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REGRESSION QUANTILE ANALYSIS OF CLAIM TERMINATION RATES FOR 

INCOME PROTECTION INSURANCE 
 
Abstract 
 
This paper investigates the use of censored regression quantiles in the analysis of claim 
termination rates for income protection (IP) insurance. The paper demonstrates the importance 
of modeling quantiles given the growing interest of regulators and others in stochastic 
approaches to valuation of insurance liabilities and risk margins.  
 
1. Introduction 

 
Actuarial interest in quantiles other than the median has increased considerably in recent years. 
Notable is the Australian Prudential Regulatory Authority (APRA) standard for the valuation of 
general insurance liabilities, GPS210, introduced as part of the Australian General Insurance 
Reform (2001). This standard requires that a risk margin should be established “on a basis that is 
intended to secure the insurance liabilities of the insurer at a given level of sufficiency – that 
level is 75 per cent”. Previously the Australian General Insurance Act (1973) was considerably 
less prescriptive on the level of risk (or prudential) margin that insurers were required to hold. 
 
Given that general insurance actuaries in Australia are now required to estimate a 75th percentile 
of the distribution of outstanding claims for recording in profit and loss statements, it becomes 
important that the impact of potential risk factors on various quantiles of the distribution of 
outstanding claims provisions be considered. This is in addition to estimating the impact of risk 
factors on the mean of the outstanding claims provision. 
 
In the context of disability income insurance claim termination rates, Pitt (2006) gives an 
illustration of how various insured characteristics impact claim termination rates differently at 
different quantiles of the distribution of claim duration. In that paper, the use of mixture models 
showed that the smoker status, which has not been included in previous Australian industry 
tables for claim termination, has a statistically significant impact on the probability that an IP 
insurance claim will continue indefinitely and that the claimant will never return to work. This is 
evidence that smoker status is a statistically significant predictor for claim termination rates 
(leading to a reduction in claim termination rates) for the very longest duration claims. In other 
words, a traditional regression which considers only the impact of rating factors on the mean 
would not find that smoker status is statistically significant, however closer examination of the 
impact of smoker status in the tail of the probability distribution of claim durations indicates that 
smoker status is critical for long duration claims. 
 
The importance of understanding the impact of potential rating factors and the different impacts 
they have across the claim duration distribution is of particular importance in reserving and 
pricing IP insurance contracts. Failure to properly assess the impact of a rating factor in the tail 
of the probability distribution of claim durations will lead to serious underestimation of claim 
reserves in respect of disabled lives, particularly those lives who have been disabled for longer 
than, say, six months. 
 
2. Regression Quantiles 
 
One way of extending the linear model to allow for prediction of various quantiles of the 
distribution of the claim duration is the method of regression quantiles of Koenker and Bassett 
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(1978). This methodology has recently been extended to allow for standard right censoring and 
therefore can provide an alternative to the Cox Model or mixture models, see Portnoy (2003). 
 
Traditional statistical and actuarial analysis has focused on sample averages as estimates of the 
population mean. Variability has generally been considered using sample standard deviations 
and the assumption of normality or, more recently, other parametric assumptions have been 
made. It has long been argued, (Galton, 1889), that any complete analysis of the “full variety of 
an experience requires the entire distribution of a trait, not just a measure of its central 
tendency.” We therefore consider the use of regression quantiles as a method for identifying 
heterogeneity among subpopulations by considering the behaviour of the percentiles as a 
function of their associated probability τ. 
 
For a random variable Y of measurements from some population, the population quantile is 
defined to be the value ( )YQ τ satisfying 

 
 ( ){ } for 0 1.YP Y Q τ τ τ≤ = ≤ ≤  (1) 

 
Next, we describe the generalisation of this quantile to a regression context through the use of 
the conditional quantile. The conditional quantile, ( )| ; ,Y XQ xτ is defined such that 

 

 ( ){ }| ; | .Y XP Y Q x X xτ τ≤ = =  (2) 

 
Whereas traditional regression analysis provides a single regression curve, for example the 
conditional mean function, in this regression quantile context we can let τ  vary, and therefore 
consider a family of conditional quantile curves to provide a clearer picture of the dependencies 
present in the data. 
 
