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Summary. We consider a general agency model with coexisting hidden ac-

tion and hidden information. We prove that, with minor technical qualifica-

tions, independence of the production technology from the consumer type is

necessary and sufficient for welfare irrelevance of hidden action. Our result

clarifies and confirms the main conclusion drawn in the existing literature

on mixed models, that if the parties are risk neutral and the production

technology is not correlated with private information, then hidden action is

irrelevant. However it makes it clear that even under risk neutrality this con-

clusion does not extend to the correlated case, which in practice occurs quite

frequently. We illustrate it with a realistic example where neither hidden

action nor hidden information on their own lead to welfare losses, while their

combination does.

Keywords and Phrases: hidden action, hidden information, Fredholm

integral equations of the first type.
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1 Introduction

Agency relationships form an important part of economic life. Among the

most common examples are managers acting on behalf of an owner, workers

supplying labor to a firm, and customers buying coverage from an insurance

company. The common feature of all these examples is that unobservable ac-

tions undertaken by one party have payoff relevant consequences for another.

This creates a moral hazard problem. The main trade-off the contracting par-

ties face in moral hazard situations is a trade-off between risk and incentives.1

Hence, if both parties are risk neutral moral hazard will not create welfare

losses.

Often a moral hazard situation is complicated by the existence of hidden

information. For example, managers or workers may have different costs of

effort, or customers buying a medical insurance may have different health

conditions. Below, for concreteness, we will call the unobservable action

effort and the hidden information the type of the agent. This type of models

were pioneered by Laffont and Tirole (1986) and later developed by Picard

(1987), Rogerson (1988), Guesnerie, Picard, and Rey (1989), Melumad and

Reichelstein (1989), and Caillaud, Guesnerie, and Ray (1992). The common

1For a review of standard principal-agent problem, see Grossman and Hart (1983).
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assumption in these papers is that the noise in the production technology

is independent of the agent’s type, that is, the models are just noisy hidden

information models. The main result of this literature is that, if both parties

are risk neutral, then in most such models the principal can reach the same

utility as in the absence of noise.

To understand this result let us as a first stage assume that the effort is

contractible and solve the adverse selection problem. The result will be a

wage schedule conditional on the effort level. To implement the same effort

at the same cost when the effort is not contractible, the principal has to find

a wage schedule, which depends only on the observable signal, such that the

expectation of this schedule conditional on effort gives the schedule found

at stage one. This problem can be reduced to solving a Fredholm integral

equation of the first type. If the density of the noise is sufficiently well

behaved (does not have interior singularities) this equation always possesses

a solution.

One can, however, easily come up with examples of economically inter-

esting situations, where the production technology is type dependent. For

instance, assume that different research institutions compete for the govern-

ment’s grants. Each institution has a research project which is characterized

4



by the potential success probability θ. The actual success probability de-

pends on both θ, which can be interpreted as the quality of the project, and

the effort level. In that case the expected payoff to the project for a given

effort will still depend on the private information of the institutions, and it is

not clear whether the principal can reach the same utility as in the absence

of noise.

In this paper we start by formulating a general model with hidden action

and hidden information. We provide the first order characterization of the

solution and use it to prove that the principal can achieve the same utility

under the hidden action as in the case of the observable effort if and only if

the production technology is independent on the agent’s type and some mild

regularity conditions on the noise density are satisfied. When the latter is the

case we find explicit solutions in the cases when the optimal compensation

schedule in the pure hidden action model is analytical and the production

noise is either additive and is normally distributed or multiplicative and is

exponentially distributed.

The paper is organized in the following way. In Section 2 we introduce

the main model and derive the first order characterization of the solution. In

Section 3 we derive the necessary and sufficient conditions for the irrelevance
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of moral hazard and solve some examples. These examples allow the reader

to get the better understanding how to apply the theorems of the paper and

also provide useful explicit solutions. In Section 4 we solve an example for

which both hidden action and hidden information are relevant in determining

the welfare of the parties. The striking feature of that example is that in

the situation it describes neither hidden action nor hidden information on

their own entail any welfare losses, while their combination does. Section 5

concludes.

