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Abstract

We consider a classical surplus process modified by the payment
of dividends when the insurer’s surplus exceeds a threshold. We use a
probabilistic argument to obtain general expressions for the expected
present value of dividend payments, and show how these expressions
can be applied for certain individual claim amount distributions. We
then consider the question of maximising the expected present value
of dividend payments subject to a constraint on the insurer’s ruin
probability.
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1 Introduction and notation

In this paper we consider a classical surplus process modified by the payment
of dividends from the premium income when the surplus level is above a
certain value, which we refer to as the threshold.

We therefore start by introducing some results and notation for the clas-
sical surplus process. We denote the classical surplus process by {U(t)}t≥0
where

U(t) = u+ ct−

N(t)∑

i=1

Xi,

u ≥ 0 is the initial surplus, c is the rate of premium income per unit time
(assumed to be received continuously), {N(t)}t≥0 is a Poisson process with
parameter λ, and {Xi}

∞
i=1 is a sequence of independent and identically dis-

tributed positive random variables. For convenience, we assume that X1 is
a continuous random variable with distribution function F , density function
f , and mean µ < ∞. Let θ > 0 be the premium loading factor, so that
c = (1 + θ)λµ.

For this surplus process, we define Tu to be the time of ruin, so that

Tu = inf{t | U(t) < 0}

with Tu =∞ if U(t) ≥ 0 for all t > 0. The ultimate ruin probability is given
by ψ(u) = Pr(Tu <∞).

Central to our subsequent analysis is a special case of the so-called Gerber-
Shiu function (see Gerber and Shiu (1998)). We define

φ(u) = E [exp{−δTu − s|U(Tu)|}I(Tu <∞)]

to be the bivariate Laplace transform of the time of ruin and the severity of
ruin, |U(Tu)|. Thus

φ(u) =

∫ ∞

0

∫ ∞

0

e−δt−syw(u, y, t)dydt

where w(u, y, t) is the defective density of the time (t) and severity (y) of
ruin, from initial surplus u. We define w(u, t) to be the defective density of
the time of ruin, with

w(u, t) =

∫ ∞

0

w(u, y, t)dy.

Another key equation in our analysis is Lundberg’s fundamental equation,
which is

λ+ δ − ct = λ

∫ ∞

0

e−txf(x)dx. (1)
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This equation has a unique positive solution for t (see Gerber and Shiu
(1998)), and for the claim amount distributions considered in the next section
there is at least one negative solution. In this equation we can think of δ as
the Laplace transform parameter in φ, but we can also think of δ as a force
of interest, and we will use this interpretation in the next section.

We now introduce the dividends modification. We assume that when the
surplus process is above level b, the insurer pays dividends to shareholders at
rate ĉ. Specifically, we assume in Section 2 that c− ĉ > λµ, as this condition
guarantees that ruin for our modified surplus process does not occur with
probability one. Gerber and Shiu (2005) have considered this modified sur-
plus process and, by solving differential equations, have derived expressions
for the expected present value of dividend income to shareholders when claims
have an exponential or a mixed exponential distribution. Lin and Pavlova
(2005) also consider this model and define and study the Gerber-Shiu func-
tion. In the next section we will provide an alternative method, based on
probabilistic arguments, of finding explicit solutions for the expected present
value of dividend payments to shareholders. We illustrate ideas using expo-
nential and mixed exponential claim amount distributions, but the technique
can be applied to other distributions as well.

In much of the literature on dividend problems, the focus is on maximising
the expected present value of dividend payments to shareholders. See, for
example, Gerber and Shiu (2004), Dickson and Waters (2004) and references
therein. In Section 3, we retain this focus, but impose a constraint. In
particular, we consider maximising the expected present value of dividend
payments to shareholders subject to a prescribed level of ruin probability. We
present some numerical illustrations and make comparisons with situations
in which there is no such constraint. The idea of a constraint is not new.
Paulsen (2003) considered a finite time ruin probability constraint while using
a diffusion process to model the insurer’s surplus. His constraint applied from
the time at which dividends first became payable, whereas we shall apply our
constraint at time 0.

