to 0.
A more complex situation arises when the current marking is inside

the rework loop. In this case, we “unfold” the loop as shown in
Figure 6 . Specifically, we separate the already executed occurrences
of the rework fragment from the potential future occurrences and take
the former out of the loop. Let us consider a partial trace hd(σ) =

〈A,D,B,C, F,G,H〉. SinceH has occurred once, according to the pro-
cess model (Figure 5), with a probability r, it may be repeated, other-
wise, the rework loop is exited. To signal this choice, we take the first
occurrence of H out of the loop and place an XOR gateway after it.
One of the branches will contain a rework loop of future events with
the same probability r, while the other one will reflect an option to skip
the loop altogether. Thus, the cycle time of the whole fragment can be
decomposed as follows:

CTH = TH′ + r
TH

1− r
, (10)

H

1-r

H

H*

r
1-r

1-r
r

r

(a) (b)

FIGURE 6 Unfolding the rework loop ofF

whereTH′ refers to the cycle time of already executed occurrence(s) of
H . It is highlighted in bold font, meaning that we should take the actual
cycle time rather than the predicted.

4.5 Computing the Remaining Time
We can use the flow analysis formulas produced by the method
described in Section 4.4 to compute the remaining cycle time of a case,
given: (i) an estimate of the cycle time of each activity reachable from
the current execution state; and (ii) an estimate of the branching prob-
ability of each flow stemming from a reachable XOR-split (herein called
a reachable conditional flow). Given an execution state, we can obtain
these estimates in several ways including:

1. By using the prediction models produced for each reachable
activity and for each reachable conditional flow, taking into
account only traces that reach the current execution state. We
herein call this approach predictive flow analysis.

2. By computing themean cycle time of each reachable activity and
the traversal frequency of each reachable conditionalflow, again
based only on the suffixes of traces that reach the execution
state in question.We call this approachmean flow analysis

3. By combining the above two approaches as follows: If the num-
ber of training cases to fit the prediction model for a given

10 I. VERENICH ET AL

activity A is less than a certain threshold N0, then we find the
mean cycle times and branching probabilities as in themeanflow
analysis method. Otherwise, we fit the predictors as in predic-
tive flow analysis. This hybrid approach is herein called adaptive
flow analysis. The value N0 can be treated as a hyperparameter
and is to be determined during the hyperparameter optimization
procedure.

The rationale for the adaptive flow analysis is that in a high dimen-
sional feature space, the number of observations to train a model may
not be enough, thus the predictions may be unreliable and unstable 44.
This may happen when we predict cycle times of rare activities or
branching probabilities of gateways that are rarely taken. Furthermore,
if a prefix is too short, there might not be enough information in it to
predict cycle times of some activities and gateways’ branching proba-
bilities, especially those that are executed near the process end. In such
cases, we can then use themean historical activity cycle times andmean
probabilities instead.
For each activity in the process model, to predict its cycle time, we

train a regressionmodel, while for predicting branching probabilitieswe
fit classificationmodels for each corresponding XORgateway. In the lat-
ter case, each branch of a gateway is assigned a class starting from 0,
and themodelmakespredictions about theprobability of each class. The
predictive models are trained for prefixes hdk(σ) of all traces σ in the
training set for 2 ≤ k < |σ|. We do not train andmake predictions after
the first event since for those prefixes there is insufficient data available
to base the predictions upon.

4.6 Feature encoding
In order to fit predictive models, we need to encode process execution
traces in the form of fixed-length feature vectors. In the related work,
there have been proposed two common approaches to achieve this:

1. Training a single predictive model using case attributes as well
as aggregated attributes of executed events. This approach has
been used in 1,14,16,24, among others. Typical aggregation func-
tions applied over event attributes include count (for categorical
attributes) andmean (for numeric ones).

2. Training multiple predictive models, one for each possible pre-
fix length. In this way, values of each event attribute need not
be aggregated across the partial case, therefore, they may be
preserved, as well as the order of attributes. In other words,
this encoding is lossless as compared to the previous one. This
approach has been used in 2,31,9, among others.

Although lossless, the latter approach has been shown to be out-
performed by a single predictive model in some circumstances 45. This
is due to the fact that combining the knowledge from all events per-
formed so far may provide more signal than using the order of events
and their individual attributes. In order to quantify this phenomenon in
the context of flow analysis, in our work we consider both approaches.

4.6.1 Feature encodingwith a single predictivemodel
In a single predictive model approach, we create feature vectors by
extracting the following data from each prefix of the corresponding
prefix log:

• Case attributes. These attributes are static in the sense that they
donot change as the case progresses. As such, they can simply be
appended to feature vectors.

• Aggregated event attributes. As event attributes are dynamic,
i.e. each event in a trace has its own attribute values, in order to
encode them in a fixed-length vector, we apply several aggrega-
tion functions. For numeric attributes, we compute their mean,
minimum and maximum values across a partial case, as well as
their sum and standard deviation. For categorical attributes, we
count how many times a specific level has appeared (e.g. how
many times a specific activity has been executed, or how many
activities a specific resource has performed).

To fit a predictive model, we append to these feature vectors the
value of the target variable y that is to be learned. For example, if we
are to predict the cycle time of an activity, we calculate it as the time dif-
ference (in seconds) between the completion timestamp of that activity
and the completion timestamp of the previous activity. If the activity is
never executed in a given case, its cycle time is undefined. Therefore,
we exclude such cases from the training data. Conversely, if an activity
occurs multiple times in a case, we take its average cycle time.
As a running example, we consider a snapshot of the log with two

complete cases in Table 1 that corresponds to the process model in
Figure 5 . The events are ordered according to their completion times-
tamp. Table2 illustrates the resulting training set thatwill be composed
for the prediction of a cycle time of activity F . For convenience, we
replaced absolute timestamps with relative ones (in seconds), starting
from the beginning of a case. Furthermore, for simplicity, we showed
only one aggregation function, sum, for numerical attributes.
Similarly, to predict branching probabilities, we assign a class label to

each outgoing branch. For example, if we are to predict the branching
probabilities for the X32 gateway, we can assign class 0 to the branch
that leads to rework and class 1 to the other branch. Evidently, the prob-
ability of class 0 would be equal to the rework probability r. Thus, for
the first case in Table 1 X32 = 1, while for the second case X32

is undefined since the case does not reach that decision point. Conse-
quently, the second case cannot be used to populate a training set for
the prediction ofX32. Table 3 shows the resulting training set.
From these examples, it is evident that the dimensionality of feature

vectors is constant for a given log and depends on: (i) the number of case
attributes, (ii) the number of categorical event attributes and the num-
ber of possible values, or levels, of each such attribute, (iii) the number
of numeric event attributes and the number of aggregation functions
applied for them.