2 The model

Consider a risk neutral principal and risk neutral agent who are engaged

in a following type of a transaction. An agent undertakes an effort z that

generates the distribution of profits f(x; z, θ) for the principal and entails

cost c(z, θ) for an agent. Variable θ is privately observed by the agent and

can be interpreted as her type. Neither the type of the agent nor the effort

are observed by the principal. The profits, on the other hand are observable

and verifiable. Upon the profit realization, x, the agent receives wage w(x)

according to the in-advance-agreed-upon wage schedule, w(·).
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The probability density f(·; z, θ) is assumed to be continuously differen-

tiable and strictly positive on its support, while the cost, c(·; θ) is assumed

to be increasing and convex. Moreover, c(·, ·) is twice differentiable and

satisfies the Spence-Mirrlees condition, i. e. czθ < 0. While θ is private in-

formation, we assume that the principal believes it comes from a distribution

with a continuously differentiable and strictly positive on its support density

g(·). The support of the distribution is assumed to be a segment [θ, θ], where

0 ≤ θ < θ ≤ ∞. Denote by G(·) is the corresponding cumulative distribution

function. Let

π(z, θ) =

Z
xf(x; z, θ)dx (1)

be the expected payoff for the principal if the agent of type θ chooses effort

level z. Finally, let us assume that the function V (z, θ) defined by

V (z, θ) = π(z, θ)− c(z, θ) +
1−G(θ)

g(θ)
cθ(z, θ) (2)

is strictly concave in z and supermodular in (z, θ).
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2.1 The case of the observable effort

In this subsection we will concentrate on the case of observable effort,

i. e. the principal faces a pure hidden information problem. In that case

the analysis is standard and the assumptions guarantee that the solutions to

the relaxed and complete problems coincide. Let z(θ) be the optimal effort

schedule in the case when the effort is observable. It solves

z(θ) = argmaxV (z, θ). (3)

For a discussion, see Mussa and Rosen (1978). Define the consumer surplus,

ξ(·) as the unique solution to the Cauchy problem

⎧⎪⎪⎨⎪⎪⎩
ξθ = −cθ(z(θ), θ)

ξ(θ) = 0

. (4)

Then the wage schedule that implements effort levels z(θ) can be found as

v(z) = min
θ
(c(z, θ) + ξ(θ)). (5)
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Intuitively, assume that the principal has to compensate the agent for the

cost of effort and leave her information rents ξ(θ). If she wants to induce

level of effort z, she selects the type for which the total cost of inducing this

effort is minimal.

2.2 The case of the unobservable effort

Let us return to our model with unobservable effort. The principal’s

problem is to find a wage schedule w(·) to solve:

max

ZZ
(π(z, θ)− w(x))f(x; z, θ)g(θ)dxdθ

s.t. z ∈ argmax
z

(

Z
w(x))f(x; z, θ)dx− c(z, θ))

max
z
(

Z
w(x))f(x; z, θ)dx− c(z, θ)) ≥ 0

. (6)

Let us introduce the agent’s surplus by

s(θ) = max
z
(

Z
w(x)f(x; z, θ)dx− c(z, θ)). (7)
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Then the relaxed problem for the principal is

max

θZ
θ

(π(z, θ)− c(z, θ)− s(θ))g(θ)dθ

s.t. sθ(θ) =

Z
w(x)fθ(x; z, θ)dx− cθ(z, θ))

s(θ) =

Z
w(x)f(x; z, θ)dx− c(z, θ)

s(θ) ≥ 0

. (8)

The Hamiltonian for the problem (8) is:

H = (π(z, θ)− c(z, θ)− s(θ))g(θ) + λ(θ)(

Z
w(x)fθ(x; z, θ)dx− cθ(z, θ)) +(9)

µ(θ)(s(θ)−
Z

w(x)f(x; z, θ)dx− c(z, θ)). (10)

Our next objective is to prove that µ(θ) = 0 a.e. with respect to the Lebesgue

measure. We do it in a sequence of the following two lemmata.