2 Dividends

In what follows we assume that dividends are payable at rate ĉ when the
surplus level is above b, with c− ĉ > λµ, and that if ruin occurs, no further
dividends are payable. We will adapt the notation of the previous section by
introducing a hat to indicate that the insurer’s net rate of premium income
is c− ĉ, rather than c. Thus, for example, T̂u denotes the time of ruin for a
classical surplus process with initial surplus u and premium rate c− ĉ.
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Let V (u, b) denote the expected present value of dividend payments at
force of interest δ. For 0 ≤ u ≤ b, dividends will be payable only if the surplus
process reaches b without ruin first occurring, so that

V (u, b) = E[exp{−δTu,b}]V (b, b)

where Tu,b is the time of the first upcrossing of the surplus process through
b from u without ruin occurring. See Gerber (1979, p.147).

For u ≥ b, dividends are payable immediately at rate ĉ until the first time
the surplus falls below b (an event which may not occur). As this time is
identical in distribution to T̂u−b, we can write

V (u, b) = ĉE
[
ā
T̂u−b

]
+

∫ ∞

0

e−δt
∫ b

0

ŵ(u− b, y, t)V (b− y, b)dydt

=
ĉ

δ

(
1− E

[
e−δT̂u−b

])
+

∫ ∞

0

e−δt
∫ b

0

ŵ(u− b, y, t)V (b− y, b)dydt

=
ĉ

δ

(
1− E

[
e−δT̂u−b

])

+V (b, b)

∫ ∞

0

e−δt
∫ b

0

ŵ(u− b, y, t)E[exp{−δTb−y,b}]dydt. (2)

In particular,

V (b, b) =
ĉ

δ

(
1− E

[
e−δT̂0

])

+V (b, b)

∫ ∞

0

e−δt
∫ b

0

ŵ(0, y, t)E[exp{−δTb−y,b}]dydt

which gives

V (b, b) =
(ĉ/δ)

(
1− E

[
e−δT̂0

])

1−
∫∞
0
e−δt

∫ b
0
ŵ(0, y, t)E[exp{−δTb−y,b}]dydt

.

Hence, for 0 ≤ u ≤ b,

V (u, b) =
(ĉ/δ)

(
1− E

[
e−δT̂0

])
E[exp{−δTu,b}]

1−
∫∞
0
e−δt

∫ b
0
ŵ(0, y, t)E[exp{−δTb−y,b}]dydt

. (3)

At first sight, it appears that in order to apply formulae (2) and (3) we need
to know the functional form of ŵ(u, y, t). However, as we shall see in the
subsequent analysis, this need not be the case.

4



2.1 Exponential claims

When the claim amount distribution is exponential, which we denote by
f(x) = αe−αx, it is relatively straightforward to obtain expressions for V (u, b).
In large part, this is due to the fact that ŵ(u, y, t) = ŵ(u, t)f(y) due to the
memoryless property of the exponential distribution.

For this claim amount distribution, we know from Gerber (1979, p.147)
that

E[exp{−δTu,b}] =
m(u)

m(b)

where
m(u) = (α+ ρ)eρu − (α−R)e−Ru

and ρ > 0 and −R < 0 (which depend on δ) are the solutions of Lundberg’s
fundamental equation (1), i.e.

λ+ δ − ct =
λα

α+ t
.

Hence, for 0 ≤ u ≤ b, we get

V (u, b) =
(ĉ/δ)

(
1−E

[
e−δT̂0

])
m(u)

m(b)−
∫∞
0
e−δt

∫ b
0
ŵ(0, y, t)m(b− y)dydt

.

