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Abstract

Two dimensional canonical correlation analysis (2DCCA) is a data driven met-

hod that has been used in image analysis to preserve the spatial structure of

images. 2DCCA finds pairs of left and right linear transforms by directly opera-

ting on two dimensional data (i.e., image data) such that the correlation between

their projections is maximized without neglecting the local spatial structure of

the data. However, in context to high dimensional data, the performance of

2DCCA suffers from interpretability of learned projection variables. In this

study, to improve the interpretability of projection variables while preserving

the local structure of two dimensional data, we propose two new 2DCCA ap-

proaches, sparse 2DCCA and regularized 2DCCA. The idea is to solve a pe-

nalized rank-1 matrix approximation problem obtained by incorporating the

orthogonal projector variables derived from the data instead of employing their

cross-matrix product. The validity of the proposed approaches in comparison

with standard CCA, 2DCCA and existing sparse 2DCCA(S2DCCA) have been

evaluated on three different datasets from: simulated, event-related right finger-

tapping task functional magnetic resonance imaging (fMRI) and resting-state
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fMRI experiments. The experimental results reveal that the proposed methods

can successfully extract latent components from both task-dependent as well

as resting-state datasets with improved brain connectivity estimation perfor-

mance. The proposed methods are capable of adapting to the sudden variations

in brain activity patterns and exhibit are robust in modelling multivariate functi-

onal connections. The proposed methods are directly applicable to image data

with improved computation time and can serve as efficient brain connectivity

analysis algorithms.

Keywords: Canonical correlation analysis, functional magnetic resonance

imaging, sparse decomposition, two dimensional, rank-1 approximation.

1. Introduction

A number of statistical methods (hypothesis-driven and data-driven) have

been used to detect signal variation with respect to a given experimental pa-

radigm in fMRI data. Signal variations in fMRI data arise due to blood-

oxygenation-level dependencies (BOLD) that originate from the difference in5

blood oxygenation levels between activated and non-activated brain areas Fri-

man et al. (2003). Data-driven methods for the fMRI data analysis extract

subspace components related to structures or patterns, such as brain activati-

ons, low frequency drifts, or motion related artefacts. These methods decom-

pose observed data based on specific objectives imposed on extracted compo-10

nents; for example, principal component analysis (PCA) results in maximum

variance components Andersen et al. (1999), independent component analysis

(ICA)Mckeown et al. (1998) yields independent components, and dictionary

learning (DL) extracts sparse components Lee et al. (2011). Canonical corre-

lation analysis (CCA) Hotelling (1936), which extracts maximally correlated15

components between two data matrices, has also been employed for fMRI data

analysis Friman et al. (2002a,b); Khalid and Seghouane (2013); Nandy and Cor-

des (2004); Zhuang et al. (2017). In recent years, CCA has become a popular

data analysis tool due to increased interest in identifying relatioships between
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pairs of datasets Reshef et al. (2011).20

CCA is a multivariate data analysis method used to analyse the correlation be-

tween two datasets by seeking optimal projections (called canonical projectors)

in such a way that the correlation between projections is maximized Correa

et al. (2010). One of the drawbacks of CCA is that it cannot be applied to two

dimensional (2D) data such as images. CCA in its original form requires image25

data to be vectorized before analysis. However, vectorization of the image data

may break its underlying structure Yang et al. (2004). In addition, vectorization

yields large covariance matrices which may be ill-conditioned, resulting in an

unstable solution with high computational complexity. To address the above

mentioned issues, a two dimensional CCA (2DCCA) was proposed in Lee and30

Choi (2007), which directly used image data. 2DCCA is based on the 2D image

representation of data and it defines two separate canonical projection vectors

corresponding to the row and column directions of the image data, therefore,

image-to-vector transformation is not required Desai et al. (2018). In the case of

fMRI data, 2DCCA suffers from high dimensionality associated with the large35

number of volumized pixels (i.e., voxels). Furthermore, the canonical projectors

are non-informative, since they are estimated as a dense linear combination of

the samples in the original feature space Yan et al. (2012). The issues of high

dimensionality and interpretability may be addressed by selecting a subset of

sparse variables, thereby estimating sparse canonical projectors from the linear40

combinations of observed variables in each dataset Hardoon and Shawe-Taylor

(2011); Sun et al. (2011); Witten et al. (2009). Variants of sparse CCA have

been employed to analyse fMRI data Ahn et al. (2015); Aissa-El-Bey and Seg-

houane (2017); Avants et al. (2014); Fang et al. (2016); Le Floch et al. (2012);

Lin et al. (2014); Mohammadi-Nejad et al. (2017); Seghouane et al. (2017). In45

Lin et al. (2014), a sparse CCA using group constraints was used to investigate

the correspondence between DNA (deoxyribonucleic acid) sequences (namely

single nucleotide polymorphism - SNP) and fMRI data to analyse the effects

of genetic variations on brain activity. In Mohammadi-Nejad et al. (2017), a

sparse CCA approach was applied to the fusion of fMRI and structural MRI50
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data to preserve spatial structure by imposing non-negativity on the canonical

projectors. In Aissa-El-Bey and Seghouane (2017), a sparse CCA method, de-

rived via penalized rank one matrix approximation was applied to resting-state

fMRI data analysis in order to find maximally autocorrelated regions of the

brain during rest.55

Despite the popularity of 2DCCA in a number of applications, such as face re-

cognition Kukharev and Kamenskaya (2010); Sun et al. (2010); Wang (2010);

Yan et al. (2012), image inpainting Ogawa and Haseyama (2014), image fusion

and feature extraction Gao et al. (2018); Tang et al. (2015), there are only a

limited number of studies of 2DCCA in fMRI analysis Desai et al. (2018); Kha-60

lid et al. (2012). In this study, we analyze fMRI data by proposing two 2DCCA

methods, sparse-2DCCA and regularized 2DCCA (reg-2DCCA). Sparse-2DCCA

and reg-2DCCA aim to overcome the aforementioned drawbacks of CCA in high

dimensional data and improve the interpretability of canonical projectors. In

the formulation of sparse-2DCCA, we solve a penalized rank-1 matrix approxi-65

mation problem obtained by incorporating orthogonal projectors in the 2DCCA

objective function derived from the datasets. The proposed sparse-2DCCA ap-

proach iteratively estimates a pairwise sparse canonical projectors by minimizing

a rank-1 approximation problem using sparse coding methods. Furthermore, to

force learned canonical projectors to be smooth, we propose the reg-2DCCA70

approach based on rank-1 matrix approximation where smoothness constraints

are imposed on the canonical projectors to model sudden variations. The pro-

posed methods have been evaluated in competition with CCA, 2DCCA Lee and

Choi (2007), and S2DCCA Yan et al. (2012) on three different fMRI datasets

from: simulated, event-related task-based right fingertapping and resting-state75

experiments.