To simplify the analysis, Koenker and Bassett (1978) suggest the estimation of conditional 
quantile curves under the assumption that, after appropriate transformations, they are linear in 
the covariates. This assumption has the advantage of allowing easier interpretation of coefficient 
estimates and also permits significantly faster computation. The estimation of the conditional 
quantile functions involves finding the solution to the problem of choosing ξ to minimise 
 

 ( ) ( )
1

,
n

T T i
i

R Yξ ρ ξ
=

= −∑  (3) 

 
where Tρ  is the piecewise linear “check” function, 

 
 ( ) ( )( ) ( )0 1 ,T u u I u u uρ τ τ τ+ −= − < = + −  (4) 

 
and where u+ and u- are the positive and negative parts of u taken as positive values, 
respectively. 
 
Portnoy (2003) next describes a general linear response model where { },i iY x  denotes a sample 

of responses Y and explanatory variables x  (in m dimensions), and suppose 
 
 ' , 1,2,..., ,i i iY x z i nβ= + =  (5) 
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where β  is an m-dimensional parameter and iz  is the random error term. If we then minimise 
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by varying β  we obtain the regression quantiles. Note that the estimated regression quantile 

parameters implicitly depend on the probability, τ. In particular, the jth coordinate of ( )β̂ τ  

gives the predicted marginal effect of a unit change in the jth explanatory variable, ( ) ,jx  on the 

conditional τ’  th-quantile of the response. 
 
If the model predicts that the β  coefficients change with τ, then we have evidence of 

heterogeneity in the population. This heterogeneity is often the result of unequal variances 
(heteroscedasticity). 
 
Throughout the analysis which follows we will make use of the R library crq. This library 
contains a function which allows the user to fit censored regression quantile models and assess 
the extent of heterogeneity in the covariate effect over the range of claim durations. 
 
3. Regression Quantiles and Claim Termination Rates 
 
The aim of this section is to illustrate the application of censored regression quantiles (Portnoy 
2003), to claim termination rates for IP insurance. The heterogeneity of the effect of the 
covariates age, occupation and deferred period across the distribution of claim durations will be 
analysed. The benefits of using censored regression quantile analysis as compared to more 
traditional Cox regression in this context will also be explored. 
 
The potential output from censored regression analysis can be extremely voluminous. This issue 
arsies due to the wide range of possible conditional quantile curves that can be estimated. In 
order to make the interpretation of results simpler, we restrict ourselves in this paper to the 
consideration of the effect of age, occupation class (C or D vs A or B), see Pitt(2006) for a 
description of occupation classes, and deferred period (greater than or equal to 28 days or less 
than 28 days). 
 
A censored regression quantile model was fit using the entire dataset of claim durations 
described in Pitt(2006). The R command used to fit the model is 
 
 crq(Surv(log(durn3),terminate) ~ age + occupnew + defpdnew, data = termrates2), (7) 
 
where occupnew is an indicator variable for occupation classes C and D, and defpdnew is an 
indicator variable for deferred period in excess of 27 days. 
 
Mathematically, the form of the fitted censored regression model is 
 
 ( ) ( ) ( )0 1 2 3log Time to return to work (Age) Occupation Class Deferred Period ,β β β β= + + +   (8) 

 
where separate models of the above form are fit to quantiles corresponding to breakpoints in the 
claim duration data. 
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To consider the impact of age on the log of claim duration we create a graph of the predicted 
censored regression quantile relationship between log of duration and age. See Figure 1. 