Considering first the numerator, and noting that for u ≥ 0

E [exp{−δTu}I(Tu <∞)] = E[exp{−δTu}] (4)

(see Gerber and Shiu (1998)), we have

E
[
e−δT̂0

]
=

∫ ∞

0

e−δtŵ(0, t)dt = 1− R̂/α

where the second identity follows from formula (5.38) of Gerber and Shiu
(1998), and −R̂ < 0 is the negative solution of Lundberg’s fundamental
equation with premium rate c− ĉ. Next, let

L(b) = m(b)−

∫ ∞

0

e−δt
∫ b

0

ŵ(0, y, t)m(b− y)dydt

= m(b)−

∫ ∞

0

e−δtŵ(0, t)

∫ b

0

αe−αym(b− y)dydt

= m(b)−

(∫ ∞

0

e−δtŵ(0, t)dt

)
αe−αb

∫ b

0

eαym(y)dy.
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Then
∫ b

0

eαym(y)dy =

∫ b

0

eαy
(
(α+ ρ)eρy − (α−R)e−Ry

)
dy

= e(α+ρ)b − e(α−R)b,

so that

L(b) = (α+ ρ)eρb − (α−R)e−Rb −
(
α− R̂

) (
eρb − e−Rb

)

=
(
ρ+ R̂

)
eρb +

(
R− R̂

)
e−Rb

and hence

V (u, b) =
ĉR̂

δα

(α+ ρ)eρu − (α−R)e−Ru(
ρ+ R̂

)
eρb +

(
R− R̂

)
e−Rb

.

Consider now the case when u ≥ b. Writing ϕ(u−b) = E
[
e−δT̂u−b

]
, the first

term in formula (2) involves

ϕ(u− b) =

∫ ∞

0

e−δtŵ(u− b, t)dt = ϕ(0)e−R̂(u−b).

See, for example, Gerber and Shiu (1998, equation (3.16)). Then for u ≥ b,

V (u, b) =
ĉ

δ

(
1−E

[
e−δT̂u−b

])

+

∫ ∞

0

e−δtŵ(u− b, t)dt

∫ b

0

f(y)
m(b− y)

m(b)
V (b, b)dy

=
ĉ

δ
(1− ϕ(u− b)) + ϕ(u− b)

V (b, b)

m(b)
α
(
eρb − e−Rb

)
.

In particular,

V (b, b) =
ĉ

δ
(1− ϕ(0)) + ϕ(0)

V (b, b)

m(b)
α
(
eρb − e−Rb

)

gives
V (b, b)

m(b)
α
(
eρb − e−Rb

)
=

1

ϕ(0)

(
V (b, b)−

ĉ

δ
(1− ϕ(0))

)
,

so that

V (u, b) =
ĉ

δ
(1− ϕ(u− b)) +

ϕ(u− b)

ϕ(0)

(
V (b, b)−

ĉ

δ
(1− ϕ(0))

)

=
ĉ

δ

(
1− e−R̂(u−b)

)
+ e−R̂(u−b)V (b, b).
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For 0 ≤ u ≤ b, the value of b that maximises V (u, b) is the value of b that
minimises L(b). Thus

∂

∂b
L(b) =

(
ρ+ R̂

)
ρeρb −

(
R− R̂

)
Re−Rb

and setting this equal to 0 gives the optimal level, b∗, as

b∗ =
1

ρ+R
log

(
R − R̂

)
R

(
ρ+ R̂

)
ρ
. (5)

We remark that the formulae for V (u, b) and b∗ can be found in Gerber and
Shiu (2005).

Although the exponential distribution is the most straightforward claim
amount distribution to consider, one advantage it offers is that it is the ba-
sis of De Vylder’s (1978) approximation, and Højgaard (2002) has shown
that this approximation can successfully be applied to an optimal dividends
problem. As the solution to the problem considered in Section 3 is consider-
ably easier to deal with for exponential claims than for other claim amount
distributions, De Vylder’s approximation has a certain appeal.

2.2 Mixed exponential claims

Let us now consider the case when the claim amount distribution is a mixture
of two exponentials with

f(x) = pαe−αx + qβe−βx

where p > 0 and p+ q = 1.
Following the arguments in Gerber (1979, pp.147-148) we find that, as in

the previous case,

E[exp{−δTu,b}] =
m(u)

m(b)

where we now have

m(u)

m(b)
= ̟0(δ, b)e

ρu +̟1(δ, b)e
−R1u +̟2(δ, b)e

−R2u

where ρ > 0, −R1 < 0 and −R2 < 0 (which all depend on δ) are the solutions
of Lundberg’s fundamental equation (1), i.e.