The remainder of this study is organized as follows. Section II reviews the

2DCCA approach and its solution. Section III presents the derivations and the

algorithmic procedure of the proposed sparse-2DCCA approach. Section IV

presents the formulation and the algorithmic procedure for the proposed reg-80

2DCCA approach. Section V evaluate the proposed methods on simulated and

4



real fMRI datasets. Finally, section VI concludes the study.

2. Methods

Notation:. In remainder of the paper, we denote vectors by boldface lower

case letters, (e.g., u), matrices by boldface upper case letters, (e.g., X), and85

scalars by either italic or greek letters (e.g., d or γx). A single image is denoted

by Xi, where i represents index of image. Penalty functions are denoted by

Fx( . ) and Fy( . ) with sparsity parameters λx and λy.

2.1. Background

2.1.1. Two dimensional canonical correlation analysis90

Let {Xi ∈ Rpx×qx , i = 1, 2, · · · , N} and {Yi ∈ Rpy×qy , i = 1, 2, · · · , N} be

two sets of image data respectively corresponding to N observations from two

random image variables X and Y. Assume that the matrices X and Y are

centered (i.e., E[X] = 0 and E[Y] = 0, where E[ . ] is the expectation term).

Then, the 2DCCA seeks a pairwise left projection directions αx ∈ Rpx and

αy ∈ Rpy and pairwise right projection directions βx ∈ Rqx and βy ∈ Rqy , such

that the correlation (ρ) between two bilateral projections α>x Xβx and α>y Yβy

is maximized. The 2DCCA objective function is given by

ρ(X,Y;αx,αy,βx,βy) =
cov(α>x Xβx,α

>
y Yβy)√

Var(α>x Xβx)Var(α>y Yβy)
. (1)

We define the right sample covariance matrices and cross-covariance matrices

as follows

Cr
xy =

1

N

N∑
i=1

Xiβxβ
>
y Y>i

Cr
xx =

1

N

N∑
i=1

Xiβxβ
>
x X>i

Cr
yy =

1

N

N∑
i=1

Yiβyβ
>
y Y>i .

Therefore, the correlation between α>x Xβx and α>y Yβy can be rewritten as

cov(α>x Xβx,α
>
y Yβy) = α>x Cr

xyαy
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where Var(α>x Xβx) = α>x Cr
xxαx, Var(α>y Yβy) = α>y Cr

yyαy. Then, the

function ρ in (1) is given by

ρ(X,Y;αx,αy,βx,βy) =
α>x Cr

xyαy√
(α>x Cr

xxαx)(α>y Cr
yyαy)

. (2)

Since, the value of ρ(X,Y;αx,αy,βx,βy) is invariant to the scaling of the

projection directions, we reformulate the objective function in (2) to maximize

the optimization problem

arg max
αx,αy

α>x Cr
xyαy

subject to α>x Cr
xxαx = 1, α>y Cr

yyαy = 1.

(3)

On the other hand, the 2DCCA problem can also be rewritten in terms of left

covariance and cross-covariance matrices, such as:

arg max
βx,βy

β>x Cl
xyβy

subject to β>x Cl
xxβx = 1, β>y Cl

yyβy = 1.

(4)

where Cl
xy = 1

N

∑N
i=1 Xiαxα

>
y Y>i , Cl

xx = 1
N

∑N
i=1 Xiαxα

>
x X>i , and Cl

yy =

1
N

∑N
i=1 Yiαyα

>
y Y>i .

2DCCA iteratively estimates the pair of left canonical projectors αx and αy

by maximizing (3) with βx and βy fixed. Similarly, the pair of right canonical

projectors βx and βy are estimated by maximizing (4) with αx and αy fixed.

Then, βx and βy are fixed, the maximization of (3) leads to the following

generalized eigenvalue decomposition (GEVD) problem

Cr
xyαy = λCr

xxαx (5)

Cr
yxαx = λCr

yyαy (6)

In a similar manner, with fixed αx and αy, the maximization of (4) leads to

the following GEVD

Cl
xyβy = λCl

xxβx (7)
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Cl
yxβx = λCl

yyβy (8)

2DCCA Lee and Choi (2007) is a two stage CCA procedure, where the vectors

αx and αy are obtained by applying the CCA procedure on the two matrices

Xβx
= [X1βx, · · · ,XNβx] and Yβy

= [Y1βy, · · · ,YNβy], whereas the vectors

αx and αy are obtained by applying the CCA procedure on the two matrices

Xαx = [X1αx, · · · ,XNαx] and Yαy = [Y1αy, · · · ,YNαy].95

2.2. Proposed sparse two dimensional CCA algorithm

In this section, we derive our proposed sparse two dimensional CCA (S2DCCA)

method by formulating a rank-1 matrix approximation problem. We also pro-

vide a pseudo-iterative algorithm to solve the proposed optimization problem.

Let us consider two datasets X = [X1, · · · ,XN ] ∈ Rpx×Nqx and Y = [Y1, · · · ,YN ] ∈

Rpy×Nqy . Both X and Y are zero mean such that Mx = 0 and My = 0, where

Mx = N−1
∑N

i=1 Xi and My = N−1
∑N

i=1 Yi for i = 1, · · · , N . The following

reformulates the 2DCCA problem to that of finding the best rank-1 matrix ap-

proximation under the Frobenius norm of the product of the two orthogonal

projectors derived from the datasets.