I. VERENICH ET AL 11

TABLE 2 Training set to predict the cycle time ofF (single model).
Channel Age Activity_A Activity_B Activity_C Activity_D Activity_F Activity_G Activity_H Resource_John Resource_Mark Resource_Mary Resource_Kate sum_Timestamp sum_Cost . . . Target
Email 37 1 0 0 0 0 0 0 1 0 0 0 0 15 5
Email 37 1 1 0 0 0 0 0 1 1 0 0 80 40 5
Email 37 1 1 0 1 0 0 0 1 1 1 0 180 50 5
Email 37 1 1 1 1 0 0 0 1 2 1 0 300 60 5
Email 37 1 1 1 1 1 0 0 1 2 1 1 305 80 5
Email 37 1 1 1 1 1 1 0 2 2 1 1 350 100 5
Email 37 1 1 1 1 1 1 1 2 2 1 2 360 115 5
Email 52 1 0 0 0 0 0 0 1 0 0 0 0 25 50
Email 52 1 0 0 1 0 0 0 1 0 1 0 300 50 50
Email 52 1 1 0 1 0 0 0 1 1 1 0 57900 60 50
Email 52 1 1 1 1 0 0 0 1 2 1 0 57960 70 50
Email 52 1 1 1 1 1 0 0 1 2 1 1 58010 85 50

TABLE 3 Training set to predict the branching probabilities ofX32 (single model).
Channel Age Activity_A Activity_B Activity_C Activity_D Activity_F Activity_G Activity_H Resource_John Resource_Mark Resource_Mary Resource_Kate sum_Timestamp sum_Cost . . . Target
Email 37 1 0 0 0 0 0 0 1 0 0 0 0 15 1
Email 37 1 1 0 0 0 0 0 1 1 0 0 80 40 1
Email 37 1 1 0 1 0 0 0 1 1 1 0 180 50 1
Email 37 1 1 1 1 0 0 0 1 2 1 0 300 60 1
Email 37 1 1 1 1 1 0 0 1 2 1 1 305 80 1
Email 37 1 1 1 1 1 1 0 2 2 1 1 350 100 1
Email 37 1 1 1 1 1 1 1 2 2 1 2 360 115 1

4.6.2 Feature encodingwithmultiple predictivemodels
In a multiple predictive model approach, we concatenate case attributes
and, for each position in a trace, the event occurring in that posi-
tion and the value of each event attribute in that position. In gen-
eral, for a case with U case attributes {s1, . . . , sU} containing k
events {e1, . . . , ek}, each of them having an associated payload
{d11, . . . , dR1 }, . . . {d1k, . . . , d

R
k } of lengthR, the resulting feature vector

would be:
~X = (s1, . . . , sU , e1, d

1
1, . . . , d

R
1 , . . . , ek, d

1
k, . . . , d

R
k) (11)

With this encoding, the length of the feature vector increases with
each executed event ek :

U + k ·R (12)
Consequently, this approach requires fitting a separate model for

each possible length of a test prefix. Table 4 provides an example of the
resulting training set for thepredictionof the cycle timeofF for prefixes
of length k = 3.
Analogously, Table 5 provides an example of the resulting training

set for the prediction of the branching probabilitiesX32 for prefixes of
length k = 3. The set includes only one case forwhich the decision point
has been actually taken.
As compared to the single model approach where each sample of

a prefix log created from the training set becomes a training sample
(Table 2), in the multiple model approach, each training trace produces
only one sample. It should be noted that if a case does not reach length
k, i.e. it finishes earlier, there are two options to proceed:
• Discard such cases from the training set for prefix lengths k
• Impute missing event attribute values with zeros or their histor-
ical averages computed from cases that have at least k events,
so that the resulting feature vectors’ dimensionality would be
determined by Eq. 12. This approach is often referred to as
padding in machine learning 46.

In this work, wewill use the former approach, as we aremostly inter-
ested in predictions in the early stages of a process evolution where
many process instances have not finished yet, so there is still sufficient
amount of data to train the predictivemodels.

5 EVALUATION
In the following section, we empirically compare the proposed flow
analysis-based approaches with each other and with various baselines
proposed in previous work. In particular, we seek to answer the follow-
ing research questions:
RQ1.Doflowanalysis-based techniques provide accuratepredictions

in the early stages of case evolution, in comparisonwith state-of-the-art
baselines?
RQ2.Does the adaptive flow analysis approach provide added value

over themean and predictive flow analysis approaches?
The source code and supplementary material required to reproduce

the experiments discussed in the rest of this section can be found at
http://github.com/verenich/flow-analysis-predictions.

5.1 Datasets
We conducted the experiments using nine real-life event datasets. To
ensure the reproducibility of the experiments, the logswe used are pub-
licly available at the “4TU Center for Research Data”6 as of September
2017, except for one log, which we obtained from the demonstration
version of a software tool. Table 6 summarizes the basic characteristics
of each dataset.

6https://data.4tu.nl/repository/collection:event_logs_real

http://github.com/verenich/flow-analysis-predictions
https://data.4tu.nl/repository/collection:event_logs_real

12 I. VERENICH ET AL

TABLE 4 Training set to predict the cycle time ofF , k = 3 (multiple models).
Channel Age Activity_1 Timestamp_1 Resource_1 Cost_1 Activity_2 Timestamp_2 Resource_2 Cost_2 Activity_3 Timestamp_3 Resource_3 Cost_3 Target
Email 37 A 0 John 15 B 80 Mark 25 D 180 Mary 10 5
Email 52 A 0 John 25 D 300 Mary 25 B 57900 Mark 10 50

TABLE 5 Training set to predict the branching probabilities ofX32, k = 3 (multiple models).
Channel Age Activity_1 Timestamp_1 Resource_1 Cost_1 Activity_2 Timestamp_2 Resource_2 Cost_2 Activity_3 Timestamp_3 Resource_3 Cost_3 Target
Email 37 A 0 John 15 B 80 Mark 25 D 180 Mary 10 1

BPIC’12. This event log originates from the Business Process Intel-
ligence Challenge 7 held in 2012 and contains data from the applica-
tion procedure for financial products at a large financial institution.
The process consists of three subprocesses: one that tracks the state
of the application (BPIC’12 A), one that tracks the state of the offer
(BPIC’12 O), and a third one that tracks the states of work items asso-
ciated with the application (BPIC’12 W). For the purpose of this work,
we treat these three subprocesses as separate datasets. Additionally,
the BPIC’12 W subprocess contains sequences of two or more events
in a row of the same activity. In other words, activities are frequently
reworked multiple times. As mentioned in Section 3.3, flow analysis
approaches assume a constant rework probability r. However, in many
real-life processes r subsequently decreases after each execution of the
rework loop,meaning that the rework becomes less and less likely. Thus,
if r is inaccurately predicted in predictive flow analysis, the error will
propagate. To verify our hypothesis, we modify the log by keeping only
the first occurrence of each repeated event in a sequence. To keep the
remaining time calculations correct, we retain the last event of a case,
even if it is a repeated event. In the rest of the paper, we refer to the
modified log as BPIC’12W_n|1|.

7doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

Credit Requirement (CR). This log contains information about a
credit requirement process in a bank.8 It contains data about events,
time execution, etc. A distinctive feature is that all cases follow the
same path, thus the process model is sequential and does not contain
gateways.
Helpdesk.This log contains events froma ticketingmanagement pro-

cess of the help desk of an Italian software company.9 Each case starts
with the insertion of a new ticket into the ticketingmanagement system
and ends when the issue is resolved, and the ticket is closed.
Hospital.This logwasobtained from thefinancialmodules of theERP

system of a regional hospital.10 The log contains events that are related
to thebillingofmedical services that havebeenprovidedby thehospital.
Each trace of the event log records the activities executed to bill a pack-
age of medical services that were bundled together. The log is a random
sample of process instances that were recorded over three years.
Invoice. This log refers to an invoice approval process and comes as a

demonstration log with theMinit process intelligence software.11

8doi:10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5
9doi:10.17632/39bp3vv62t.1
10doi:10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
11https://www.minit.io

TABLE 6 Statistics of the datasets used in the experiments.

Dataset
Number of Mean Mean case

cases activities case case event events duration
variants attributes attributes per case (days)

BPIC’12 A 12,007 10 10 1 4 4.49 7.5
BPIC’12O 3,487 7 6 1 4 4.56 15.1
BPIC’12W 9,650 6 2,263 1 5 7.50 11.4
BPIC’12W_n|1| 9,650 6 71 1 5 3.05 11.4
CR 10,036 8 1 0 7 8 0.95
Helpdesk 3,218 5 8 7 4 3.30 7.3
Hospital 59,228 8 5 1 20 5.59 165.2
Invoice 5,233 20 14 5 10 12.27 2.225
RTFMP 81,286 10 10 4 10 5.06 582

https://www.minit.io

I. VERENICH ET AL 13
RTFMP. The last log describes a road traffic fines management pro-

cess12 in an Italian police unit. It contains events related to fine notifica-
tions, as well as partial repayments.
All the logs have been preprocessed to remove incomplete cases as

well as cases that have not been recorded from their start. Further-
more, asmentioned in Section 3.3,flowanalysis cannot readily dealwith
unstructured models. In addition, the discovery technique described in
Section 4.2 aims to mine maximally structured models, meaning that
when the business process is inherently unstructured, the resulting
model will not be fully structured. Specifically, the technique sometimes
produces models with overlapping loops which our current implemen-
tation is unable to deal with. One solution to this problem could be to
simplify the process model by removing the transitions that cause over-
lapping loops. However, this will decrease the accuracy of the discov-
eredmodel, whichmay in turn negatively affect the accuracy of the flow
analysis-based predictions of the remaining time. Hence, instead, we
remove from the log those cases that cause overlapping loops. Finally,
we remove traces that are shorter than2events, aswemakepredictions
starting from the second event in the log.

5.2 Experimental Setup
In this subsection, we describe our approach to split the event logs into
training and test sets along the temporal dimension. Next, we provide
a description of our evaluation criteria and the baselines to compare
against. Finally, we explain the employed hyperparameter optimization
procedure.

5.2.1 Data split
In our experiments, we order the cases in the logs based on the time
when the first event of each case has occurred. Then, we split the logs
into two parts. We use the first part (80% of each case) as a training set,
i.e. as historical data to train the predictive models. The remaining 20%
of each case is used to evaluate the accuracy of the predictions. Further-
more, to perform hyperparameter optimization, we create a hold-out
validation set from the last 20% of the original training set.

5.2.2 Evaluationmetrics
Twomeasures commonly employed to assess a predictive process mon-
itoring technique are accuracy and earliness 2,31. Indeed, in order to be
useful, a prediction should be accurate and should be made early on to
allow enough time to act upon.

Accuracy
To assess the accuracy of the prediction of continuous variables, well-
known error metrics are Mean Absolute Error (MAE), Root Mean
Square Error (RMSE) and Mean Percentage Error (MAPE) 47, where

12doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

MAE is defined as the arithmetic mean of the prediction errors, RMSE
as the square root of the average of the squared prediction errors, while
MAPEmeasures error as the average of the unsigned percentage error.
We observe that the value of remaining time tends to be highly varying
across cases of the same process, sometimes with values on different
orders of magnitude. RMSE would be very sensitive to such outliers.
Furthermore, the remaining time can be very close to zero, especially
near the end of the trace, thus MAPE would be skewed in such sit-
uations. Hence, we use MAE to measure the error in predicting the
remaining time. Formally,

MAE =
1

n

n∑
i=1

|yi − ŷi| (13)
where yi ∈ Y = R is an actual value of a function in a given point and

ŷi ∈ Y = R is a predicted value.

Earliness
A common approach to measure the earliness of the predictions is to
evaluate the accuracy of the models after each arrived event or at fixed
time intervals. Naturally, uncertainty decreases as a case progresses
towards its completion. Thus, the earlier we reach the desired level of
accuracy, the better the technique is in terms of its earliness.
To this end, we make predictions for prefixes hdk(σ) of traces σ in

the test set starting from k = 2. However, using all possible values of
k is fraught with several issues. Firstly, a large number of prefixes as
compared to the number of traces considerably increases the training
time of the prediction models. Secondly, for a single model approach,
the longer traces tend to produce much more prefixes than shorter
ones and, therefore, the prediction model is biased towards the longer
cases 45. Finally, for amultiplemodel approach, if the distribution of case
lengths has a long tail, for very long prefixes, there are not enough traces
with that length, and the error measurements become unreliable. Con-
sequently, we use prefixes of up to 10 events only in both the training
and the test phase. If a trace contains less than 10 events, we use all pre-
fixes, except the last one, as predictions do not make sense when the
case has just completed. In otherwords, the input for our experiments is
a filtered prefix logL∗ = {hdk(σ) : σ ∈ L, 1 ≤ k ≤ min(|σ| − 1, 10)}.

5.2.3 Baselines
We compare our approach against several baseline approaches. Firstly,
we use a black-box approach that predicts the remaining time via
regression as a single scalar value using the same feature set and the
same learning algorithm as our flow analysis-based approaches. Sim-
ilarly, we experiment both with the single predictive model and with
the multiple predictive model variants, as specified in Section 4.6. The
black-box approach with a single model roughly corresponds to the
method proposed by de Leoni et al. 16 with decision trees being replaced
by XGBoost, so that the results are comparable to our approach
(same underlying machine learning technique). Similarly, the black-box
approach with multiple models corresponds to the one proposed by
Leontjeva et al. 2, with classification being replaced by regression.

