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Abstract

Two techniques are described for approximating distributions on the positive half-line
by combinations of exponentials. One is based on Jacobi polynomial expansions, and
the other on the log-beta distribution. The techniques are applied to some well-known
distributions (degenerate, uniform, Pareto, lognormal and others). In theory the techniques
yield sequences of combination of exponentials that always converge to the true distribution,
but their numerical performance depends on the particular distribution being approximated.
An error bound is given in the case the log-beta approximations.
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1. Introduction

The exponential distribution simplifies many calculations, for instance in risk theory, queueing
theory, and so on. Often, combinations of exponentials also lead to simpler calculations, and, as
a result, there is an interest in approximating arbitrary distributions on the positive half-line by
combinations of exponentials. The class of approximating distributions considered in this paper
consists in those with a distribution function F which can be written as

1 − F (t) =
n∑
k=1

aje
−λjt, t ≥ 0, λj > 0, j = 1, . . . , n, 1 ≤ n < ∞.

When aj > 0, j = 1, . . . , n, this distribution is a mixture of exponentials (also called a “hyper-
exponential” distribution); in this paper, however, we allow some of the aj to be negative. The class
we are considering is then a subset of the rational family of distributions (also called the matrix-
exponential family, or Cox family), which comprises those distributions with a Laplace transform
which is a rational function (a ratio of two polynomials). Another subset of the rational family is the
class of phase-type distributions (Neuts, 1981), which includes the hyper-exponentials but not all
combinations of exponentials. There is an expanding literature on these classes of distributions, see
Asmussen & Bladt (1997) for more details and a list of references. For our purposes, the important
property of combinations of exponentials is that they are dense in the set of probability distributions
on [0,∞).

The problem of fitting distributions from one of the above classes to a given distribution is far
form new; in particular, the fitting of phase-type distributions has attracted attention recently, see
Asmussen (1997). However, this author came upon the question in particular contexts (see below)
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where combinations of exponentials are the ideal tool, and where there is no reason to restrict the
search to hyper-exponentials or phase-type distributions. Known methods rely on least-squares,
moment matching, and so on. The advantage of the methods described in this paper is that they
apply to all distributions, though they perform better for some distributions than for others. For a
different fitting technique and other references, see the paper by Feldmann & Whit (1998); they fit
hyper-exponentials to a certain class of distributions (a subset of the class of distributions with a
tail fatter than the exponential).

The references cited above are related to queueing theory, where there is a lot of interest in
phase-type distributions. However, this author has come across approximations by combinations of
exponentials in relation to the following three problems.

Risk theory. It has been known for some time that the probability of ruin is simpler to compute
if the distribution of the claims, or that of the inter-arrival times of claims, is rational, see Dufresne
(2001) for details and references. The simplifications which occur in risk theory have been well-
known in the literature on random walks (see, for instance, the comments in Feller (1971)) and are
also related to queueing theory.

Convolutions. The distribution of the sum of independent random variables with a lognormal
or Pareto distribution is not known in simple form. Therefore, a possibility is to approximate the
distribution of each of the variable involved by a combination of exponentials, and then proceed
with the convolution, which is a relatively straightforward affair with combinations of exponentials.
This idea is explored briefly in Section 7.

Financial mathematics. Suppose an amount of money is invested in the stock market and is
used to pay an annuity to a pensioner. What is the probability that the fund will last until the pensioner
dies? The answer to this question is known in closed form if the rates of return are lognormal and
the lifetime of the pensioner is exponential; this is due to Yor (1992), see also Dufresne (2005). In
practice, however, the duration of human life is not exponentially distributed, and the distribution
of the required “stochastic life annuity” can be found by expressing the future lifetime distribution
as a combination of exponentials. The methods presented below are used to solve this problem in
a separate paper (Dufresne, 2004a).

Here is the layout of the paper. Section 2 defines the Jacobi polynomials and gives some of their
properties, while Section 3 shows how these polynomials may be used to obtain a convergent series
of exponentials that represents a continuous distribution function exactly. In many applications it is
not necessary that the approximating combination of exponentials be a true probability distribution,
but in other cases this would be a problem. Two versions (A and B) of the method are described;
method A yields a convergent sequence of combinations of exponentials which are not precisely
density functions, while method B produces true density functions. A different idea is presented in
Section 4. It is shown that sequences of log-beta distribution converge to the Dirac mass, and that
this can be used to find a different sequence of combinations of exponentials which converges to
any distribution on a finite interval.