First, the optimization problem of 2DCCA for estimating left projection directi-

ons αx and αy using the estimated covariances is formulated by

arg max
αx,αy

α>x XrY
>
r αy

subject to α>x XrX
>
r αx = 1, α>y YrY

>
r αy = 1.

(9)

where

Xr = XRx,Rx = IN ⊗ βx and Yr = YRy,Ry = IN ⊗ βy (10)

such that XrX
>
r =

∑N
i=1 Xiβxβ

>
x X>i and YrY

>
r =

∑N
i=1 Yiβyβ

>
y Y>i . Then,

the GEVD problems given in (5) and (6) are written as

XrY
>
r αy = λXrX

>
r αx (11)
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YrX
>
r αx = λYrY

>
r αy. (12)

To proceed, we multiply each side of (11) and (12) by X>r (XrX
>
r )−1 and

Y>r (YrY
>
r )−1, respectively, to obtain:

X>r (XrX
>
r )−1XrY

>
r αy = PXrY

>
r αy = λX>r αx (13)

Y>r (YrY
>
r )−1YrX

>
r αx = PYr

X>r αx = λY>r αy, (14)

where PXr
= X>r (XrX

>
r )−1Xr and PYr

= Y>r (YrY
>
r )−1Yr correspond to the

orthogonal projector matrices onto the row-space of X and Y, respectively. By

substituting X>r αx = λ−1PXr
Y>αy in (14) and Y>r αy = λ−1PYr

X>r αx in

(13), we obtain

PXr
PYr

X>r αx = λ2X>r αx

PYr
PXr

Y>r αy = λ2Y>r αy

It can be seen that the above equations yield an eigenvalue decomposition (EVD)

problem where X>r αx and Y>r αy are the eigenvectors corresponding to the

largest eigenvalues of the projection matrices KXY = PXr
PYr

and KY X =

PYr
PXr

, respectively. Let us consider the EVD of KXY and KY X , such that:

KXY = UDXY U−1 and KY X = VDY XV−1 (15)

where U and V are the matrices of eigenvectors, DXY and DY X are diagonal

matrices of size N ×N , containing the eigenvalues of KXY and KY X in descen-

ding order, respectively. By virtue of the symmetry property of the projection

matrices (i.e., PXY and PY X), we can write:

KY X = PYr
PXr

= P>Yr
P>Xr

= (PXr
PYr

)> = K>XY (16)

Thus, from the equations (15) and (16) we deduce that DXY = DY X , U−1 =

V>, therefore, the decomposition of the matrix KXY can be rewritten as a

KXY = UDV>
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which corresponds to the singular value decomposition (SVD) of KXY . To

proceed with the estimation of the canonical projectors, we formulate a rank-1

approximation of the matrix KXY , given by:

K1 = d1u1v
>
1

where the aim is to minimize the squared Frobenius norm between ‖KXY −K1‖2F .

Therefore, we can define the rank-1 approximation of KXY as the following op-

timization problem:

arg min
αx,αy

∥∥KXY − d1X>r αxα
>
y Yr

∥∥2
F

(17)

The projection of linear directions onto the data (i.e., X>r αx and Y>r αy) cor-

responds to the left and right singular vectors relating to the largest singular

value of KXY , where d1 is defined as α>x XrKXY α
>
y Yr. The remaining singular

values/vectors can be estimated via an iterative deflation procedure.

In a similar way, the optimization problem related to the estimation of the pair

of right linear projection directions βx and βy based on the estimated covari-

ances is

arg max
βx,βy

β>x X>l Ylβy

subject to β>x X>l Xlβx = 1, β>y Y>l Ylβy = 1

(18)

where

Xl = X>Lx,Lx = IN ⊗αx Yl = Y>Ly,Ly = IN ⊗αy (19)

such that X>l Xl =
∑N

i=1 X>i αxα
>
x Xi and Y>l Yl =

∑N
i=1 Y>i αyα

>
y Yi. The

objective function (18) can be rewritten as a rank-1 matrix approximation pro-

blem:

arg min
βx,βy

∥∥∥QXY − s1X>l βxβ
>
y Yl

∥∥∥2
F

(20)

where QXY = PXl
PYl

with PXl
= X>l (XlX

>
l )−1Xl and PYl

= Y>l (YlY
>
l )−1Yl,

X>l βx and Y>l βy are the singular vectors corresponding to the singular value

s1 of QXY defined as β>x XlQXY β
>
y Yl.

After obtaining the rank-1 matrix approximation problems for left and right
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linear transforms in (17) and (20), we now impose the penalty functions onto

the optimization problems in (17) and (20).

In general, the canonical projectors αx and αy obtained by solving (17) are not

sparse, in order to estimate sparse αx and αy, we adopt a techniques similar to

those of Chu et al. (2013); Sun et al. (2011) by introducing the penalties on the

problem (17) and (20). The objective function (17) with sparsity constraints is

given by:

arg min
αx,αy

∥∥KXY −X>r αxα
>
y Yr

∥∥2
F

subject to Fx(αx) ≤ λx and Fy(αy) ≤ λy
(21)

with λx and λy are trade-off parameters, Fx( . ) and Fy( . ) are the penalty

functions, these function may take various forms, such as the l0-quasi-norm

(defined as F(z) = ‖z‖0) or the Lasso penalty (defined as l1-norm F(z) = ‖z‖1).

To solve problem (21), we first fix αy and solve (21) for αx. Similarly, we can

then solve (21) for αy with fixed αx. The above two step procedure is then

repeated until convergence.

Alternatively, (21) can be formulated as an ordinary sparse coding task by

splitting it into two optimization problems. Then, for fixed αy, (21) is given by

arg min
αx

∥∥KXY Y>r αy −X>r αx

∥∥2
2

subject to Fx(αx) ≤ λx (22)

the problem (22) may be minimized using any sparse approximation approach.