λ+ δ − ct =
λpα

α+ t
+

λqβ

β + t
.
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The coefficients {̟i(δ, b)}
2
i=0 satisfy the conditions

1 = ̟0(δ, b)e
ρb +̟1(δ, b)e

−R1b +̟2(δ, b)e
−R2b,

0 =
̟0(δ, b)

α+ ρ
+
̟1(δ, b)

α−R1
+
̟2(δ, b)

α−R2
,

0 =
̟0(δ, b)

β + ρ
+
̟1(δ, b)

β −R1
+
̟2(δ, b)

β −R2
,

where the final two conditions are just a special case of equation (A9) of
Gerber and Shiu (2005).

Considering first the case when 0 ≤ u ≤ b, in the numerator of formula
(3) for V (u, b) we have

E
[
e−δT̂0

]
=

λ

c− ĉ

(
p

α+ ρ̂
+

q

β + ρ̂

)
(6)

(see Dickson (2005, p.188)) where ρ̂ > 0 is the positive solution of Lundberg’s
fundamental equation with premium rate c− ĉ. To find the denominator of
formula (3) for V (u, b) we shall find the double integral by treating it as a
special case of the double integral in formula (2). The starting point is the
function φ, defined in Section 1. From Gerber and Shiu (1998), this function
satisfies the equation

cφ′(u) = (δ + λ)φ(u)− λ

∫ u

0

φ(x)f(u− x)dx− λω(u) (7)

where

ω(u) =

∫ ∞

0

e−syf(u+ y)dy

=
pα

α+ s
e−αu +

qβ

β + s
e−βu.

By applying standard arguments (see Gerber (1979, p.117)) we find that

φ(u) = k0(δ, s)e
ρu + k1(δ, s)e

−R1u + k2(δ, s)e
−R2u. (8)

As ρ > 0 and limu→∞ φ(u) = 0, we must have that k0(δ, s) = 0. Next, we
can obtain k1(δ, s) and k2(δ, s) by inserting expression (8) for φ into equation
(7). We obtain the equalities

1

α+ s
=

k1(δ, s)

α−R1
+
k2(δ, s)

α−R2
,

1

β + s
=

k1(δ, s)

β −R1
+
k2(δ, s)

β −R2
,
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which give

k1(δ, s) = γ1(δ)
α

α+ s
+ γ2(δ)

β

β + s
,

k2(δ, s) = σ1(δ)
α

α+ s
+ σ2(δ)

β

β + s
,

where

γ1(δ) =
(α−R1)(α−R2)(β −R1)

α(R2 −R1)(α− β)
,

γ2(δ) = −
(α−R1)(β −R1)(β −R2)

β(R2 −R1)(α− β)
,

σ1(δ) = −
(α−R1)(α−R2)(β −R2)

α(R2 −R1)(α− β)
,

σ2(δ) =
(α−R2)(β −R1)(β −R2)

β(R2 −R1)(α− β)
.

Thus

φ(u) =
(
γ1(δ)e

−R1u + σ1(δ)e
−R2u

) α

α+ s

+
(
γ2(δ)e

−R1u + σ2(δ)e
−R2u

) β

β + s
, (9)

so that for u ≥ 0,

w(u, y, t) = η1(u, t)αe
−αy + η2(u, t)βe

−βy

where for i = 1, 2,

∫ ∞

0

e−δtηi(u, t)dt = γi(δ)e
−R1u + σi(δ)e

−R2u.

In the context of finding the expected present value of dividend payments,
we need to evaluate

∫ ∞

0

e−δt
∫ b

0

ŵ(u− b, y, t)m(b− y)dydt
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for u ≥ b. This can be written as

∫ ∞

0

e−δt
∫ b

0

(
η̂1(u− b, t)αe−αy + η̂2(u− b, t)βe−βy

)
m(b− y)dydt

=

∫ ∞

0

e−δtη̂1(u− b, t)dt

∫ b

0

αe−αym(b− y)dy

+

∫ ∞

0

e−δtη̂2(u− b, t)dt

∫ b

0

βe−βym(b− y)dy

=
(
γ̂1(δ)e

−R̂1(u−b) + σ̂1(δ)e
−R̂2(u−b)

)∫ b

0

αe−αym(b− y)dy

+
(
γ̂2(δ)e

−R̂1(u−b) + σ̂2(δ)e
−R̂2(u−b)

)∫ b

0

βe−βym(b− y)dy.