14 I. VERENICH ET AL

Secondly, we use a transition system (TS) basedmethod proposed by
van der Aalst et al. 5 applying both set, bag and sequence abstractions.
Finally, we use the stochastic Petri-net based approach proposed by

Rogge-Solti andWeske 6,7. Specifically, we use themethod based on the
constrainedPetri net, as itwas shown tohave the lowest predictionerror.
However, their original approachmakes predictions at fixed time points,
regardless of the arriving events. Tomake the results comparable to our
approach, wemodify themethod tomake predictions after each arrived
event.

5.2.4 Hyperparameter optimization
In this work, we use the implementation of XGBoost from the
scikit-learn library 48 for Python which allows for a wide range of
learning parameters as described in thework by Tianqi and Carlos 34. To
achieve the best predictive power, these parameters need to be tuned
for eachmethod and dataset.
To this end, we perform random search to find the best set of hyper-

parameters for predictive flow analysis. Table 7 lists themost sensitive
learning parameters thatwere optimizedduring the randomsearch pro-
cedure.Weperforma total of 50 iterations in the specified search space.
The procedure is repeated for each log separately. All other parame-
ters are left to their defaults. In the first stage, for each combination
of parameter values, we train a model based on the 80% of the original
training set and evaluate its performance on the validation set. In the
second stage, we select one combination of the parameters that yields
the best performance and retrain a model with these parameters, now
using the whole training set.
For the adaptive approach, we treat the number of training samples

N as an additional hyperparameter. The relationship between the size
of the training set and the dimensionality of the problem has been stud-
ied extensively in themachine learning literature 49,44. Common rules of
thumb are that the number of training samples should be 50 + 8m, 10m

andm2, wherem is the dimensionality. 50 Accordingly, we define a set of
thresholdsN0 ∈ {5m, 10m, 20m,m2}. IfN > N0, thenwe fit a predic-
tive model for a given activity or a gateway, otherwise, we use average
historical values of cycle times and branching probabilities respectively
in the flow analysis formulas. Similarly to the XGBoost hyperparame-
ters, we choose the value ofN0 thatminimizes the validation error for a
given log.
To avoid a potential bias towards our approaches, we perform the

same procedure for the other two regression-based black-box base-
lines. The transition system baseline 5 does not have parameters other
than the type of abstraction (set, bag of sequence) which we treat as
three separate methods. For the stochastic Petri net, we vary the kind
of transition distribution andmemory semantics.We select the parame-
ters that yield the best performance on the validation set and use them
for the test set.

5.3 Evaluation Results
Table 8 reports the average prediction accuracy across all prefixes,
weighted over the relative frequency of traces with that prefix (i.e.
longer prefixes get lowerweights, since not all traces reach that length).
We can see that in 5 out of 9 datasets, the white-box family of
approaches achieve the best results. They are followed by the transi-
tion system approaches, which provide the overall best predictions in
2 datasets. Stochastic Petri net and black-box approaches achieve the
best result only in 1 dataset each.
Figure 7 presents the prediction accuracy in terms of MAE, eval-

uated over different prefix lengths. To keep the plots readable, only
the transition system-based method out of the three variants (set, bag
or sequence) that achieved the highest score according to Table 8 is
shown in this Figure. Each evaluation point includes prefix traces of
exactly the given length. In otherwords, traces that are shorter than the
required prefix are left out of the calculation. Therefore, the number of
cases used for evaluation is monotonically decreasing when increasing
the prefix length. In 5 out of 9 datasets, the flow analysis approaches
(FA) generally achieve higher accuracy at a fixed stage in the execution
of a case. On the other hand, they offer predictionswith a required level
of accuracy earlier on.
In most of the datasets, we see that the MAE decreases as cases

progress. It is natural that the prediction task becomes trivial when
cases are close to completion. However, for the BPIC’12 A dataset, the
predictions become less accurate as the prefix length increases from 2
to 4. This phenomenon is caused by the fact that this dataset contains
some short traces for which it appears to be easy to predict the out-
come. These short traces are not included in the later evaluation points,
as they have already finished by that time. Therefore, we are left with
longer tracesonly,which appear tobemore challenging for the classifier,
hence decreasing the total accuracy on larger prefix lengths.
As a simple bulk measure to compare the performance of the pro-

posed techniques and the baselines, we plot their mean rankings across
all datasets in Figure 8 . Ties were resolved by assigning every tied ele-
ment to the lowest rank. For example, in BPIC’12 A both predictive FA
based on a single predictive model and adaptive FA were ranked first,
while the next best technique, predictive FA based on multiple mod-
els was ranked third. The rankings show the proposed flow analysis
approaches, particularly the adaptive variant, consistently outperform
the baselines in terms of accuracy (measured by MAE), in addition to
providing white-box predictions.
To complement the above observations, we also compare aggregated

error values. These values need to be normalized, e.g. by the mean case
duration, so that they are on a comparable scale. In order to do that, for
each log, we divide average MAE values and their standard deviation
across all prefixes reported in Table 8 by the mean case duration for
that log reported in Table 6 . The results for each technique are given
in Figures 9 and 10 respectively. We can see that adaptive flow anal-
ysis has an average error of 48% of the mean case duration across all
datasets. In contrast, MAE values for the adaptive flow analysis are less
stable across the prefix lengths, as indicated by Figure 10 . In particular,

I. VERENICH ET AL 15

TABLE 7 Learning parameters of XGBoost that have been tuned.

Parameter Explanation Search space
n_estimators Number of decision trees (“weak” learners) in the ensemble [40, 1000]

learning_rate Shrinks the contribution of each successive decision tree in the ensemble [0.01, 0.07]

subsample Fraction of observations to be randomly sampled for each tree. [0.5, 1]

colsample_bytree Fraction of columns (features) to be randomly sampled for each tree. [0.4, 1]

max_depth Maximum tree depth for base learners [3, 9]

min_child_weight Minimum sum of weights of all observations required in a child [1, 3]

TABLE 8 Weighted averageMAE over all prefixes.