Similarly, (21) with fixed αx is:

arg min
αy

∥∥K>XY X>r αx −Y>r αy

∥∥2
2

subject to Fy(αy) ≤ λy (23)

The first pairwise sparse projectors (i.e., αx, αy) can be estimated by solving

the optimization problems (22) and (23) using sparse coding techniques used

in Chu et al. (2013); Sun et al. (2011). To obtain several canonical projectors,

consider the SVD of KXY = UDV> =
∑N

i=1 diuiv
>
i , where ui and vi are the

column vectors of the matrices of singular vectors U and V, respectively, and

D = diag(d1, · · · , dN ), with (i.e., d1 ≥ d2 ≥ · · · ≥ dN ). The second pair of the

canonical projectors are estimated by removing the contribution of the first pair
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by:

KXY − d1u1v
>
1 =

N∑
i=2

diuiv
>
i (24)

The singular vectors u1 and v1 represent the projection data X>r αx and Y>r αy,

respectively. By virtue of the unitary property of matrices U and V, the sin-

gular values corresponding to the vectors u1 and v1 can be computed by d1 =

u>1 KXY v1. By using d1, u1 and v1, the second pairwise canonical projectors

can be obtained by the residual matrix KXY − α>x XrKXyY
>
r αyX

>
r αxα

>
y Yr

in a deflationary procedure. We can then find the remaining pairwise canonical

projectors.

In the same way, the estimated αx and αy are used to find the right pair of

projection directions βx and βy by solving the following optimization problem:

arg min
βx,βy

∥∥∥QXY −X>l βxβ
>
y Yl

∥∥∥2
F

subject to Fx(βx) ≤ δx and Fx(βy) ≤ δy.
(25)

The proposed algorithm for sparse 2DCCA based on rank-1 matrix approxima-

tion is described in Algorithm 1 and 2. The computational cost of each iteration

of our algorithm is O(pxpy) for computing αx and αy and O(qxqy) for computa-

tion of βx and βy. The computational cost of computing both KXY and QXY100

is dominated by the computational cost of the matrix inversions (XrX
>
r )−1 and

(YrY
>
r )−1 which is O(p3x) and O(p3y) for KXY and (XlX

>
l )−1 and (YlY

>
l )−1

which is O(q3x) and O(q3y) for QXY . The proposed approach also allows different

levels of sparsity for different αx, αy, βx and βy using different λx, λy, δx, and

δy.105

2.3. Regularized two dimensional CCA algorithm

In this section, we propose regularized 2DCCA (R2DCCA) approach as

another form of (21) that enforces smoothness constraints on the canonical

projection directions. Additionally, we present an efficient iterative algorithm

to estimate the left and right projection directions.
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Algorithm 1: Overview of proposed sparse 2DCCA algorithm

Input: Training data X ∈ Rpx×Nqx , Y ∈ Rpy×Nqy , desired number of

components k.

Output:

• The k pairs of canonical projectors αx ∈ Rpx×k and αy ∈ Rpy×k.

• The k pairs of canonical projectors βx ∈ Rqx×k and βy ∈ Rqy×k.

1 repeat

2 Compute Xr = XRx, Yr = YRy, and KXY .

3 Use Algorithm 2 to obtain αx and αy,

4 Compute Xl = XLx, Yl = YLy, and QXY .

5 Use Algorithm 2 to obtain βx and βy.

6 until convergence

In an approach similar to that of Section III, we introduce a Tikhonove regu-

larization term in the rank-1 matrix approximation problem (17), such that:

arg min
αx,αy

∥∥KXY −X>r αxα
>
y Yr

∥∥2
F

+ γxα
>
x XrΩxX>r αx + γyα

>
y YrΩyY

>
r αy

(26)

where γx > 0 and γy > 0 are smoothness controlling parameters. Ωx and Ωy

are the non-negative roughness penalty matrices Ciuciu et al. (2003); Ramsay

and Silverman (2005) such that:

∀z ∈ RN , z>Ωz = z21 + z2N +

N−1∑
i=2

(zi+1 − 2zi + zi−1)2 (27)

To proceed with the minimization, we can rewrite (26) as:

arg min
αx,αy

∥∥X>r αx

∥∥2
2

∥∥Y>r αy

∥∥2
2
− 2α>x XrKXY Y>r αy

+γxα
>
x XrΩxX>r αx + γyα

>
y YrΩyY

>
r αy

(28)

Problem (28) is then minimized for αx by fixing αy, and vice versa. This two

step minimization procedure is then repeated until convergence. By taking the
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Algorithm 2: Iterative sparse 2DCCA procedure

Input: Training data Xr, Yr, and KXY (or Xl, Yl, and QXY ).

Output: The k pairs of canonical projectors αx ∈ Rpx×k and

αy ∈ Rpy×k.

1 for i = 1, · · · , k do

2 SV D(KXY ) = UDV>,

3 Initialize ũ = u1 and ṽ = v1;

4 repeat

5 Update the i-th column of αx according to (22):

6 αx(:, i) = arg minαx(:,i)

∥∥KXY ṽ −X>r αx(:, i)
∥∥2
2

7 subject to Fx(αx(:, i)) ≤ βx
8 Update ũ =

X>r αx(:,i)
‖X>r αx(:,i)‖2

;

9 Update the i-th column of αy according to (23):

10 αy(:, i) = arg minαy(:,i)

∥∥K>XY ũ−Y>r αy(:, i)
∥∥2
2

11 subject to Fy(αy(:, i)) ≤ βy
12 Update ṽ =

Y>r αy(:,i)
‖Y>r αy(:,i)‖2

;

13 until convergence

14 Update KXY : KXY ← KXY − ũ>KXY ṽũṽ>

15 end

derivative of (28) with respect to αx and αy, we obtain:(∥∥Y>r αy

∥∥2
2
XrX

>
r + γxXrΩxX>r

)
αx = XrKXY Y>r αy(∥∥X>r αx

∥∥2
2
YrY

>
r + γyYrΩyY

>
r

)
αy = YrK

>
XY X>r αx.