The integrals in the above expression are straightforward to evaluate as m is
a linear combination of three exponential functions.

Then for 0 ≤ u ≤ b, we have all the components required to find V (u, b).

For u ≥ b, we require an additional component, namely E
[
e−δT̂u−b

]
. This is

easily obtained from the above workings by noting that

φ(u)|s=0 = E [exp{−δTu}I(Tu <∞)] ,

so that by formulae (4) and (9), we have

E[exp{−δTu}] = (γ1(δ) + γ2(δ)) e
−R1u + (σ1(δ) + σ2(δ)) e

−R2u.

We remark that, unlike in the case of exponential claims, it does not seem
possible to obtain a closed form solution for the level b∗ that maximises the
expected present value of dividend payments for given values of u and ĉ.
However, it is possible to find this level numerically.

2.3 An alternative approach

In the previous subsection, we derived expressions for V (u, b) both for
0 ≤ u ≤ b and u ≥ b. If we are interested only in the former case, there is
an alternative, more straightforward approach to finding the double integral
in formula (3).

From Gerber and Shiu (1998, equation (2.6)) we know that

φ(0) =
λ

c

∫ ∞

0

e−ρt
∫ ∞

t

e−s(y−t)f(y)dydt
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where ρ > 0 is the unique positive solution of Lundberg’s fundamental equa-
tion (1), and hence depends on δ. Consider a more general mixed exponential
distribution than in the previous subsection, say

f(x) =

n∑

i=1

wiαi exp{−αix}

where {wi}
n
i=1 are positive weights which sum to 1. Then

φ(0) =
λ

c

n∑

i=1

wiαi

∫ ∞

0

e−ρt
∫ ∞

t

e−s(y−t)e−αiydydt

=
λ

c

n∑

i=1

wiαi

∫ ∞

0

e−(ρ−s)t
e−(s+αi)t

s+ αi
dt

=
λ

c

n∑

i=1

wi
αi

s+ αi

1

ρ+ αi
.

Thus, we have

w(0, y, t) =
n∑

i=1

ηi(t)αi exp{−αiy}

where for i = 1, 2, ..., n,
∫ ∞

0

e−δtηi(t)dt =
λ

c

wi
ρ+ αi

.

In the case when n = 2, we thus obtain slightly simpler coefficients than
in the previous subsection, as we have

γ1(δ) + σ1(δ) =
(α−R1)(α−R2)

α(α− β)
=
λ

c

p

α+ ρ

and

γ2(δ) + σ2(δ) = −
(β −R1)(β −R2)

β(α− β)
=
λ

c

q

β + ρ
.

We remark that these last two equalities also lead to formula (6) (allowing
for the different premium rate).

3 Dividends under a constraint

In this section we turn our attention to the expected present value of dividend
payments subject to a ruin probability constraint. We motivate the problem
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in the following way. Suppose that the insurer is not paying dividends and
has an initial surplus which gives a ruin probability below a regulated level
(e.g. the regulated level is 1%, and the insurer’s initial surplus, u, is such
that ψ(u) = 0.005). Then the insurer is in a position to pay dividends to
shareholders and still satisfy the regulations on ruin probability. For example,
for u such that ψ(u) = 0.005, there is a set of pairs of dividend rate and
threshold that result in a ruin probability of 0.01. Our objective is then to
find the optimal pair, where optimal means that the expected present value
of dividend payments is maximised, subject to the constraint on the ruin
probability. We will use the notation ψ(u, b) to denote the ultimate ruin
probability when the dividend threshold is b.

Our aim here is not to derive explicit solutions for optimal levels. Indeed,
it is not clear that this is possible, even in the simplest situation (exponential
claims). Rather we wish to investigate the effect of the constraint, and so all
results presented in this section have been obtained numerically, using the
software Mathematica. Ruin probabilities when dividends are payable have
been calculated using results given in Dickson (1991).