BPIC’12 A BPIC’12O BPIC’12W BPIC’12W_n|1| CR
predictive FA (single) 6.677± 3.72 5.95± 2.832 6.946± 1.057 5.162± 1.474 0.075± 0.039

predictive FA (multiple) 6.838± 4.155 6.008± 2.643 6.823± 0.957 5.191± 1.472 0.087± 0.043

mean FA 7.62± 3.528 6.243± 3.237 6.197± 0.54 5.071± 1.428 0.339± 0.187

adaptive FA 6.677± 3.72 5.95± 2.832 6.921± 1.057 5.071± 1.428 0.078± 0.035

black box (single) 7.325± 4.205 5.755± 2.727 6.768± 0.6 5.353± 1.115 0.087± 0.043

black box (multiple) 7.329± 4.564 5.806± 2.713 6.801± 0.541 5.563± 1.117 0.088± 0.847

TS (set) 8.263± 5.237 6.517± 3.136 7.512± 0.628 5.935± 1.38 0.358± 0.201

TS (bag) 8.263± 5.237 6.517± 3.136 7.645± 0.552 5.932± 1.411 0.358± 0.201

TS (sequence) 8.263± 5.237 6.517± 3.136 7.618± 0.583 5.937± 1.414 0.358± 0.201

Stochastic Petri net 7.31± 1.902 5.504± 2.344 8.838± 0.649 7.031± 0.816 0.359± 0.202

Hospital Invoice RTFMP Helpdesk
predictive FA (single) 51.689± 14.945 1.169± 0.06 223.506± 74.58 5.13± 2.092

predictive FA (multiple) 72.104± 50.779 1.228± 0.09 225.467± 80.693 5.046± 2.998

mean FA 42.58± 8.622 2.012± 0.249 229.337± 82.628 5.233± 2.022

adaptive FA 42.58± 8.622 1.171± 0.061 223.513± 78.87 5.233± 2.022

black box (single) 43.234± 1.116 1.128± 0.242 218.015± 38.62 5.802± 2.847

black box (multiple) 39.948± 4.314 1.118± 0.342 215.752± 70.985 5.746± 2.728

TS (set) 36.74± 2.341 1.612± 0.375 180.713± 71.895 6.039± 0.532

TS (bag) 36.732± 2.419 1.612± 0.375 180.713± 71.895 5.987± 2.519

TS (sequence) 36.732± 2.419 1.612± 0.375 180.546± 71.277 5.987± 2.519

Stochastic Petri net 66.379± 29.226 1.664± 0.48 190.05± 94.548 5.965± 0.904

theMAE of predictions by stochastic Petri net have the lowest volatility
among the surveyedmethods.
Inorder tounderstandwhy for someof theevent logsusedmeanflow

analysis is more accurate than predictive flow analysis, we analyze the
performance of these two approaches at the level of individual activi-
ties. Specifically, for each activity in the Hospital and the Invoice log, we
measure the performance of regressors trained to predict its cycle time
and compare itwith a constant regressor used in themeanflowanalysis.
In Table 9 , for each activity, we report average MAE of cycle time pre-
dictions across all test prefixes. In addition,we report the actual average
cycle time values of each activity based on the test set.
As we can see in Table 9 , in the Invoice log, prediction-based cycle

times aremore accurate than those based on historical averages for the

six longest activities which make up the largest portion of the remain-
ing cycle time. Hence, the predictive flow analysis approach provides a
better estimation of the overall remaining time than themeanflowanal-
ysis approach. In contrast, in theHospital log, for three of the six longest
activities, we get amore accurate estimate using themeanflowanalysis.
Thus, the performance of the predictive flow analysis approach hinges
on the ability to accurately predict cycle times of key activities. In this
way, the adaptive approach provides a “golden mean” between the pre-
dictive and the mean approaches, while retaining interpretability of the
predictions.
To illustrate the interpretability of the proposed white-

box techniques, let us consider a partial trace hd2(SWKD) =

〈NEW,CHANGE_DIAGN〉 of an ongoing case SWKDoriginating from the
Hospital event log. At that stage, the case is predicted to exceed the

16 I. VERENICH ET AL

●

● ●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ● ●

●

● ● ● ●

●
● ●

●

●● ● ● ● ●
●

●
●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ● ● ●
● ●

●
●

●

● ● ●
● ● ●

●

●

●

● ● ● ● ● ●
● ●

●

● ● ● ● ● ●
● ●

●

● ●
● ● ●

●
●

●

●

● ● ● ● ● ●
●

●

●

● ● ● ●
●

●

●

●

●

● ● ● ● ●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

● ●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●
● ●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

Hospital Invoice RTFMP

BPIC'12 W CR Helpdesk

BPIC'12 A BPIC'12 O BPIC'12 W_n|1|

2 3 4 5 6 2 4 6 8 10 2 4 6 8

2 4 6 8 10 2 3 4 5 6 7 2.0 2.5 3.0 3.5 4.0

2 3 4 5 6 7 2.0 2.5 3.0 3.5 4.0 2 4 6 8 10

2

4

6

8

2

4

6

100

200

300

400

2

4

6

8

0.0

0.2

0.4

0.5

1.0

1.5

2.0

0.0

2.5

5.0

7.5

10.0

12.5

5

6

7

8

9

30

60

90

120

150

Prefix length

M
A

E
, d

ay
s

●

●

●

●

●

●

●

●

adaptive FA

black box (multiple)

black box (single)

mean FA

predictive FA (multiple)

predictive FA (single)

stochastic Petri net

TS (best)

FIGURE 7 Prediction accuracy (measured in terms ofMAE) across different prefix lengths.

TS (best)
stochastic Petri net

mean FA
predictive FA (multiple)

black box (multiple)
black box (single)

predictive FA (single)
adaptive FA

1 3 5 7
mean ranking

FIGURE 8 Average ranking of the evaluated methods over all datasets.
Error bars indicate the 95% confidence interval.

median case duration for the considered process. Our family of flow
analysis-based approaches allows users not only to make predictions
but also to explain them. Let us consider the output of the adaptive
flow analysis approach trained with a single predictive model. Having
replayed the trace on the process model (Figure 11), we obtain the
following formula for its remaining time:

Thd2(SWKD) = 0 + p2 ∗ (0 + p4 ∗ (CHANGE_DIAGN)/(1− p4)) + p5∗

∗(FIN+ RELEASE + p7 ∗ CODE_OK + p8 ∗ CODE_NOK + BILLED)+

+p6 ∗ DELETE

I. VERENICH ET AL 17

stochastic Petri net
TS (best)
mean FA

predictive FA (multiple)
black box (single)

black box (multiple)
predictive FA (single)

adaptive FA

0 0.2 0.4 0.6 0.8
Average normalized MAE

FIGURE 9 NormalizedMAE averaged over all prefixes and all datasets.

TS (best)
predictive FA (multiple)

black box (multiple)
mean FA

black box (single)
predictive FA (single)

adaptive FA
stochastic Petri net

0 0.1 0.2 0.3 0.4
Average normalized standard deviation

FIGURE 10 Normalized standard deviation of MAE over all prefixes
averaged over all datasets.