20 30 40 50 60 70

1
2

3
4

5
6

7

Log of Claim Duration as a Function of Age

Age

Lo
g 

of
 C

la
im

 D
ur

at
io

n

10th Percentile
25th Percentile
50th Percentile
75th Percentile
90th Percentile

 
Figure 1 Log of Claim Duration as a Function of Age for Five Different Percentiles 
 
Immediately obvious from Figure 1 is the increasing slope of the regression lines at higher 
percentiles of the distribution of log claim duration. This suggests that the age sensitivity of (the 
log of) claim duration is greater for longer duration claims. In particular, the effect of increasing 
age increases the 90th percentile of the distribution of claim durations for a given age much more 
than the same increase in age increases the 10th percentile of the distribution of claim durations. 
The regression coefficients for age, occupation class and deferred period for various percentiles 
are given below, in Table 1. Note that the effect of occupation class on claim duration also 
varies significantly with the percentile of the distribution being considered. In particular, the 
effect of being in occupation class C or D in reducing the predicted duration of disability is more 
pronounced at the higher percentiles of the distribution of the claims distribution. 
 
 

Percentile Censored Regression 
Quantile Coefficient 

(Age) 

Censored Regression 
Quantile Coefficient 

(Occupation) 

Censored Regression 
Quantile Coefficient 
(Deferred Period) 

10th Percentile 0.00419 -0.01846 0.60475 
25th Percentile 0.00494 -0.06772 0.59322 
50th Percentile 0.01068 -0.12023 0.59366 
75th Percentile 0.02048 -0.23410 0.71315 
90th Percentile 0.04206 -0.29936 0.62723 

 
Table 1 Censored Regression Quantile Coefficients 
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The above results have clear implications for the determination of the disabled life reserve 
(DLR). This quantity is the reserve held by an insurer in respect of an insured who is currently 
claiming benefits at the date of the valuation. Insurers will always have a material proportion of 
their portfolio relating to insured lives who are currently disabled and who have been disabled 
for a reasonable period of time at the date of valuation. The insurer is required to determine the 
amount of money that needs to be held in respect of these disabled and insured lives at a 
particular instant in time. Clearly the amount of money required depends on the future disability 
status of the insured life. Table 1 shows that the effect of the insured being older or of being in 
occupation class A or B on the claim duration is more significant for longer duration claims; that 
is, for claims that have extended into higher percentiles of the claim duration probability 
distribution. 
 
A model considered in Pitt(2006) that is often used in survival analysis is the Cox Regression 
model, (Cox, 1972). This model estimates the impact of rating factors such as age and 
occupation class on the dependent variable, claim duration, by considering the impact of these 
rating factors collectively across all quantiles of the claim duration distribution. It is therefore of 
interest to assess the difference in the predicted sensitivities of claim duration to each of the 
insured characteristics from the Cox model and the censored regression quantile method. 
 
4. Comparison of Cox Regression and Censored Regression Quantiles for Claim 
Termination Rates 
 
To begin this section, we fit a Cox regression model to our data using age, occupation (class C 
or D indicator) and deferred period (greater than 27 days indicator) to the claim duration data. 
The dependent variable is the log of the claim duration and the usual right censoring in the data 
is used within the analysis. The output for this regression model is given below in Table 2. 
 
coxph(formula = Surv(log(durn3), terminate) ~ age + occupnew + 
defpdnew, data = termrates2) 
 coef exp(coef) se(coef) z score p-value 
age -0.0124 0.988 0.00119 -10.40 0.0e+00 
occupnew 0.1285 1.137 0.02524 5.09 3.5e-07 
defpdnew -0.4668 0.627 0.02482 -18.80 0.0e+00 
Likelihood ratio test=631  on 3 df, p=0  n= 8863 
 
Table 2 Censored Regression Quantile Output 
 
The three rating factors are clearly highly statistically significant and the overall model indicates 
that age, occupation class and deferred period are jointly statistically significant. 
 