Sections 5 and 6 apply the methods described to the approximation of the some of the usual
distributions: degenerate, uniform, Pareto, lognormal and Makeham and others. The Pareto and
lognormal are fat-tail distributions, while the Makeham (used by actuaries to represent future
lifetime) has a thin tail. The performance of the methods is discussed in those sections and in the
Conclusion. Section 7 shows how the results of Section 3 may be applied to approximating the
distribution of the sum of independent random variables.
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Notation and vocabulary. The cdf of a probability distribution is its cumulative distribution
function, the ccdf is the complement of the cdf (one minus the cdf), and the pdf is the probability
density function. An atom is a point x ∈ R where a measure has positive mass, or, equivalently,
where its distribution function has a discontinuity. A Dirac mass is a measure which assigns mass
1 to some point x, and no mass elsewhere; it is denoted δx(·). The “big oh” notation has the usual
meaning

an = O(bn) if lim
n→∞

an
bn

exists and is finite.

Finally, (z)n is Pochhammer’s symbol:

(z)0 = 1, (z)n = z(z + 1) · · · (z + n− 1), n ≥ 1.

2. Jacobi polynomials

The Jacobi polynomials are usually defined as

P (α,β)
n (x) =

(α + 1)n
n! 2F1

(
−n, n + α + β + 1, α + 1;

1 − x

2

)
, n = 0, 1, . . . ,

for α, β > −1. These polynomials are othogonal over the interval [−1, 1], for the weight function

(1 − x)α(1 + x)β .

We will use the “shifted” Jacobi polynomials, which have the following equivalent definitions, once
again for α, β > −1:

R(α,β)
n (x) = P (α,β)

n (2x− 1)

=
(α + 1)n

n! 2F1 (−n, n + α + β + 1, α + 1; 1 − x)

= (−1)n
(β + 1)n

n! 2F1 (−n, n + α + β + 1, β + 1;x)

=
(−1)n

n!
(1 − x)−αx−β dn

dxn
[(1 − x)α+nxβ+n]

=
n∑
j=0

ρnjx
j ,

where

ρnj =
(−1)n(β + 1)n(−n)j(n + λ)j

(β + 1)jn!j!
, λ = α + β + 1.

The shifted Jacobi polynomials are orthogonal on [0, 1], for the weight function

w(α,β)(x) = (1 − x)αxβ .

The following result is stated in Luke (1969, p.284) (the result is given there in terms of the
{P (α,β)

n (x)}, but we have rephrased it in terms of the {R(α,β)
n (x)}).
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Theorem 2.1. Ifφ(x) is continuous in the closed interval 0 ≤ x ≤ 1 and has a piecewise continuous
derivative, then, for α, β > −1, the Jacobi series

φ(x) =
∞∑
n=0

cnR
(α,β)
n (x), cn =

1
hn

∫ 1

0

φ(x)(1 − x)αxβR(α,β)
n (x) dx

hn =
∫ 1

0

(1 − x)αxβR(α,β)
n (x)2 dx =

Γ(n + α + 1)Γ(n + β + 1)
(2n + λ)n!Γ(n + λ)

,

converges uniformly to f(x) in ε < x < 1 − ε, 0 < ε < 1.

This means that the Fourier series

sN (x) =
N∑
n=0

cnR
(α,β)
n (x)

converges to f(x) as N → ∞, for all x in (0, 1). In the case of functions with discontinuities the
limit of the series is

1
2
[f(x−) + f(x+)],

see Chapter 8 of Luke (1969) for more details. Another classical result is the following (see Higgins,
1977).

Theorem 2.2. If φ ∈ L2((0, 1), w(α,β)), that is, if φ is measurable and

∫ 1

0

φ2(x)w(α,β)(x) dx < ∞,

then sN converges in L2((0, 1), w(α,β)) and

lim
N→∞

‖φ− sN‖L2((0,1),w(α,β)) = 0.