Table 10 lists the predicted values of cycle times and branching
probabilities for the trace in question, as well as their historical aver-
ages.
Comparing the obtained valueswith their historical averages (expec-

tations), we notice that the activity FIN is going to take 10 days longer
while BILLED is about to take 20 days longer. Therefore, by pinpointing
FIN and BILLED as potential bottleneck activities, operational managers
may gain more leverage over the process execution and be able to steer
this towards the target performance values.
Summing up, the experiments suggest that flow analysis-based

approaches provide relatively accurate estimations of the remaining
cycle time across most logs. Thus, we can positively answerRQ1.
Another important observation is thatmeanflowanalysis sometimes

outperforms predictive flow analysis. This is due to the lack of data
attributes in the event logs that would be able to accurately explain
the variation in the cycle times of individual activities and branching
probabilities of each conditional flow. Nevertheless, the accuracy of
the adaptive approach in most logs corresponds to the best accuracy
achieved by the predictive andmeanmethods. In thisway, adaptiveflow
analysis can be regarded as a safeguard against instability in predictions
caused by the lack of data (attributes). Thus, we can also answer RQ2
positively.

TABLE 9 MAEof cycle time predictions of individual activities and their
actual mean cycle times (in days).

Activity MAE Mean cycle
Predictive FA Mean FA time

Invoice (Top 6 longest activities)
Invoice_accounting 2.61 3.53 3.11
Check_whether_total_approval 0.771 0.962 0.893
Manual_identification_CC 0.109 0.132 0.097
Compare_of_sums 0.081 0.123 0.060
Get_lowest_approval_level 0.0117 0.0271 0.0091
Status_change_to_Accounted 0.0008 0.0031 0.0005

Hospital
FIN 8.52 58.77 70.08
BILLED 40.36 36.58 36.43
DELETE 18.37 16.76 8.20
CHANGE_DIAGN 3.18 11.91 7.57
CODE_NOK 14.58 22.00 6.27
CODE_OK 2.57 2.38 5.14

TABLE 10 Predicted and average values of cycle times and branching
probabilities for hd2(SWKD).

Variable Predicted Average
p2 0.9988 0.6268
p4 0.0543 0.0305
p5 0.9609 0.9625
p6 0.0391 0.0375
p7 0.9988 0.9766
p8 0.0012 0.0234
CHANGE_DIAGN 1.08 7.57
FIN 80.17 70.08
RELEASE 1.11 1.45
CODE_OK 4.51 5.14
CODE_NOK 7.81 6.27
BILLED 56.21 36.43
DELETE 13.89 8.20

Execution Times
The execution time of the proposed flow analysis approaches is com-
posed of the execution times of the following components: (i) training
the predictive models; (ii) replaying the partial traces on the process
model (finding an alignment) and deriving the formulas; (iii) applying the
models to predict the cycle times and branching probabilities and calcu-
lating the overall remaining time. For real-time prediction, it is crucial to
output the results faster than the mean case arrival rate. Thus, we also

18 I. VERENICH ET AL

RELEASE

CODE_NOK

FIN

CODE_OK

end

NEW

x11
start

DELETE

x41

BILLED

x32

x42

CHANGE_DI-

AGN

x12x22 x21 x31

p
6

p
7

p
8

p
5

p3p2

p
1

p
4

FIGURE 11 A process model of the Hospital log. Current marking of hd2(SWKD) and its predicted future path are highlighted.

measured the average runtime overhead of our approach. All experi-
mentswere conductedona laptopwitha2.4GHz IntelCore i7processor
and 16GB of RAM.
The training phase includes the time for constructing the prefix log,

encoding the prefix traces and fitting the predictive models. It is per-
formed offline and takes between 1 minute (BPIC’12 O) and 80 minutes
(Hospital), depending on the size of the log and the number of models to
train, i.e. the number of distinct decision points and activities. Replaying
a single test trace takes less than a second. Finally, making the predic-
tions takes between 50milliseconds and 3 seconds per trace, depending
on the length of the trace and the number and complexity of the predic-
tive models. This shows that flow analysis-based prediction approaches
performwithin reasonable bounds for most online applications.

5.4 Threats to Validity
The datasets used in this evaluation, except for BPIC’12 W, have only
completion timestamps, not start timestamps. Thus, it is impossible to
discern the actual processing time from the waiting time. The latter can
have a significant impact on the overall cycle timedepending on the case
arrival rate and the resource load. As these factors are not accounted
for in the predictivemodels, their accuracy is rather low.
We reported the results with a single learning algorithm (XGBoost).

With decision trees and random forest, we obtained qualitatively the
same results, relative to the baselines. However, our approach is inde-
pendent of the learning algorithm used. Thus, in principle, using a differ-
ent algorithmdoes not invalidate the results. That said,we acknowledge
that the goodness of fit, as in any machine learning problem, depends
on the particular classifier/regressor algorithm employed. Hence, it is
important to test multiple algorithms for a given dataset and to apply
hyperparameter tuning, in order to choose themost adequate algorithm
with the best configuration.
The proposed family of approaches relies on the accuracy of the

branching probability estimates provided by the classification model. It
is known however that the likelihood probabilities produced by classi-
fication methods are not always reliable. Methods for estimating the
reliability of such likelihood probabilities have been proposed in the
machine learning literature 51. A possible enhancement of the proposed
approach would be to integrate heuristics that take into account such
reliability estimates.

Finally, the degree to which the findings of our study can be gener-
alized is to some extent limited by the fact that the experiments were
performed on a limited number of event logs. Even though these are all
real-life event logs from various domains that exhibit different proper-
ties, it may be possible that the evaluation results would be different on
some other event logs. In order to mitigate these threats, we released
the source code into the public domain which will allow the replication
of our results as well as the repetition of the conducted experiments
with other logs.

6 CONCLUSIONANDFUTUREWORK
The paper has put forward some potential benefits of a “white-box”
approach to predicting quantitative process performance indicators.
Rather than predicting single scalar indicators, we demonstrated how
these indicators can be estimated as aggregations of corresponding
performance indicators of the activities composing the process. In this
way, the predicted indicators become more explainable, as they are
decomposed into elementary components. Thus, business analysts can
pinpoint the bottlenecks in the process execution and provide better
recommendations to keep the process compliant with the performance
standards.
We implemented and evaluated three approaches – one where the

formulas’ components are predicted from the trace prefix based on the
models trained on historical completed traces, another one that instead
uses constant values obtained from the historical averages of similar
traces, and finally, a hybrid approach that combines the strengths of the
above two approaches.Weevaluated these three approaches to predict
the remaining cycle time, which is a common process performance indi-
cator. The empirical evaluation showed that the proposed techniques
are, on average, able to yield more accurate predictions at different
stages of running cases than the surveyed baselines.
We identified a limitation of flow analysis-based approaches when

dealing with traces with rework loops, i.e. multiple occurrences of the
same fragment of activities in a row.Adirection for futurework is to fur-
ther investigate the factors affecting the performance of the proposed
approaches in order to better understand their strength and weak-
nesses. Furthermore, we plan to extend the proposed approaches so

I. VERENICH ET AL 19
that theywould be able to dealwithmore complexmodelswith overlap-
ping loops, using process model structuring techniques such as the one
proposed in 30.
With somemodifications in the derivation of theflowanalysis formu-

las, the proposed approaches can be extended to predict other quanti-
tative performance indicators. Another avenue for future work is thus
to extend and evaluate the proposed approaches in order to predict
cost-related properties in addition to time-related properties.