The first left projectors αx and αy can be obtained by solving the above system

of equations as a least squares problem (see algorithm 3 and 4). The remaining

canonical projectors can be estimated by an iterative deflation approach where

the second pair of the canonical projectors are found from the residual matrix110

KXY −α>x XrKXY Y>r αyX
>
r αxα

>
y Yr. Using the residual matrix, we can find

the other pair of canonical projectors. In a similar manner to that presented in
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the Section III, given αx and αy, we can estimate the right pair of canonical

projectors βx and βy. The algorithmic procedure to obtain regularized rank-1

matrix approximation of 2DCCA is presented in Algorithm 3 and 4.115

Compared to Algorithm 1, the computation cost of each iteration of this algo-

rithm is dominated by the cost of computing matrix inversions. The computa-

tional cost for αx and αx is O(p3x) and O(p3y) and for βx and βx is O(q3x) and

O(q3y).

Algorithm 3: Overview of proposed regularized 2DCCA algorithm

Input: Training data X ∈ Rpx×Nqx , Y ∈ Rpy×Nqy , desired number of

components k.

Output:

• The k pairs of canonical projectors αx ∈ Rpx×k and αy ∈ Rpy×k.

• The k pairs of canonical projectors βx ∈ Rqx×k and βy ∈ Rqy×k.

1 repeat

2 Compute Xr = XRx, Yr = YRy, and KXY .

3 Use Algorithm 4 to obtain αx and αy,

4 Compute Xl = XLx, Yl = YLy, and QXY .

5 Use Algorithm 4 to obtain βx and βy.

6 until convergence

3. Experimental results120

This section assesses the performance of the proposed methods against exis-

ting CCA algorithms, CCA, 2DCCA Lee and Choi (2007), S2DCCA Yan et al.

(2012). We present a simulation experiment and two real-world experiments on

fMRI data (event-related task and resting-state fMRI). In the simulated expe-

riments, we compare the CCA algorithms in a blind source separation setting.125

In real fMRI analysis, we use CCA algorithms to extract the most dominantly

activated brain areas and use the extracted brain areas to generate spatial maps.
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Algorithm 4: Iterative regularized 2DCCA procedure

Input: Xr,Yr, and KXY (or Xl, Yl, and QXY ).

Output: The k pairs of canonical projectors αx ∈ Rpx×k and

αy ∈ Rpy×k.

1 for i = 1, · · · , r do

2 SV D(KXY ) = UDV>,

3 Initialize ũ = u1 and ṽ = v1;

4 repeat

5 Update the i-th column of αx:

6 αx(:, i) =
(
XrX

>
r + αxXrΩxX>r + γxIpx

)−1
XrKXY ṽ

7 Update ũ =
X>r αx(:,i)
‖X>r αx(:,i)‖2

;

8 Update the i-th column of αy:

9 αy(:, i) =
(
YrY

>
r + αyYrΩyY

>
r + γyIqx

)−1
YrK

>
XY ũ

10 Update ṽ =
Y>r αy(:,i)
‖Y>r αy(:,i)‖2

;

11 until convergence

12 Update KXY : KXY ← KXY − ũ>KXY ṽũṽ>

13 end

3.1. Blind source separation

In this section, we create simulated data to compare the performance of our

two proposed methods sparse-2DCCA and reg-2DCCA with standard CCA,130

2DDCA, S2DCCA in terms of their ability to recover the underlying sources

from a pair of linear mixtures of correlated sources. We generated three distinct

boxed activation patterns S1, S2 and S3 in a grid of size (21× 21) pixels along

with three distinct time courses R1, R2 and R3 with N = 120 time points.

The data matrices X and Y were generated from combinations of these distinct135

spatial and temporal signals. Each activation pattern exhibits an amplitude

of 1 at locations: {5, · · · , 14} × {5, · · · , 14} for S1, {15, · · · , 19} × {15, · · · , 19}

for S2, and {8, · · · , 17} × {8, · · · , 17} for S3 and zeros elsewhere. The ground

truth sources and activation patterns are shown in the Fig. 1. We also gene-
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rated three cases of distinct activations patterns as done in Lee et al. (2011);140

Seghouane and Iqbal (2018), with a) independent spatial activation patterns,

b) partial spatial overlap of activation patterns, and c) complete spatial over-

lap of activation patterns. To create image datasets for 2DCCA, the activation

patterns S ∈ R21×21×2 and sources R ∈ R2×120 were mixed to generate a data-

set X = SR while X ∈ R21×21×120. We then corrupted X with additive white145

Gaussian noise (AWGN) at different noise levels (σ2) ∈ {0.1, 0.2, 0.3, 0.4}. Since

CCA requires two datasets, we generated a second dataset Y of the same size

as X by sliding a 3 × 3 spatial filter across X Friman et al. (2002b). When

applying standard 1-dimensional CCA, the datasets X and Y were reshaped

into matrices of size (441× 120).150

The resulting corrupted datasets were then decomposed using standard CCA,

2DCCA, S2DCCA, and our proposed methods sparse-2DCCA and reg-2DCCA

to recover the underlying sources (i.e., Rs and S). All 2DCCA algorithms were

iterated 20 times to estimate the left and right canonical projectors. The num-

ber of canonical projectors to be learned were set to k = 9 for each 2D-CCA155

algorithms. The convergence for each 2D-CCA algorithm was calculated using∥∥∥βxi
− βx(i−1)

∥∥∥
2
< εx and

∥∥∥βyi
− βy(i−1)

∥∥∥
2
< εy for i-th iteration, where εx

and εy are the convergence tolerance. The regularization parameters were set

according to the highest correlation between ground truth and recovered sour-

ces/activation patterns. These parameters were λu = λv = 5 for S2DCCA,160

λx = λy = 4 for the proposed sparse-2DCCA and γx = 6, γy = 2 for the propo-

sed reg-2DCCA.