Lemma 1 Assume
θZ
θ

fθ(x; z, θ)dx (11)

converges uniformly in θ. Let (z(θ), s(θ), w(x)) solve the optimal control

problem (8) and let λ(θ) and µ(θ) be the Lagrange multipliers for the first

and second constraint respectively. Then µ(θ) ≤ 0 a. e. with respect to the
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Lebesgue measure.

Proof. Consider the optimal control problem:

max

θZ
θ

(π(z, θ)− c(z, θ)− s(θ))g(θ)dθ

s.t. sθ(θ) =

Z
w(x)fθ(x; z, θ)dx− cθ(z, θ))

s(θ) ≤
Z

w(x)f(x; z, θ)dx− c(z, θ)

s(θ) ≥ 0

. (12)

If (z(θ), s(θ), w(x)) solve this optimal control problem and let λ(θ) and µ(θ)

be the Lagrange multipliers, than the Kuhn-Tucker necessary conditions in-

sure that µ(θ) ≤ 0 a. e. with respect to the Lebesgue measure. To complete

the proof we have to argue that the second constraint binds. Indeed, assum-

ing the constraint is slack one can increase w(x) by sufficiently small ε for

all profit realizations. Then this constraint will still hold. But such a change

does not affect the first constraint, since

θZ
θ

f(x; z, θ)dx = 1 (13)
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for all θ and assumption that

θZ
θ

fθ(x; z, θ)dx (14)

converges uniformly assures that the last integral is zero.

Q. E. D.

Lemma 2 Under assumptions of Lemma 1 µ(θ) = 0 a. e. with respect to

the Lebesgue measure.

Proof. Assume that (z(θ), s(θ); λ(θ), µ(θ)) are defined as in Lemma 1. Then

the wage schedule w(·) solves:

max[λ(θ)(

Z
w(x)fθ(x; z, θ)− µ(θ)w(x)f(x; z, θ)dx)]

s.t.

Z
w(x)fθ(x; z, θ)− c(z, θ) ≥ 0

. (15)

Taking into account the envelope condition one obtains:

max[λ(θ)sθ(θ)− µ(θ)

Z
w(x)f(x; z, θ)dx]

s.t.

Z
w(x)fθ(x; z, θ)− c(z, θ) ≥ 0.

(16)

If µ(θ) < 0 on a set of positive measure one can always increase w(x), which

will increase the value of the objective function on a set of positive measure.
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Q. E. D.

These two lemmata allow us to exclude the last term from the Hamil-

tonian and write the first order conditions in a form:

⎧⎪⎪⎨⎪⎪⎩
λθ = g(θ), λ(θ) = 0.

(πz(z, θ)− cz(z, θ))g(θ) + λ(θ)(

Z
w(x)fθz(x; z, θ)dx− cθz(z, θ)) = 0

.

(17)

This equations together with the constraints of problem (8) determine the

solution. One can eliminate surplus from these constraints and solve the first

of the first order conditions for λ to obtain the following system of equations

for z(·) and w(·):

⎧⎪⎪⎨⎪⎪⎩
πz(z, θ)− cz(z, θ) =

1−G(θ)
g(θ)

(

Z
w(x)fθz(x; z, θ)dx− cθz(z, θ))Z

w(x)fz(x; z, θ)dx = cz(z, θ).

. (18)

Note that the second of these equations is simply the first order condition

with respect to the effort for the agent who faces the wage schedule w(·).
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3 When the hidden information is irrelevant?

In this Section we are going to address the question: Under which con-

ditions will the solution to the problem with hidden effort implies the same

effort and same expected surplus for all types as in the case when the effort

is observable? To begin let us prove the following lemma.

Lemma 3 Let the effort level and the expected surplus be the same for all

types as in the case of the observable effort. Then the expected payment of

the principal conditional on effort, z, is v(z), i. e. it is the same as in the

case of the observable effort.

Proof. Let z(·), and s(·) be defined by (3)-(4). From the definition of the

agent’s surplus one obtains:

s(θ) + c(z, θ) =

Z
w(x)f(x; z, θ)dx. (19)

According to equation (4) the left hand side of (19) does not depend on θ.

Moreover, according to (5) it equals v(z). To complete the proof note that

the right had side of (19) is the expected payment of the principal conditional

on effort.