As a first illustration, let us consider the case when the claim amount
distribution is exponential with mean 1. We set λ = 1 and δ = 0.001, so that
we can think of this as a force of interest of 10% per annum with 100 claims
expected per annum. Now suppose that the premium is calculated with a
20% loading, and that u = 30.7 so that ψ(u) = 0.005 (using the well-known
formula for ψ in this case). Let us further suppose that the insurer is subject
to a regulated ruin probability of ε = 0.01.

In this situation, we find that the optimal combination of b and ĉ such
that ψ(u, b) = 0.01 is b# = 49.1 and ĉ# = 0.1912, giving V (u, b#) = 153.76.
Let us compare this with two other scenarios, under each of which the insurer
is not subject to a ruin probability constraint. First, suppose that the insurer
selects the optimal level of dividends, ĉ# = 0.1912. Then, by formula (5),
the optimal threshold is b∗ = 27.11, giving V (u, b∗) = 166.46 and ψ(u, b∗) =
0.167. Second, suppose that the insurer simply elects to maximise V (u, b)
subject to the constraint c−ĉ ≥ λµ. Then the optimal threshold is b̄ = 27.96,
the optimal dividend rate is c̄ = 0.2, V (u, b̄) = 170.5, and ψ(u, b̄) = 1.

Looking at these numbers, we can see that in the first case, for the same
rate of dividend payment, the relaxation of the ruin probability constraint
has produced about an 8% increase in the expected present value of dividend
payments, but the ruin probability has increased by a factor of almost 17.
The second change results in about an 11% increase in the expected present
value of dividend payments, while the ruin probability has increased by a
factor of 100.

Table 1 shows results for a range of scenarios, labelled (A) to (G). In
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Scenario c δ u ψ(u) ε V (u, b#) b# ĉ#

(A) 1.1 0.001 57.23 0.005 0.01 58.30 77.66 0.0866
(B) 1.2 0.001 30.70 0.005 0.01 153.76 49.10 0.1912
(C) 1.3 0.001 21.82 0.005 0.01 253.23 38.14 0.2933
(D) 1.1 0.001 49.61 0.01 0.025 60.64 65.49 0.0867
(E) 1.1 0.001 49.61 0.01 0.05 66.96 54.68 0.0870
(F) 1.1 0.002 57.23 0.005 0.01 23.88 70.38 0.0769
(G) 1.1 0.003 57.23 0.005 0.01 14.12 65.83 0.0688

Table 1: Optimal levels and expected present values.

this table, the optimal threshold (b#) and dividend rate (ĉ#) are shown for a
given level of ruin probability (ε), together with the expected present value of
dividend payments. In Table 2 we show the optimal threshold b∗, calculated
by formula (5) when the dividend rate is ĉ# (from Table 1), together with
the resulting expected present value of dividend payments (V (u, b∗)) and ruin
probability (ψ(u, b∗)). In Table 3 we show the optimal values of the threshold
(b̄) and the dividend rate (c̄) when the objective is simply to maximise the
expected present value of dividend payments subject to the constraint c− ĉ ≥
λµ. The maximum expected present value is shown (V (u, b̄)) along with the
ruin probability (ψ(u, b̄)).

Scenario u b∗ V (u, b∗) ψ(u, b∗)

(A) 57.23 24.34 79.12 0.293
(B) 30.70 27.11 166.46 0.167
(C) 21.82 25.02 260.90 0.099
(D) 49.61 24.36 76.65 0.325
(E) 49.61 24.41 76.82 0.330
(F) 57.23 11.84 37.04 0.237
(G) 57.23 5.55 22.54 0.167

Table 2: Levels assuming dividend payments at rate ĉ#.

Considering first Table 1, we see that the optimal dividend rate is fairly
close to the premium loading factor θ when δ = 0.001, but not for the other
values of δ. Indeed, both ĉ# and b# decrease as δ increases. We also note
that in each scenario, the optimal threshold is above u.