In order to compare the Cox regression model to the censored regression quantile model, it is 
necessary to compare the predicted sensitivities of the quantiles of the claim duration 
distribution under the two models. For the Cox model, we have that the predicted hazard 
function for the ith individual in the sample, ( ) ,ih t  is 

 ( ) ( )0 , 1,..., ,ix

ih t h t e i n
β= =  (9) 

 
where ( )0h t  is the baseline hazard function. Given this form for the hazard function, the 

survival function can be written as 

 ( ) ( )( )0exp ,ix

iS t H t e
β= −  (10) 
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( ) ( )0 0

0

where .
t

H t h s ds= ∫  

So the conditional quantile for claim duration, T, at x  becomes 

 ( ) ( )( )1
Cox 0| log 1 .ix

Q x H e
βτ τ −−= − −  (11) 

 
The quantity ( )Cox |Q xτ  defined in Portnoy (2003) is therefore the predicted time since claim 

inception, under the Cox Regression model, when a proportion τ of those insureds who claim 
from their IP insurance contract will have returned to work. The censored quantile regression 
coefficients give the predicted change in various quantiles of the distribution of the log of claim 
duration when various rating factors are increased by one unit. It is therefore possible to directly 
compare the coefficients estimated using censored regression quantiles with the derivative of the 

expression at (11). Consequently we compare the ( )β̂ τ with the quantity 

 ( ) ( )( )1
Cox 0| log 1 .ix

Q x H e
x x

βτ τ −−∂ ∂= − −
∂ ∂

 (12) 

 
To calculate the above derivatives we need to use numerical differentiation owing to the 
irregularities present in the inverse cumulative baseline hazard function, ( )1

0 .H t−  For the 

calculation of this derivative, we use the model in Table 2. From this model we calculate the 
fitted claim continuance probabilities at each of the times that a person in the sample returns to 
work for a life aged 40.53, the mean of the ages in the sample. Denote these values 1( ).iS t We 

also use the model in Table 2 to calculate the fitted claim continuance probabilities for a life 
aged 41.53 (one plus the mean of the ages in the sample). Denote these values 2( ).iS t  Next we 

determine the log of claim duration that corresponds to each of the values of 1( )iS t  for a life 

aged 41.53. These values are calculated using linear interpolation and the S-Plus function, out2, 
which performs this calculation (amongst other calculations) is given in full in Appendix A. It is 
then straightforward to numerically estimate the predicted quantile sensitivity based on the Cox 
Regression model. The difference between the survival times for a given quantile of the log 
claim duration distribution estimates the sensitivity of various quantiles of the log of claim 
duration distribution under the Cox Model. 
 
It is useful to compare the sensitivities of various quantiles of the log of claim duration 
distribution from the use of censored regression quantiles and the more conventional Cox 
regression model. Figures 2 and 3 compare these quantile sensitivities for changes in age and 
occupation class. The sensitivity labelled on the y-axis of the graphs in Figures 2 and 3 refers to 
the expression in (12). 
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Figure 5.2 Comparison of Sensitivities of Log Duration to Age 
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Figure 3 Comparison of Sensitivities of Log Duration to Occupation Class 
 
From Figure 2 it is clear that the predicted age sensitivity of lower quantiles (at higher levels of 
the survival function) is higher under the Cox model than for the censored regression quantile 
analysis. There is considerable variability in the censored regression quantile coefficients for the 
higher quantiles (survival function between 0 and 0.2). This volatility is primarily due to the 
small number of claims that are still continuing at these claim durations. 
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From Figure 3, there is a clear bias in the estimation of the quantile sensitivities of log of claim 
duration to occupation class for the Cox regression model. The Cox regression model predicts a 
greater reduction in claim duration for occupation classes C and D than the censored regression 
quantile analysis over most of the range of the log of claim duration distribution. This result is 
driven in part by the inappropriateness of the proportional hazards assumption in the case of the 
disability data being considered here that underlies the Cox Regression model. 
 