Q. E. D.
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Using Lemma 3 we will prove the following result.

Lemma 4 The principal will choose to implement the same effort levels for

all types and make the same expected payment conditional on effort as in the

case of the observable type if and only if there exists function w : R+ → R+

such that for any θ ∈ [θ, θ]

Z
w(x)f(x; z, θ)dx = v(z). (20)

Proof. The necessity follows from Lemma 3. To prove sufficiency note that

equation (20) implies that

Z
w(x)fθ(x; z, θ)dx = 0. (21)Z
w(x)fθz(x; z, θ)dx = 0. (22)

Therefore, λ(θ) = G(θ)− 1 and z = z(θ), where z(θ) is defined by (3) solve

system (17). Moreover, the Hamiltonian becomes

H = g(θ)V (z, θ). (23)

Under our assumptions on function V (·, ·) the effort schedule z(θ) is imple-
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mentable and maximizes the Hamiltonian. Therefore, it is optimal.

Q. E. D.

Lemma 4 reduces the task of analyzing the conditions for the irrelevance

of the hidden action to task of studying the conditions of the existence of a

solution of equation (20).

Lemma 5 Let w(x) solves equation (20). Then it also solves equation

Z
w(x)(

Z
Ω

f(x; z, θ)g(θ)dθ)dx = v(z). (24)

Proof. A straightforward calculation changing the order of integration

proves our assertion.

Q. E. D.

Note that the right hand side of equation (20) does not depend on θ. This

suggests that for a solution to exist it is necessary that the output density

be independent on θ as well.

To formulate it precisely let us every function h(x, z) such that h(x, ·),
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h(·, z) ∈ L2(R+) let us introduce the following symmetric functions:

kh(x, z) =

∞Z
0

h(x, y)h(z, y)dy

kh1 (x, z) =

∞Z
0

h(y, x)h(y, z)dy.

(25)

We will refer to this function below as symmetrized kernels. We will say that

the kernel k1(·, ·) is closed if

∞Z
0

kh1 (x, z)φ(z)dz = 0 (26)

if and only if φ(z) = 0 almost everywhere. Now we are ready to formulate

our next result.

Theorem 1 Assume that v(·) is different from zero at a set of a positive

measure, there exists θ ∈ Ω such that the kernel kfθ1 (x, z; θ) is closed and for

any w(·) which satisfies equation (24) the integral

Z
fθ(x, z, θ)w(x)dx (27)

converges uniformly in θ. Then equation (20) has no solutions.

Note that assumption that K(x, z) is closed in particular implies that
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fθ(x, z, θ) should differ from zero on a set of a positive measure.

Proof. Let equation (20) possess a solution. Denote it by w(x). Note that

w(·) cannot be identically zero almost everywhere. According to Lemma

5, function w(·) satisfies equation (24). Differentiating equation (20) with

respect to θ one obtains

Z
fθ(x, z, θ)w(x)dx = 0. (28)

The differentiation under the sign of integral is legitimate because of our

assumption of the uniform convergence. If equation (28) has a non-trivial

solution, kernel kfθ1 (x, z; θ) should be not closed for all θ (see, Pogorzelski,

1966), which proves the Theorem.

Q. E. D.

4 Type-independent technologies: a closer look

In the previous section we showed that independence of technology on

the private information of agents is the basic economic assumption, which

is necessary for hidden action to be irrelevant. Let us under when it is also
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sufficient. In order words, what are the conditions for the equation:

Z
w(x)f(x, z)dx = v(z). (29)

to possess a solution.

The classical theorem in this area is the Picard’s Theorem (see, Pogorzel-

ski, 1966). It was first applied to a problem in mechanism design by Melumad

and Reichelstein (1989). One, however, need to adapt it slightly for this

case. Indeed, to apply the Theorem the right hand side should be a square-

integrable function. In our application, however, the right hand side is the

effort-wage schedule, which should be increasing. Therefore, it could not be

square integrable unless the effort has compact support. Fortunately, this

problem can be easily circumvented if one multiplies both sides of equation

(29) on a such function g(·) that it has full support and the right hand side

becomes square intergrable For example, if v(·) is differentiable and not equal

to zero anywhere, one can choose g(·) such that:

g2(z) =
2v0(z)
v(z)

exp(−v2(z)). (30)

The following theorem provides the necessary and sufficient conditions
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for the existence of the solution of equation (29).