In Table 2, we observe that the ruin probabilities are much higher than
the corresponding ε values in Table 1, and an increase in either the premium
rate (scenarios (A) to (C)) or the force of interest (scenarios (A), (F) and (G))
results in a reduced ruin probability. As formula (5) for b∗ is independent

13



Scenario u b̄ c̄ V (u, b̄) ψ(u, b̄)

(A) 57.23 26.82 0.1 87.54 1
(B) 30.70 27.96 0.2 170.50 1
(C) 21.82 25.48 0.3 263.99 1
(D) 49.61 26.82 0.1 84.20 1
(E) 49.61 26.82 0.1 84.20 1
(F) 57.23 15.01 0.1 46.39 1
(G) 57.23 9.24 0.1 31.88 1

Table 3: Levels under the constraint c− ĉ ≥ λµ.

of u, there is no relationship between the threshold and initial surplus as
there is in Table 1. In each scenario the expected present value of dividend
payments is greater than in Table 1, since b∗ is the optimal threshold.

In Table 3 we see that the optimal dividend level is always equal to the
premium loading factor, which results in certain ruin. The expected present
value of dividend payments is greater under each scenario than in Table 2,
and hence under Table 1.

Thus, the changes as we move from Table 1 to Table 3 result in both
increased ruin probabilities and increased expected present values of dividend
payments. Scenario (C) is perhaps the most interesting. Here we see that
the expected present values in Tables 2 and 3 are respectively 3% and 4.2%
greater than in Table 1, while the ruin probabilities have increased by factors
of 9.9 and 100. It is interesting that relaxing the ruin probability constraint
benefits the shareholders so little in this scenario.

As a second illustration, we consider the situation when the claim amount
distribution is a mixed exponential distribution with f(x) = 2

3
(2e−2x) +

1
3

(
1
2
e−x/2

)
so that µ = 1. Table 4 shows values for the same scenarios as in

Table 1, and we observe a similar pattern as in Table 1. However, in this case
the calculations are not as straightforward as those for Table 1. In particular,
the solutions of Lundberg’s fundamental equation do not exist in a neat closed
form as they do when the claim amount distribution is exponential. Table 5
shows the values we obtain when we use De Vylder’s approximation to the
surplus process, resulting from the same simple calculations that produce
Table 1. These approximations are remarkably good, suggesting that in
cases where explicit solutions for V (u, b) exist, at the very least the use of
De Vylder’s approximation provides an excellent indication of the levels of
the optimal pair (b#, ĉ#) and V (u, b#).
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Scenario c δ u ψ(u) ε V (u, b#) b# ĉ#

(A) 1.1 0.001 87.29 0.005 0.01 51.87 111.77 0.0812
(B) 1.2 0.001 47.49 0.005 0.01 143.28 72.31 0.1870
(C) 1.3 0.001 34.17 0.005 0.01 241.42 57.04 0.2897
(D) 1.1 0.001 75.61 0.01 0.025 55.10 93.07 0.0813
(E) 1.1 0.001 75.61 0.01 0.05 63.90 76.34 0.0815
(F) 1.1 0.002 87.29 0.005 0.01 21.14 100.01 0.0682
(G) 1.1 0.003 87.29 0.005 0.01 12.77 92.22 0.0575

Table 4: Optimal levels and expected present values, mixed exponential
claims.

Scenario c δ u ψ(u) ε V (u, b#) b# ĉ#

(A) 1.1 0.001 87.25 0.005 0.01 51.88 111.72 0.0812
(B) 1.2 0.001 47.41 0.005 0.01 143.32 72.20 0.1870
(C) 1.3 0.001 34.07 0.005 0.01 241.52 56.85 0.2898
(D) 1.1 0.001 75.58 0.01 0.025 55.11 93.04 0.0813
(E) 1.1 0.001 75.58 0.01 0.05 63.90 76.32 0.0815
(F) 1.1 0.002 87.25 0.005 0.01 21.14 99.98 0.0683
(G) 1.1 0.003 87.25 0.005 0.01 12.77 92.20 0.0575

Table 5: De Vylder approximations to values in Table 4.

4 Concluding remarks

Although our analysis in Section 2 involved the defective density w(u, y, t)
we did not need to find its explicit form, although we did identify its general
form for the examples considered. It is possible to identify the explicit form
of w(u, y, t) for certain claim amount distributions, particularly when u = 0,
and this will be discussed in a forthcoming manuscript.
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