5. Assessing the Comparison between Cox Regression and Censored Regression Quantiles 
using Subsampling 
 
Figure 2 also clearly demonstrates that using Cox regression alone can lead to incorrect 
conclusions about the age sensitivity of the log of claim duration particularly for shorter duration 
claims. It is of interest to see whether the disparity between predicted age sensitivities of claim 
duration between the two approaches is likely to occur with most sets of income protection 
insurance data or whether the difference is more a feature of the particular set of Australian 
industry claim duration data that is being analysed. 
 
To explore this, we consider a subsampling approach whereby 84 different datasets, each of size 
400, chosen from the original set of 8863 data points. These 84 different datasets contain records 
1 to 400, 101 to 500, …, 8401 to 8800. Since the data is in no particular order, with respect to 
the variable of interest namely claim duration, this is similar to analyzing 84 different sets of 
randomly chosen disability income insurance claim duration data each of size 400 records. 
 
For each of these datasets of size 400, we fit both a Cox regression model, equivalent to the 
model in Table 2, and also a censored regression quantile model. These models both use age, 
occupation class and deferment period as the only covariates. 
 
We then compare the censored regression quantile age coefficient for each of the 400 models to 
the Cox regression age sensitivities for a range of quantiles. We are interested in assessing the 
absolute difference between the censored regression quantile coefficients and the Cox regression 
quantile derivative function. In order to make the comparison more straightforward, we averaged 
the Cox regression quantile sensitivities over survival function bands, namely [0,0.2), [0.2,0.4), 
[0.4,0.6),[0.6,0.8) and [0.8,1.0]. We also averaged the censored regression quantile function over 
the same bands for the survival function. The difference in the mean sensitivities for each of the 
84 models were then calculated. A density of these differences was then created. The program 
which performs this subsampling is the S-Plus function, out3, shown in full in Appendix A. 
 
The density for the difference in mean sensitivities for age and Survival Function in excess of 
0.8 is shown below. The mean of the average differences between the sensitivities is 0.0008570 
which is 20.1% of the censored regression quantile sensitivity. Hence the Cox Regression 
predicts an age sensitivity of log of claim duration that is 20.1% higher than the censored 
regression quantile method for the shortest 20% of claim durations. 
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Figure 4 Density Function of Mean Difference for Cox Regression and CRQ Analysis for 
the Survival Function on the range [0.8,1.0] 
 
Similarly, Figure 5 on the following page shows an empirical density function of mean 
differences in predicted quantile sensitivities from Cox Regression and censored regression 
quantiles over the [0.6,0.8) band of the survival function. The mean difference is 0.0024, or  
35.6% of the censored regression quantile analysis. This finding indicates again that Cox 
Regression predicted sensitivities of the return to work hazard rate to covariates are consistently 
higher than their censored regression quantile counterparts over the 60% to 80% region for the 
claim duration survival function. 
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Figure 5 Density Function of Mean Difference for Cox Regression and CRQ Analysis for 
the Survival Function on the range [0.6,0.8) 
 
This chapter has demonstrated an additional technique that can be used to detect heterogeneity in 
claim duration data. Censored regression quantiles therefore provide a more reliable method for 
assessing the impact of covariates in the tail of the probability distribution of claim durations 
than do other more commonly adopted methods from survival analysis, such as Cox Regression.  
 
6. Conclusion 
 
This paper has demonstrated the value of censored regression quantile analysis in the valuation 
of outstanding claims for IP insurance claims. In particular the paper has highlighted the 
magnitude of the distortion that Cox Regression analysis, when used inappropriately with IP 
insurance claims data, can have on predicted regression coefficients.  
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Appendix A -Selected S-Plus Functions  
 
> out2 
function(a) { 

for(i in 3:(length(coxcrv$time)-1)) { 
A<<-max(coxcrv1$surv[coxcrv1$surv<coxcrv$surv[i]]) 
B<<-min(coxcrv1$surv[coxcrv1$surv>coxcrv$surv[i]]) 
C1<<-coxcrv1$time[coxcrv1$surv==A] 
D1<<-coxcrv1$time[coxcrv1$surv==B] 
timeout[i]<<-log(D1)*(coxcrv$surv[i]-A)/(B-A)+log(C1)*(B-coxcrv$surv[i])/(B-