Theorem 2 Let function g(·) : R+ → R+ with a full support be such

that:function vg(·) ∈ L2(R+). Equation (29) has a solution if and only if:

1. Integral operator T : H1(R+)→ H1(R+) defined by:

Th =

Z
R+

kfg(x, z)h(z)dz (31)

has a discrete spectrum;

2. The series
∞X
n=1

|λnvn|2 (32)

converges, where λn are eigenvalues of T, i. e. they satisfy

Tψn = λnψn (33)

for some ψn with a unitary L2−norm, and vn are defined as

vn =

Z
R+

v(z)g(z)ψn(z)dz. (34)

Moreover, if kernel kfg(x, z) is closed the solution is unique.
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Proof. The theorem is a direct consequence of the Picard’s theorem applied

to the equation: Z
w(x)g(z)f(x, z)dx = v(z)g(z). (35)

Q. E. D.

An easy corollary of this theorem is the following.

Corollary 1 If operator T defined by equation (31) is compact then there

exists a solution of equation (29).

Proof. The spectrum of a compact operator is discrete and bounded, i. e.

there exists K > 0 such that all eigenvalues satisfy

|λn| ≤ K. (36)

Therefore,

∞X
n=1

|λnvn|2 ≤ K
∞X
n=1

|vn|2 = K

Z
R+

|v(z)g(z)|2 <∞. (37)

The equality here is the Parceval’s equality ((see, Pogorzelski, 1966).

Q. E. D.

After developing the general theory let us consider a few examples.

21



Example 1 Let us assume that the production technology is multiplicative,

i. e.

x = zε. (38)

Let us also assume that ε is exponentially distributed with a unit mean. Then

equation (29) becomes

1

z

Z
w(x) exp(−x

z
)dx = v(z). (39)

Let us first prove that if v(·) grows no faster than a polynomial equation

(39) possesses a solution. Indeed, assume this is the case. Then function

z2v(z) exp(−z) ∈ L2(R+) and

kfg(x, z) =
x2z2

x+ z
exp(−x− z). (40)

To prove that operator T defined by (31) is compact we have to prove that

for any family of functions H such that

khkH1(R+)
≤ K for ∀h ∈ H (41)
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the family of functions

{Th}h∈H (42)

is uniformly bounded and equicontinuos. Uniform boundness follows from the

following sequence of inequalities:

kThkH1(R+)
=

vuutZ
R+

x2z2

x+z
exp(−x− z)h(z)dz)2dx+

vuutZ
R+

2xz3

x+z
exp(−x− z)h(z)dz)2dx ≤

vuutZ
R+

h2(z)dz(

vuutZ
R+

(2xz
3

x+z
)2 exp(−2(x+ z)dzdx+

vuutZ
R+

x2z2

x+z
exp(−2(x+ z)dzdx) < 4K,

(43)

where the last estimate comes from

vuutZ
R+

(2xz
3

x+z
)2 exp(−2(x+ z)dzdx+

vuutZ
R+

x2z2

x+z
exp(−2(x+ z)dzdx ≤

vuut4 Z
R+

z6 exp(−2z)dz
Z
R+

exp(−2x)dx+
Z
R+

x2 exp(−2x)dx < 4.

(44)

To prove equicontinuity it is sufficient to prove that the derivatives of all
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functions in the family are uniformly bounded. This follows from:

Th0(x) =
Z
R+

2xz3

x+z
exp(−x− z)h(z)dz ≤vuutZ

R+

h2(z)dz

vuutZ
R+

(2xz
3

x+z
)2 exp(−2(x+ z))dz ≤

2K

vuutZ
R+

z6 exp(−2z)dz < 6K.