3. Fitting combinations of exponentials to using Jacobi polynomials

Method A: direct Jacobi approximation of the ccdf

The goal of this section is to approximate the complement of the distribution function by a
combination of exponentials:

F (t) = 1 − F (t) = P(T > t) ≈
∑
j

aje
−λjt, t ≥ 0. (3.1)

This can be attempted in many ways, for instance by matching moments. What we suggest is to
transform the function to be approximated in the following way:

g(x) = F
(
− 1

r
log(x)

)
, 0 < x ≤ 1, g(0) = 0,
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where r > 0. We have thus mapped the interval [0,∞) onto (0, 1], t = 0 corresponding to x = 1,
and t → ∞ corresponds to x → 0+; since F (∞) = 0, it is justified to set g(0) = 0. If we find
constants α, β, p and {bk} such that (informally)

g(x) = xp
∑
k

bkR
(α,β)(x), 0 < x ≤ 1,

then
F (t) = e−prt

∑
k

bk
∑
j

ρkje
−jrt =

∑
j

( ∑
k

bkρkj

)
e−(j+p)rt, t ≥ 0. (3.2)

This expression agrees with (3.1), if λj = (j + p)r, j = 0, 1, 2, . . . (The interchange of summation
order is justified for finite sums, but not necessarily for infinite ones.) Classical Hilbert space theory
says that the constants {bk} can be found by

bk =
1
hk

∫ 1

0

x−pg(x)R(α,β)
k (x)(1 − x)αxβ dx

=
r

hk

∫ ∞

0

e−(β−p+1)rt(1 − e−rt)αR(α,β)
k (e−rt)F (t) dt. (3.3)

This is a combination of terms of the form∫ ∞

0

e−(β−p+j+1)rt(1 − e−rt)αF (t) dt, j = 0, 1, . . . , k.

The reason for using some p > 0 is that it automatically gets rid of any constant which would
otherwise appear in the series. If α = 0, then this integral is the Laplace transform of F (·), which
may be expressed in terms of the Laplace transform of the distribution of T :

∫ ∞

0

e−νtF (t) dt = −1
ν

∫ ∞

0

F (t) de−νt =
1
ν

[1 − Ee−νT ], ν > 0. (3.4)

The next result is an immediate consequence of Theorem 2.1.

Theorem 3.1. Suppose α, β > −1, that F (·) is continuous on [0,∞), and that the function

eprtF (t) (3.5)

has a finite limit as t tends to infinity for some p ∈ R (this is always verified if p ≤ 0). Then the
integral in (3.3) converges for every k ∈ N and

F (t) = e−prt
∞∑
k=0

bkR
(α,β)
k (e−rt) (3.6)

for every t in (0,∞), and the convergence is uniform over every interval [a, b], for 0 < a < b < ∞.

Not all distributions satisfy the condition that the limit of (3.5) exists for some p > 0. The next
result, a consequence of Theorem 2.2, does not need this assumption.
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Theorem 3.2. Suppose α, β > −1 and that for some p ∈ R and r > 0

∫ ∞

0

e−(β+1−2p)rt(1 − e−rt)αF (t)2 dt < ∞

(this is always true if p < β + 1)/2). Then

lim
N→∞

∫ ∞

0

[
F (t) − e−prt

N∑
k=0

bkR
(α,β)(e−rt)

]2

e−(β+1−2p)rt(1 − e−rt)α dt = 0,

and (3.6) holds almost everywhere, with {bk; k ≥ 0} given by (3.3).

For the purpose of approximating probability distributions by truncating the series, we will
restrict our attention to 0 < p < (β + 1)/2 (this ensures that the truncated series for F (t) tends to
0 as t → ∞).

One disadvantage of the method just described is that if only a finite number of terms of (3.2)
are used, then the resulting approximation of F (t) is in general not a true distribution function. The
function may be smaller than 0 or greater than 1 in places, or it might decrease over some intervals.
For the cases where a true distribution function is needed, an alternative technique will now be
presented.

Method B: Modified Jacobi approximations which are true distribution functions

This alternative method applies only to distributions which have a density f(·). It consists
in (1) fitting a combination of exponentials to the square root of the density; (2) squaring it; (3)
rescaling it so it integrates to 1. We thus consider an expansion of the type

√
f(t) = e−pt

∑
j

ajλje
−λjt.

The square of this expression is also a combination of exponentials. The following application of
Theorem 2.2 is immediate.

Theorem 3.3. Suppose α, β > −1, p ∈ R, r > 0, and that f(·) is the density of a random variable
T ≥ 0. Suppose moreover that

(i) E e−(β+1−2p)T < ∞. This is always satisfied if p ≤ (β + 1)/2.

(ii) E (T ∧ 1)α < ∞. This is always satisfied if α ≥ 0.

Then √
f(t) = e−prt

∞∑
k=0

bkR
(α,β)
k (e−rt)

almost everywhere, with

bk =
r

hk

∫ ∞

0

e−(β−p+1)rt(1 − e−rt)αR(α,β)
k (e−rt)

√
f(t) dt, k = 0, 1, . . .
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When truncated, the series for
√
f may be negative in places, but squaring it yields a combi-

nation of exponentials which is everywhere non-negative. It then only needs to be multiplied by the
right constant (one over its integral) to become a true density function.