A) 
derivcvout[i]<<-timeout[i]-log(coxcrv$time[i]) 
E1=length(coxcrv$surv[coxcrv$surv>0.8]) 
F1=length(coxcrv$surv[coxcrv$surv>0.6])-E1 
G1=length(coxcrv$surv[coxcrv$surv>0.4])-(E1+F1) 
H1=length(coxcrv$surv[coxcrv$surv>0.2])-(E1+F1+G1) 
I1=length(coxcrv$surv[coxcrv$surv>0])-(E1+F1+G1+H1) 
E1mean<<-mean(derivcvout[1:E1]) 
F1mean<<-mean(derivcvout[(E1+1):(E1+F1)]) 
G1mean<<-mean(derivcvout[(E1+F1+1):(E1+F1+G1)]) 
H1mean<<-mean(derivcvout[(E1+F1+G1+1):(E1+F1+G1+H1)]) 
I1mean<<-mean(derivcvout[(E1+F1+G1+H1+1):(E1+F1+G1+H1+I1)]) 

}} 
 
 
> out3 
function(a) { 

for(j in 1:84) { 
durn3a<<-durn3[(100*(j-1)+1):(100*j+300)] 
terminatea <<- terminate[(100*(j-1)+1):(100*j+300)] 
agea <<- age[(100*(j-1)+1):(100*j+300)] 
occupnewa<<-occupnew[(100*(j-1)+1):(100*j+300)] 
defpdnewa<<-defpdnew[(100*(j-1)+1):(100*j+300)] 
tempcox<<-
coxph(Surv(durn3a,terminatea)~agea+occupnewa+defpdnewa,data=termrates2) 
tempcrq<<-
crq(Surv(log(durn3a),terminatea)~agea+occupnewa+defpdnewa,data=termrates2) 
coxcrv<<-summary(survfit(tempcox,newdata=temp)) 
coxcrv1<<-summary(survfit(tempcox,newdata=temp1)) 
out2(5) 
E1means[j]<<-E1mean 
F1means[j]<<-F1mean 
G1means[j]<<-G1mean 
H1means[j]<<-H1mean 
I1means[j]<<-I1mean 
M1<<-length(tempcrq[tempcrq$sol[1,]<0.2]) 
N1<<-length(tempcrq[tempcrq$sol[1,]<0.4])-M1 
O1<<-length(tempcrq[tempcrq$sol[1,]<0.6])-(M1+N1) 
P1<<-length(tempcrq[tempcrq$sol[1,]<0.8])-(M1+N1+O1) 
Q1<<-length(tempcrq[tempcrq$sol[1,]<1])-(M1+N1+O1+P1) 
M1mean<<-mean(tempcrq$sol[3,(1:M1)]) 
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N1mean<<-mean(tempcrq$sol[3,((M1+1):(M1+N1))]) 
O1mean<<-mean(tempcrq$sol[3,((M1+N1+1):(M1+N1+O1))]) 
P1mean<<-mean(tempcrq$sol[3,((M1+N1+O1+1):(M1+N1+O1+P1))]) 
ifelse(M1+N1+O1+P1+1<=length(tempcrq$sol[3,]),Q1mean<<-
mean(tempcrq$sol[3,((M1+N1+O1+P1+1):(M1+N1+O1+P1+Q1))]),Q1mean<<-
0) 
M1means[j]<<-M1mean 
N1means[j]<<-N1mean 
O1means[j]<<-O1mean 
P1means[j]<<-P1mean 
Q1means[j]<<-Q1mean 
R1means[j]<<-E1means[j]-M1means[j] 
S1means[j]<<-F1means[j]-N1means[j] 
T1means[j]<<-G1means[j]-O1means[j] 
U1means[j]<<-H1means[j]-P1means[j] 
V1means[j]<<-I1means[j]-Q1means[j] 

}} 
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