(45)

The existence of the solution follows know from the Corollary 1. Let us

actually find a solution to equation (39) in the case

v(z) = za, a > 0. (46)

Let us look for a solution in a form

w(x) = cxa, (47)

where c is some constant to be found. Then equation (39) becomes:

c

∞Z
0

xa exp(−x
z
)dx = za+1. (48)
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Making a substitution x = zt one obtains:

cza+1
∞Z
0

ta exp(−t)dt = za+1. (49)

The solution is

c =
1

Γ(a+ 1)
, (50)

where Γ(·) is Euler’s gamma function defined by:

Γ(y) =

∞Z
0

ty−1 exp(−t)dt. (51)

In particular, for a = n ∈ N one obtains

c =
1

n!
. (52)

Note that for a convex function v(·) (which is usually the case in screening

models), w(·) is flatter than v(·). The unobservability of effort leads to lower

powered incentives despite the fact that the agents are risk neutral. Assume

that function v(·) is analytical at zero, i. e. in some neighborhood of z = 0

25



it can be represented as a sum of a convergent series:

v(z) =
∞X
n=0

anz
n. (53)

Then according to formula (52) and the superposition principle for linear

equations:

w(x) =
∞X
n=0

an
n!
xn. (54)

Note that the radius of convergence of series (54) is at least as big as that of

series (53).

The choice of function g(·) in our example is rather instructive. The term

z2 was selected to kill the singularity at zero, while the exponent guaranteed

that the symmetrized kernel will behave well at infinity. The key property

that allowed as to do it was that function f(·, ·) did not have interior singu-

larities. More precisely, the following result holds.

Theorem 3 Let function g(·) : R+ → R+ with a full support be such

that:function vg(·) ∈ L2(R+). Assume further that

(kfg(x, y))2 ≤ (kfg(x, x))2 + (kfg(y, y))2. (55)
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Then there exists such function φ(z) that the operator Q defined by:

Qh =

∞Z
0

kfgφ(x, z)h(z)dz (56)

is a Hilbert-Schmidt operator and therefore, is compact.

Proof. An operator is a Hilbert-Schmidt operator if and only if its kernel is

square intergrable (see, Pugachev and Sinitsyn, 1999). Therefore, one has to

select φ(·) in such a way that gvφ ∈ L2(R+) and

∞Z
0

∞Z
0

(kfgφ(x, y))2dxdy <∞. (57)

It is sufficient to select φ in such a way that

∞Z
0

φ2(x)dx <∞ (58)

and
∞Z
0

(kfgφ(x, x))2φ2(x)dx <∞. (59)

This is always possible. Indeed, let

ξ(x) = (kfgφ(x, x))2 (60)
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and

ζ(x) = ξ(0) +

xZ
0

max(0, ξ0(t))dt. (61)

Then it is sufficient to choose

φ =
q
ζ 0(x) exp(−ζ(x)). (62)

Q. E. D.

The major example of densities for which conditions of Theorem 3 will

be violated are the densities which have a singularity along line z = x, i. e.

f(x, z) = O(|x− z|α) (63)

for some α < 1. Note, however, that conditions of Theorem 3 are sufficient

but not necessary for the existence of the solution. Let us demonstrate this

point by the following example.

Example 2 Let

f(x, z) =

⎧⎪⎪⎨⎪⎪⎩
1

4
√
ηz
√
|x−z| , for x ∈ [0, 2z]

0, otherwise

(64)
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and assume that

v(z) = zb. (65)

Though the conditions of Theorem 3 are not satisfied the solution of equation

(29), which in this case takes the form

1

4
√
η

2zZ
0

w(x)
1√

z
p|x− z|dx = zb, (66)

can still be found. Indeed, let us look for the solution in a form

w(x) = cxb. (67)

Substituting it into equation (66) and making a change of variables

x = tz (68)

one obtains:

c =
4

I
, (69)

where

I =

1Z
0

t−1/2(1 + t)bdt+

1Z
0

t−1/2(1− t)bdt. (70)
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Evaluating the integrals one obtains:

I = Γ(b+ 1)(

√
π

Γ(b+ 3/2)
+ 2

∞X
n=0

1

n!(2n+ 1)Γ(b+ 1− n)
). (71)

Here Γ(·) is Euler’s gamma function. If Re z > 0 then Γ(z) is defined by:

Γ(z) =

∞Z
0

tz−1 exp(−t)dt. (72)

Otherwise, it should be understood as the analytical continuation of function

(72).