ACKNOWLEDGMENTS
This research is funded by the Australian Research Council (Grant
DP180102839) and the Estonian Research Council (Grant IUT20-55).

References
1. Maggi Fabrizio Maria, Di Francescomarino Chiara, Dumas Mar-
lon, Ghidini Chiara. Predictivemonitoring of business processes. In:
CAiSE:457–472. Springer; 2014.

2. Leontjeva Anna, Conforti Raffaele, Di Francescomarino Chiara,
DumasMarlon,Maggi FabrizioMaria. Complex Symbolic Sequence
Encodings for Predictive Monitoring of Business Processes. In:
BPM:297–313; 2015.

3. Spoel Sjoerd, KeulenMaurice, Amrit Chintan. Process prediction in
noisy data sets: a case study in a Dutch hospital. In: International
Symposium on Data-Driven Process Discovery and Analysis:60–
83. Springer; 2012.

4. Evermann Joerg, Rehse Jana-Rebecca, Fettke Peter. A Deep Learn-
ingApproach forPredictingProcessBehaviour atRuntime. In:Busi-
ness Process Management Workshops - BPM 2016 International
Workshops, Rio de Janeiro, Brazil, September 19, 2016, Revised
Papers:327–338; 2016.

5. Aalst Wil M. P., Schonenberg M. H., SongMinseok. Time prediction
basedonprocessmining. Information systems.2011;36(2):450–475.

6. Rogge-Solti Andreas, Weske Mathias. Prediction of remaining ser-
vice execution time using stochastic Petri nets with arbitrary firing
delays. In: ICSOC:389–403. Springer; 2013.

7. Rogge-Solti Andreas, Weske Mathias. Prediction of business pro-
cess durations using non-Markovian stochastic Petri nets. Informa-
tion Systems. 2015;54:1–14.

8. Dumas Marlon, La Rosa Marcello, Mendling Jan, Reijers Hajo A..
Fundamentals of Business Process Management, Second Edition. .
Springer; 2018.

9. Verenich Ilya, Nguyen Hoang, La Rosa Marcello, Dumas Marlon.
White-box prediction of process performance indicators via flow

analysis. In: Proceedings of the 2017 International Conference on
Software and System Process, Paris, France, ICSSP 2017, July 5-7,
2017:85–94; 2017.

10. Márquez-Chamorro A. E., Resinas M., Ruiz-Corts A.. Predictive
monitoring of business processes: a survey. IEEE Transactions on
Services Computing. 2017;PP(99):1-1.

11. Pika Anastasiia, AalstWilMP, FidgeColin J, HofstedeArthurH.M.,
Wynn Moe T. Predicting deadline transgressions using event logs.
In: BPM:211–216. Springer; 2012.

12. Conforti Raffaele, Leoni Massimiliano, La Rosa Marcello, Aalst Wil
M. P., Hofstede Arthur H. M.. A recommendation system for pre-
dicting risks across multiple business process instances. Decision
Support Systems. 2015;69:1–19.

13. Metzger Andreas, Franklin Rod, Engel Yagil. Predictive mon-
itoring of heterogeneous service-oriented business networks:
The transport and logistics case. In: 2012 Annual SRII Global
Conference:313–322. IEEE; 2012.

14. Dongen Boudewijn F, Crooy Ronald A, Aalst Wil M P. Cycle time
prediction: when will this case finally be finished?. In: CoopIS:319–
336. Springer; 2008.

15. Polato Mirko, Sperduti Alessandro, Burattin Andrea, Leoni Massi-
miliano. Data-aware remaining time prediction of business process
instances. In: 2014 International Joint Conference on Neural Net-
works, IJCNN 2014:816–823; 2014.

16. Leoni Massimiliano, Aalst Wil M. P., Dees Marcus. A general pro-
cess mining framework for correlating, predicting and cluster-
ing dynamic behavior based on event logs. Information Systems.
2016;56:235–257.

17. Senderovich Arik, Weidlich Matthias, Gal Avigdor, Mandelbaum
Avishai. Queue mining for delay prediction in multi-class service
processes. Information systems. 2015;53:278–295.

18. Senderovich Arik, Di Francescomarino Chiara, Ghidini Chiara,
Jorbina Kerwin, Maggi Fabrizio Maria. Intra and Inter-case Fea-
tures in Predictive Process Monitoring: A Tale of Two Dimensions.
In: Lecture Notes in Computer Science, vol. 10445: :306–323.
Springer; 2017.

19. Kikas Riivo, DumasMarlon, Pfahl Dietmar. Using dynamic and con-
textual features to predict issue lifetime inGitHubprojects. In: Pro-
ceedings of the 13th International Conference onMining Software
Repositories, MSR:291–302; 2016.

20. Rees-Jones Mitch, Martin Matthew, Menzies Tim. Better Predic-
tors for Issue Lifetime. CoRR. 2017;abs/1702.07735.

21. FogBugz . Evidence-Based Scheduling http://help.fogcreek.com/
7676/evidence-based-scheduling-ebs. Accessed: 2017-10-23; .

http://help.fogcreek.com/7676/evidence-based-scheduling-ebs
http://help.fogcreek.com/7676/evidence-based-scheduling-ebs

20 I. VERENICH ET AL

22. Lakshmanan Geetika T, Shamsi Davood, Doganata Yurdaer N,
Unuvar Merve, Khalaf Rania. A Markov prediction model for data-
driven semi-structured business processes.Knowledge and Informa-
tion Systems. 2015;42(1):97–126.

23. Breuker Dominic, Matzner Martin, Delfmann Patrick, Becker Jörg.
Comprehensible predictive models for business processes. MIS
Quarterly. 2016;40(4):1009–1034.

24. Tax Niek, Verenich Ilya, La Rosa Marcello, Dumas Marlon. Pre-
dictive Business Process Monitoring with LSTM Neural Networks.
In: Advanced Information Systems Engineering - 29th Interna-
tional Conference, CAiSE2017, Essen, Germany, June 12-16, 2017,
Proceedings:477–492; 2017.

25. Tan P.N., Steinbach M., Karpatne A., Kumar V.. Introduction to Data
Mining. What’s New in Computer Science Series. Pearson Educa-
tion; 2013.

26. Polyvyanyy Artem, Smirnov Sergey, Weske Mathias. The Tricon-
nected Abstraction of Process Models. In: Lecture Notes in Com-
puter Science, vol. 5701: :229–244. Springer; 2009.