The recovered activation patterns and sources were then correlated with the

ground truth to compute average correlations over 25 trials. We calculated the

average of these correlations over all noise level σ2. For each case, the average165

correlations of the recovered sources and the activation patterns are presen-

ted in Tables 1 and 2, respectively. In these tables, the best results are made

bold. It can be observed that the data decomposition performed by the propo-

sed algorithms were closer to the underlying generating sources. In most noise

levels and cases, the proposed algorithms exhibit higher correlation with the170
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ground truths. For all cases the reg-2DCCA algorithm outperforms all other

algorithms. To illustrate each case visually, we have presented the most correla-

ted sources/activation patterns in Fig. 2. It can be seen that, for case (c), CCA

and 2DCCA exhibit poor performance, where the recovered sources contains a

linear combination of both R2 and R3, while S2DCCA was able separate both175

activation patterns, however, the recovered sources suffer from noise and exhibit

lower correlations. For case (c), the proposed algorithms show improvement in

separating both dynamics (R2, R3) and their corresponding overlapping activa-

tion patterns, which can also be observed from the results presented in Table

1 and 2. We also calculated the running time of each algorithm over a single180

trial, presented in Table 3.

In this section, we have demonstrated the efficiency of the proposed algorithms

in competition with CCA, 2DCCA, S2DCCA Yan et al. (2012) algorithms. In

the next sections, we evaluate the proposed algorithms on real-world data, where

we establish two examples on experimental fMRI data from an event-related185

right finger-tapping task and resting-state experiments.
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Figure 1: Ground truth time courses and activation maps corresponding to a) independent

spatial activation patterns, b) partial spatial overlap, and complete spatial overlap of activa-

tion patterns.

3.2. Event-related task fMRI analysis

We evaluate our proposed 2DCCA methods using fMRI data from an event-

related right finger tapping task (the dataset has been used in Seghouane and
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Figure 2: This illustrates the simulation results of three different cases shown in Fig. 1. The

recovered time courses and activation patterns are shown for (a) independent spatial activation

patterns, (b) partial spatial overlap of activation patterns, and (c) complete spatial overlap

of activation patterns. Each column exhibit the results corresponding to different algorithms,

whereas the correlation coefficients with respect to original activation pattern/sources pair

are printed in parenthesis.

Iqbal (2017) and was presented first in Lee et al. (2011)). The BOLD/echo-190

planar imaging (EPI) sequence was acquired using a 3.0T fMRI scanner system

at ISOL, Republic of Korea. This scanner system acquired 30 contiguous slices

having matrix size of (64× 64) with voxel size of 3.4 mm × 3.4 mm × 4 mm,

where slice thickness was 4 mm and flip angle set to 180o. The total recording

time of the dataset was 650 s with TR/TE = 2000/35 ms. After 30 s of resting195

time at the beginning of the recording, alternating task and rest periods with

a 14 s window were repeated 40 times with an additional 30 s period of rest at

the end. The interstimulus interval (ISI) ranged between 4 and 20 s with an

average ISI period of 12 s.

Prior to analysis, the dataset was processed through a preprocessing pipeline200

performed in Matlab using the SPM12 package Friston et al. (2009).This pre-

processing pipeline involves, 1) spatial alignment, 2) normalization, 3) spatial

smoothing, 4) masking and 5) temporal smoothing. In spatial alignment, all
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Table 1: Average correlation coefficients of recovered sources in competition with the

originals for case (a), (b), and (c) over 25 trials using CCA, 2DCCA, S2DCCA, the proposed

sparse-2DCCA, and the proposed reg-2DCCA.
CCA 2DCCA S2DCCA sparse-2DCCA reg-2DCCA

Var (σ2) 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Case (a)
R1 0.97 0.98 0.94 0.88 0.99 0.98 0.97 0.82 0.97 0.93 0.83 0.76 0.82 0.99 0.98 0.79 0.99 0.99 0.98 0.98

R2 0.96 0.91 0.71 0.67 0.86 0.83 0.75 0.68 0.99 0.91 0.76 0.48 0.95 0.99 0.98 0.74 0.95 0.85 0.84 0.65

avg 0.97 0.94 0.82 0.77 0.92 0.91 0.86 0.75 0.98 0.92 0.79 0.62 0.88 0.99 0.98 0.77 0.97 0.92 0.91 0.81

Case (b)
R1 0.91 0.82 0.86 0.82 0.86 0.75 0.70 0.73 0.80 0.76 0.72 0.77 0.84 0.86 0.72 0.69 1.00 0.96 0.97 0.78

R3 0.83 0.80 0.88 0.81 0.77 0.89 0.77 0.80 0.65 0.70 0.70 0.62 0.84 0.83 0.72 0.71 0.88 0.85 0.81 0.82

avg 0.87 0.81 0.87 0.82 0.82 0.82 0.73 0.77 0.73 0.73 0.71 0.69 0.84 0.84 0.72 0.70 0.94 0.90 0.89 0.80

Case (c)
R2 0.99 0.97 0.92 0.86 0.93 0.95 0.92 0.91 0.98 0.97 0.93 0.90 0.98 0.98 0.98 0.96 0.89 0.97 0.95 0.87

R3 0.94 0.83 0.64 0.60 0.85 0.63 0.59 0.33 0.62 0.43 0.23 0.18 0.97 0.89 0.80 0.53 0.90 0.95 0.57 0.57

avg 0.97 0.90 0.78 0.73 0.89 0.79 0.76 0.62 0.80 0.70 0.58 0.54 0.98 0.93 0.89 0.74 0.90 0.96 0.76 0.72

Table 2: Average correlation coefficients of recovered activation patterns in competition

with the originals for case (a), (b), and (c) over 25 trials using CCA, 2DCCA, S2DCCA, the

proposed sparse-2DCCA, and the proposed reg-2DCCA.
CCA 2DCCA S2DCCA sparse-2DCCA reg-2DCCA