Note that the sum on the right hand side converges. Moreover, if b ∈ N

it has only finitely many non-zero terms, since 1/Γ(w) = 0, for non-positive

integer values of w.

Having solved examples with multiplicative technological uncertainty and

uncertainty with a singular density, let us finally solve an example with ad-

ditive technological uncertainty.

Example 3 Let us assume that the production technology is additive, i. e.

x = z + ε. (73)
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Let us also assume that ε is distributed normally with mean zero and variance

1/2. Then equation (29) becomes

1√
π

∞Z
−∞

w(x) exp(−(x− z)2)dx = v(z). (74)

Proof of the existence is similar to Example 1 and is omitted. Let us find the

solution in the case when v(z) = zn, where n ∈ N .Let us look for a solution

in a form

w(x) = cHn(x), (75)

where Hermite polynomials Hn(·) are defined by:

Hn(x) = (−1)n exp(x2)d
n(exp(−x2))

dxn
(76)

(see, Pugachev and Sinitsyn, 1999). Substituting (75) into (74) one obtains:

cIn(z) = zn, (77)
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where In(z) is defined by:

In(z) =
1

2
√
π

∞Z
−∞

Hn(x) exp(−(x− z)2)dx. (78)

Using definition (76) and integrating (78) by parts one can prove that In(z)

solves:

In(z) = 2zIn−1(z), I0(z) = 1. (79)

Therefore,

In(z) = 2
nzn (80)

and c = 1
2n
.Finally, if function v(·) is analytical at zero, i. e. in some

neighborhood of z = 0 it can be represented as a sum of a convergent series:

v(z) =
∞X
n=0

anz
n. (81)

Then according to formula (80) and the superposition principle for linear

equations:

w(x) =
∞X
n=0

an
2n

Hn(x). (82)
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5 When does hidden action entails a welfare

loss?

In the previous section we established that independence of technology of

the private information of the agents is the basic economic assumption that

makes hidden action problem irrelevant from the welfare point of view. In

this section we are going to provide an economically natural example, when

this condition does not hold and find the optimal contract. The example is

particularly interesting, because in the situation it describes neither hidden

action nor hidden information on their own lead to welfare losses, while their

combination does.

Assume different research institutions compete for government grants for

research projects. Each institution has a research project which is charac-

terized by the potential success probability q ∈ [0, 1]. The actual success

probability is qθ where θ ∈ [0, 1] is the effort level. The cost of a project is

normalized to be zero. The cost of effort is given by an increasing, convex

and twice continuously differentiable function h(θ). If successful, the project

results into production of a public good. The value of it to the society is

one. Both the success probability and the cost of the project are private
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information to the research institution. There is a continuum of the research

institutions.

The government knows the population density f(q) of different types of

projects, which is assumed to have a compact support and be strictly positive

at any point in the support. It aims to maximize the expected payoffs to the

projects net of the funding costs subject to the incentive and participation

constraints (we assume that the social cost of a $1 transfer exceeds $1 because

of the deadweight loss of taxation, for simplicity we normalize the cost of

raising this revenue to be $1). Denote the value of the outside option by U0.

Then the government solves:

max

1Z
0

(qθ(1− y)− t(y))f(q, x)dq (83)

(y, θ) ∈ argmax(qθy − h(θ)− t(y)) (84)

max
(y,θ)

(qθy − h(θ)− t(y)) ≥ U0. (85)

For this purpose, the government offers a menu of pairs (t, y) where t is an

up-front payment and y is a success prize. Incentive compatibility requires

that y1 = y2 implies t1 = t2. Therefore, without loss of generality we can

assume that the government offers a schedule t(y).
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Note that the government observes the signal z ∈ {0, 1}, where z = 1 if

and only if the project is successful. Since the probability that z = 1 is qθ,

and depends on q for a given value of θ, the production technology depends

on the private information of the consumers.