27. Armas-Cervantes Abel, Baldan Paolo, Dumas Marlon, García-
Bañuelos Luciano. Diagnosing behavioral differences between
business process models: An approach based on event structures.
Information systems. 2016;56:304–325.

28. Aalst Wil M. P.. Process Discovery: Capturing the Invisible. IEEE
Comp. Int. Mag.. 2010;5(1):28–41.

29. Augusto Adriano, Conforti Raffaele, Dumas Marlon, et al. Auto-
mated Discovery of Process Models from Event Logs: Review and
Benchmark. CoRR. 2017;abs/1705.02288.

30. Yang Yong, Dumas Marlon, García-Bañuelos Luciano, Polyvyanyy
Artem, Zhang Liang. Generalized aggregateQuality of Service com-
putation for composite services. Journal of Systems and Software.
2012;85(8):1818–1830.

31. Teinemaa Irene, Dumas Marlon, Maggi Fabrizio Maria,
Di Francescomarino Chiara. Predictive Business Process Monitor-
ing with Structured and Unstructured Data. In: Business Process
Management - 14th International Conference, BPM 2016, Rio de
Janeiro, Brazil, September 18-22, 2016:401–417; 2016.

32. Mitchell TomM..Machine learning. McGraw-Hill; 1997.
33. Fayyad Usama M., Piatetsky-Shapiro Gregory, Smyth Padhraic,

Uthurusamy Ramasamy, eds. Advances in Knowledge Discovery and
DataMining. AAAI/MIT Press; 1996.

34. Chen Tianqi, Guestrin Carlos. XGBoost: A Scalable Tree Boosting
System. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, August 13-17, 2016:785–794; 2016.

35. Fowler B., Rajendiran M., Schroeder T., Bergh N., Flower A., Kang
H.. Predicting patient revisits at the University of Virginia Health
SystemEmergencyDepartment. In: 2017 Systems and Information
Engineering Design Symposium (SIEDS):253-258; 2017.

36. Möller A, Ruhlmann-Kleider V, Leloup C, et al. Photometric classifi-
cation of type Ia supernovae in the SuperNova Legacy Survey with
supervised learning. Journal of Cosmology and Astroparticle Physics.
2016;2016(12):008.

37. Torlay L., Perrone-Bertolotti Marcela, Thomas E., Baciu Monica.
Machine learning-XGBoost analysis of language networks to clas-
sify patients with epilepsy. Brain Informatics. 2017;4(3):159–169.

38. Olson Randal S., La CavaWilliam, Mustahsan Zairah, Varik Akshay,
Moore Jason H.. Data-driven Advice for Applying Machine Learn-
ing to Bioinformatics Problems. CoRR. 2017;abs/1708.05070.

39. Hastie Trevor, Tibshirani Robert, Friedman JeromeH.. The elements
of statistical learning: data mining, inference, and prediction, 2nd Edi-
tion. . Springer; 2009.

40. Urraca-Valle Ruben, Antoñanzas Javier, Antoñanzas-Torres Fer-
nando, Pisón Francisco Javier. Estimation of Daily Global Hor-
izontal Irradiation Using Extreme Gradient Boosting Machines.
In: International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 -
San Sebastián, Spain, October 19th-21st, 2016, Proceedings:105–
113; 2016.

41. Bergstra James, Bengio Yoshua. Random Search for Hyper-
Parameter Optimization. Journal of Machine Learning Research.
2012;13:281–305.

42. Augusto Adriano, Conforti Raffaele, Dumas Marlon, La Rosa Mar-
cello, Bruno Giorgio. Automated Discovery of Structured Process
Models: Discover Structured vs. Discover and Structure. In: Con-
ceptual Modeling - 35th International Conference, ER 2016:313–
329; 2016.

43. AndrewsRobert, Suriadi Suriadi,WynnMoe, et al. Comparing static
and dynamic aspects of patient flows via process model visualisa-
tions. Preprint available at https://eprints.qut.edu.au/102848/. 2016;.

44. Raudys Sarunas, Jain Anil K.. Small Sample Size Effects in Statisti-
cal Pattern Recognition: Recommendations for Practitioners. IEEE
Trans. Pattern Anal. Mach. Intell.. 1991;13(3):252–264.

45. Teinemaa Irene, Dumas Marlon, La Rosa Marcello, Maggi Fab-
rizio Maria. Outcome-Oriented Predictive Process Monitoring:
Review and Benchmark. CoRR. 2017;abs/1707.06766.

46. Ranzato Marc’Aurelio, Huang Fu Jie, Boureau Y-Lan, LeCun Yann.
Unsupervised Learningof Invariant FeatureHierarchieswithAppli-
cations to Object Recognition. In: 2007 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR
2007), 18-23 June 2007,Minneapolis, Minnesota, USA; 2007.

I. VERENICH ET AL 21
47. HyndmanRob J, Koehler AnneB. Another look atmeasures of fore-

cast accuracy. International Journal of Forecasting. 2006;22(4):679–
688.

48. Pedregosa F., Varoquaux G., Gramfort A., et al. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research.
2011;12:2825–2830.

49. Fukunaga Keinosuke, Hayes Raymond R.. Effects of Sample
Size in Classifier Design. IEEE Trans. Pattern Anal. Mach. Intell..
1989;11(8):873–885.

50. Tabachnick Barbara G. Using multivariate statistics: Sas Workbook.
Addison-Wesley; 1996.

51. Kull Meelis, Flach Peter A.. Reliability Maps: A Tool to Enhance
Probability Estimates and Improve Classification Accuracy. In:
Machine Learning and Knowledge Discovery in Databases - Euro-
pean Conference, ECML PKDD2014:18–33; 2014.

How to cite this article: I. Verenich, H. Nguyen, M. Dumas, M. La Rosa,
and A. ter Hofstede (2017), Predicting Process Performance: A White-
Box Approach, Journal of Software: Evolution and Process, 2017;00:1–6.

	Predicting Process Performance: A White-Box Approach
	Abstract
	Introduction
	Related Work
	Background
	Event Logs, Traces and Sequences
	Process Models
	Flow Analysis
	Supervised Machine Learning
	Overview
	XGBoost
	Hyperparameter optimization

	Approach
	Overview
	Discovering Process Models from Event Logs
	Replaying Partial Traces on the Process Model
	Obtaining the Flow Analysis Formulas
	Computing the Remaining Time
	Feature encoding
	Feature encoding with a single predictive model
	Feature encoding with multiple predictive models

	Evaluation
	Datasets
	Experimental Setup
	Data split
	Evaluation metrics
	Baselines
	Hyperparameter optimization

	Evaluation Results
	Threats to Validity

	Conclusion and Future Work
	Acknowledgments
	References