Var (σ2) 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Case (a)
S1 0.67 0.68 0.68 0.68 1.00 0.99 0.99 0.89 0.99 0.96 0.89 0.79 0.96 1.00 0.99 0.96 1.00 0.99 0.99 0.97

S2 0.70 0.70 0.69 0.67 0.69 0.71 0.69 0.43 0.97 0.86 0.66 0.39 0.88 0.98 0.97 0.87 1.00 0.95 0.92 0.83

avg 0.68 0.69 0.68 0.67 0.84 0.85 0.84 0.66 0.98 0.91 0.77 0.59 0.92 0.99 0.98 0.91 1.00 0.97 0.95 0.90

Case (b)
S1 0.53 0.55 0.53 0.52 0.93 0.90 0.83 0.92 0.91 0.85 0.82 0.83 0.92 0.92 0.81 0.82 1.00 0.96 0.96 0.91

S3 0.56 0.56 0.54 0.56 0.84 0.91 0.85 0.85 0.89 0.83 0.80 0.75 0.94 0.90 0.83 0.81 1.00 0.99 0.95 0.94

avg 0.54 0.55 0.54 0.54 0.89 0.91 0.84 0.88 0.90 0.84 0.81 0.79 0.93 0.91 0.82 0.82 1.00 0.97 0.95 0.93

Case (c)
S2 0.67 0.67 0.67 0.65 0.99 0.99 0.97 0.96 1.00 0.99 0.97 0.94 1.00 0.99 0.99 0.97 0.99 0.99 0.98 0.96

S3 0.66 0.65 0.62 0.58 0.94 0.72 0.86 0.62 0.95 0.79 0.54 0.50 0.97 0.96 0.78 0.71 0.91 0.99 0.82 0.69

avg 0.66 0.66 0.64 0.62 0.97 0.85 0.92 0.79 0.97 0.89 0.76 0.72 0.98 0.98 0.88 0.84 0.95 0.99 0.90 0.82

fMRI images were realigned to correct for the head motion that effects the un-

derlying signal intensity during the course of an experiment. After realignment,205

all fMRI images spatially normalized to the standard Talairach template, where

each voxel was resampled to (2mm× 2mm× 2mm). These images were then

spatially smoothed with an 8mm × 8mm × 8mm full-width at half-maximum

(FWHM) Gaussian kernel. In this dataset, the first 15 scans were acquired in

dummy cycles and therefore, were discarded. After discarding the first 15 scans,210

we used remaining the 310 scans for analysis.

All images were then collected in a 4D dataset and were used for further pro-

cessing and analysis. We applied masking on the dataset to get rid of the data

outside the brain scalp, where voxels exceeding a masking threshold were retai-

ned. After masking number of voxels in the dataset was reduced by a factor215

of 8. The dataset was also detrended by removing low frequency drifts using a
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Table 3: Running time(RT) (in seconds) of each algorithm over a single trial in simulated

data.

CCA 2DCCA S2DCCA sparse-2DCCA reg-2DCCA

0.963 0.0156 0.0297 0.0382 0.0389

discrete consine transform (DCT) basis set at a cut-off frequency of (1/128)Hz.

The detrended data were then smoothed temporally with 1.5s FWHM Gaussian

kernel to get rid of high frequency noise.

To apply 2D-CCA based algorithms, fMRI dataset X was reshaped in a 3-D220

matrix of size (px× qx×N), where px corresponds to the number of voxels in a

slice, qx represents the number of time points corresponding to a voxel and N is

the number of 2D image slices in the dataset, respectively. A second dataset Y

was created in a manner similar to that described in Section V-A. The datasets

X and Y were centered before applying all algorithms.225

To conduct fMRI analysis using standard 1-dimensional CCA, the fMRI volume

was reshaped in a 2-D matrix of size p×N , where p corresponds to the number

of voxels, and N corresponds to the number of time points (i.e., N = 310). The

projection directions computed using CCA were used to construct activation

maps.230

All 2D-CCA algorithms were then used to learn k = 15 left and right projection

directions. The number of iterations for each 2D-CCA algorithm was set to

20. We tried different values of sparsity parameters, the optimal sparsity level

was chosen based on the best results in terms correlation of the modelled he-

modynamic response function (MHRF) with event-related task paradigm. For235

S2DCCA Yan et al. (2012), both λu and λv were set a to value of 0.01, for

the proposed sparse-2DCCA, λx = λy = 4, and for the proposed reg-2DCCA,

γx = γy = 4 in a range between 0 and 20. We then selected the most correlated

projected data vector with respect to the MHRF as the recovered voxel time

series. The recovered voxel series using, CCA, 2DCCA, S2DCCA, the proposed240

sparse-2DCCA and the proposed sparse-2DCCA are presented in the Fig. 3
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(temporal correlations with MHRF are given in parenthesis). As shown in the

Fig. 3, the highest temporal correlation of (0.629) is achieved by the proposed

sparse-2DCCA algorithm. In order to inspect activations, we used these voxel

time series to generate activations maps, Z-normalized and thresholded at Z > 3245

corresponding to p-value less than 1e−3. The most significant activation maps

for event-related data are presented in the Fig. 4. This figure illustrates that all

CCA algorithms have characterized the neural activity in the task-related area

(i.e., motor cortex). However, it can be observed that the proposed algorithms

(sparse-2DCCA and reg-2DCCA) exhibit less spurious activations with increa-250

sed specificity of activated voxels compared to CCA, 2DCCA and S2DCCA.

(0
.5

6
0
)

(0
.5

7
6
)

(0
.6

0
6
)

(0
.6

2
9
)

(0
.6

0
4
)

(c)

(b)

(a)

(d)

(e)

Figure 3: It illustrates the most correlated projected data vectors with respect to canonical

HRF (in red) estimated by (a) CCA, (b) 2DCCA, (c) S2DCCA Yan et al. (2012), (d) the

proposed sparse-2DCCA, and (e) the proposed reg-2DCCA. The values in the parenthesis

corresponds to the correlation coefficients.