Timing is the following. At time zero the government announces the

schedule t(y). An institution decides whether to participate and if so, which

contract to choose. That is it picks up y∗ and receives t(y∗). Then it chooses

research effort θ. If the research is successful an institution gets the prize y∗.

The institution is assumed to be risk neutral.

We will solve the problem by backward induction. After y is chosen, the

institution selects θ to solve

max(qθy − h(θ)). (86)

The first order condition is

h0(θ) = qy. (87)
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Define the indirect utility of an institution by

v(qy) = qyθ(qy)− h(θ(qy)) (88)

where θ(qy) is given by (87). It is straightforward to show that

v0(z) = θ(z) ≥ 0, v00(z) = 1

h00(θ(z))
> 0. (89)

Since

∂2v

∂q∂y
= qyv00(z) ≥ 0 (90)

the single crossing property is satisfied and y(q) is implementable if and only

if it is increasing. For a proof, see Mussa and Rosen (1978).

Define the surplus of an institution by

u(q) = max
y
(v(qy)− t(y)) (91)

Applying the envelope theorem to (91) and using the definition of v(·), one

obtains

u0(q) =
θh0(θ)
q

. (92)
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Now the government’s objective (83) can be rewritten as:

max

1Z
0

[qθ − h(θ)− u(q)]f(q)dq (93)

Integrating by parts the term

1Z
0

u(q)f(q)dq (94)

one obtains the following problem

max
θ∈[0,1]

1Z
0

(qθ − CSB(q, θ))f(q)dq, (95)

where the second best cost CSB(q, ·) is defined by

CSB(q, θ) = h(θ) +
1− F (q)

qf(q)
θh0(θ).

The cost function can easily be understood intuitively. The first term repre-

sents the physical cost of effort. In the absence of adverse selection it gives

the implementation cost. The second term captures an increase in the in-

formation rents earned by the types on interval [q, 1] due to the increase in
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effort.

Assume that 2h00(θ) + θh000(θ) ≥ 0 . Then CSB(q, ·) is convex for any

distribution F (·). In this case the unique solution to (95) will be interior and

increasing in q, which implies that all types will participate. If the resulting

y(q) is increasing, there is full separation of types, otherwise one should

apply ironing procedure developed by Mussa and Rosen (1978). For q = 1

the second best cost coincides with h(θ) which implies no distortions at the

top, in accordance with the general result in the screening literature.

For h(θ) = θ2/2 and a uniform distribution of the success probability is

distributed on [0, 1] one obtains:

CSB(q, θ) =
2− q

2q
θ2.

Hence,

θ =
q2

2− q

y =
q

2− q
.

Since y(·) is increasing it is implementable.

It is easy to check that the first best outcome is implementable under
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either adverse selection or moral hazard alone. Indeed, if q is observable

then an institution receives an up-front payment U0− v(q) and a prize one if

and only if it succeeds. If θ is observable then the government will offer an

up-front payment t = h(θ) and no success prize.

The main feature of the above example is that the effort improves the

type. Such situations are quite general, especially in the cases when a party

can make an unobservable relation-specific investment. Hence, we conclude

that the interaction moral hazard and adverse selection can generate a welfare

loss in an economically interesting environment even if the both parties are

risk-neutral.

6 Conclusions

In this paper we consider a general model with coexisting hidden action

and hidden information. Starting from a model without any specific assump-

tions on the production technology we characterize the first order properties

of the solution and prove that, with minor technical qualifications, indepen-

dence of the production technology from the consumer type is necessary and

sufficient for the welfare irrelevance of hidden action. The most important
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case when this criterion might break is when the distribution of output has

interior singularities. We also solve some examples explicitly.

Our result clarifies and confirms the main conclusion drawn in the existing

literature on mixed models, that if the parties are risk neutral and the produc-

tion technology is not correlated with private information, then hidden action

is irrelevant. However it makes it clear that even under risk neutrality this

conclusion does not extend to the correlated case, which in practice occurs

quite frequently. We illustrate this with an example motivated by research

contracting, where the project type affects both the success probability and

the marginal effect of effort. The example is particularly striking because, in

the situation it describes, neither hidden action nor hidden information on

their own lead to welfare losses, while their combination does.
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