3.3. Resting-state fMRI analysis

Single subject (id 100307) resting-state fMRI (rsfMRI) data was obtained

from the Human Connectome Project (HCP) Q1 release Barch et al. (2013). The

dataset was acquired with the following parameters: TR/TE = 0.72 s/33.1 ms,255

slices = 72, field-of-view (FOV) = 220 mm, matrix size = 90 × 104, BW =

2290 Hz/Px, flip angle = 52o, and in-place FOV = 208 × 180 mm isotropic

voxels. The data was preprocessed according to preprocessing steps detailed in

21



Baseline

(a)

Proposed

(d)

(b) (e)

(c)

Figure 4: Most significant activation maps obtained using (a) CCA, (b) 2DCCA, (c) S2DCCA

Yan et al. (2012), (d) the proposed sparse-2DCCA, and the proposed reg-2DCCA, Z-

normalized and thresholded at a p-value less 1e−3.

Glasser et al. (2013). The dataset contained 1200 scans acquired in a duration

of 14 : 33 (min:sec). From 1200 scans, we selected the first 430 scans. The260

first 15 scans were discarded and the remaining 415 scans were employed for

analysis. All scans were smoothed spatially using a 6 × 6 × 6 mm3 FWHM

Gaussian kernel. The dataset was masked to remove any data outside the brain

scalp, reducing the data by a factor of 4. We used a DCT basis set with cut off

frequency of 1/170 Hz to eliminate low frequency trends. The data was then265

temporally smoothed to remove high frequency noise using a 1.7 s Gaussian

FWHM kernel. The format of the datasets (i.e., X and Y) to be used in CCA

as well as 2DCCA algorithms are as described in Section V-B.

For the analysis of rsfMRI data, we use the seed voxel-base correlation ana-

lysis Beckmann et al. (2005); Hale et al. (2010), which is a commonly used270

method restingCole et al. (2010); Lee et al. (2013-10-01); Van Den Heuvel and

Hulshoff Pol (2010). In resting-state fMRI, it is assumed that functionally con-

nected brain regions exhibit similar temporal fluctuations. If these brain regions

correspond to a functional connectivity network (FCN) Beckmann et al. (2005),
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then a voxel time series associated with the particular region can be obtained275

from that FCN and used as a reference time series to observe its connectivity

with other FCNs Beckmann et al. (2005). Some examples of FCN are, the dorsal

attention network (DAN), salience network, default mode network (DMN), etc.

We extracted the seed-voxels from the DMN, for which the MNI coordinates

Calhoun and Adali (2012); Leech et al. (2011) are presented in Table 4.280

The 2DCCA based algorithms were used to learn k = 20 projection directions

(i.e., αx, αy, βx, and βy), where the number of iterations for all algorithms were

set to 20. The parameters for S2DCCA, the proposed sparse-2DCCA, and the

proposed reg-2DCCA were set to λu = λv = 0.1, λx = λy = 1, and γx = γy = 2,

respectively.285

In order to analyze the datasets, the mean voxel time-series were extracted using

a 6×6×6 mm3 cube centered at seed locations presented in Table 4. The mean

voxel time series corresponding to different seed locations were then correlated

with the estimated temporal dynamics (i.e., data projection onto CCA directi-

ons) to compare the performance of CCA algorithms. The recovered correlation290

coefficients are presented in Table 4. The proposed algorithms outperform CCA,

2DCCA, and S2DCCA. For each algorithm, the recovered time series with re-

spect to mean voxel time series corresponding to the precuneus cortex are shown

in Fig. 5. The activation maps corresponding to the DMN regions are shown

in the Fig. 6, it can be seen that the activations recovered by the proposed295

algorithms show increased specificity of activated voxels, specifically in the pre-

cuneus cortex region where activations are tightly localized and contain distinct

peaks.

4. Conclusion

We have proposed two new variants of 2DCCA applied on fMRI data. The300

proposed algorithms formulate a penalized rank-1 matrix approximation pro-

blem by incorporating orthogonal projectors in the 2DCCA objective function.

Specifically, instead of using the cross-product of two multidimensional data ma-
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Figure 5: Illustrates the most correlated projected data vectors (in red) with respect to the

mean voxel time series (in blue) extracted with a 6×6×6 mm3 cube centered at the seed-voxel

corresponding to precuneus cortex obtained using (a) CCA, (b) 2DCCA, (c) S2DCCA Yan

et al. (2012), (d) the proposed sparse-2DCCA, and (e) the proposed reg-2DCCA. The values

in the parenthesis (on the left side) corresponds to the correlation coefficients.

Table 4: Correlation coefficients of the most correlated projected data vectors with respect to

the seed voxel time series at the selected MNI coordinates Calhoun and Adali (2012) extracted

by using a 6 × 6 × 6 mm3 cube.

MNI coordinates CCA 2DCCA S2DCCA sparse-2DCCA reg-2DCCA

Ventral medial prefrontal cortex 6 70 14 0.500 0.590 0.639 0.677 0.665

Precuneus cortex -8 -60 14 0.716 0.731 0.752 0.787 0.757

Superior frontal gyrus 8 50 38 0.587 0.716 0.714 0.691 0.695

Cingulate Gyrus 5 45 10 0.570 0.542 0.585 0.625 0.578

Mean 0.593 0.645 0.672 0.695 0.674

trices, we have proposed to use the product of orthogonal projectors onto the

space spanned by these data matrices. The limitations of 2DCCA was tackled305

by learning the sparse canonical projectors to improve their interpretability and

computational time. The performance of the proposed methods was evalua-

ted on both simulated and real fMRI datasets. Experimental results show the

improved performance of the proposed algorithms in comparison to standard

CCA, 2DCCA, and S2DDCA algorithms.310
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Figure 6: Activation maps exhibiting DMN regions extracted using (a) CCA, (b) 2DCCA,

(c) 2DSCCA Yan et al. (2012), (d) the proposed sparse-2DCCA, and (e) the proposed reg-

2DCCA, Z-normalized and thresholded at a p-value of less than 1e−3.
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