Examples are given in Section 5. Observe that the integral of the squared truncated series may
not converge to one. The usual L2 results (e.g. Higgins, 1977), say that the norm of the truncated
series converges to the norm of the limit, which in this case means that, if we let

φN (t) = e−prt
N∑
k=0

bkR
(α,β)
k (e−rt),

be the (N + 1)-term approximation of
√
f , then

lim
N→∞

∫ ∞

0

φN (t)2e−(β+1−2p)rt(1 − e−rt)α dt =
∫ ∞

0

f(t)e−(β+1−2p)rt(1 − e−rt)α dt.

Only in the case where β + 1 − 2p = α = 0 does this guarantee that the integral of φ2
N tends to 1.

A variation on the same theme consists in finding a combination of exponentials which ap-
proximates

g(t) =
∫ ∞

t

√
f(s) ds,

differentiate with respect to t and then square as before (provided of course that the integral above
converges). The advantage is that the same computer code may be used as for Method A.

4. Fitting combinations of exponentials using the log-beta distribution

This section considers approximating distributions over a finite interval by combinations of
exponentials. It will be shown that a converging sequence of approximations can be constructed by
starting with any sequence of combinations of exponentials which converges in distribution to a
constant. A convenient sequence of exponentials is obtained from the lobgeta distribution, as will
be seen below.

Suppose the goal is to find a sequence of combination of exponentials which converge to
distribution of a variable T , which takes values in [0, t0] only. Suppose that a sequence {Xn} of
variables with densities which are combinations of exponentials converges in distribtution to t0 as
n → ∞; suppose moreover that {Xn} is independent of T . Then Tn = T + Xn − t0 converges in
distribution to T . Denote the density of Xn by

fXn(t) =
∑
j

a
(n)
j λ

(n)
j e−λ

(n)
j

t1{t>0}.

Each variable Tn thus has a density

fTn
(t) =

∫
fXn

(t− u) dFT−t0(u)

=
n−1∑
j=0

a
(n)
j λ

(n)
j e−λ

(n)
j

t

∫
eλ

(n)
j

u1{u<t} dFT−t0(u)

=
n−1∑
j=0

a
(n)
j λ

(n)
j e−λ

(n)
j

te−λ
(n)
j

t0

∫
eλ

(n)
j

y1{y<t+t0} dFT (y).

7
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The integral in the last expression has the same value for all t ≥ 0 (but not for t < 0). Hence,
fTn

(t) is a combination of exponentials for all t ≥ 0. Since P(Tn < 0) tends to 0 as n increases,
the following result is obtained.

Theorem 4.1. Under the previous assumptions, the distributions with pdf’s equal to the combina-
tions of exponentials

fCn
(t) =

n−1∑
j=0

b
(n)
j λ

(n)
j e−λ

(n)
j

t1{t≥0}, b
(n)
j = a

(n)
j e−λ

(n)
j

t0Eeλ
(n)
j

T /P(Tn ≥ 0)

converge to the distribution of T .

It is possible to find an upper bound for the absolute difference between the true distribution
function of T and distribution function FCn

(·) of the combination of exponentials in Theorem 4.1,
when T has a continuous distribution.

Theorem 4.2. Under the previous assumptions, if it is moreover assumed that T has a pdf fT (·),

sup
z

|FT (z) − FCn(z)| ≤ [sup
t

fT (t)]E|Xn − t0| + FTn(0)

≤ [sup
t

fT (t)] [E(Xn − t0)2]
1
2 + FTn(0).

Proof. First,

|FT (z) − FCn(z)| =
∣∣∣∣FT (z) − FTn(z)

FTn(0)

∣∣∣∣
≤ |FT (z) − FTn(z)| + FTn(z)

(
1 − FTn(0)
FTn(0)

)
≤ |FT (z) − FTn

(z)| + FTn
(0).

Second, let Yn = Xn − t0. Then

|FT (z) − FTn
(z)| = |FT (z) − EFT (z − Yn)|

≤
∫ ∣∣∣∣

∫ z

z−y
fT (u) du

∣∣∣∣ dFYn(y)

≤ [sup
t

fT (t)]
∫

|y| dFYn = [sup
t

fT (t)]E|Yn|.

In applications, the mean of Xn will be close to t0, and FTn(0) will be small, so the error
bound should be close to

[sup
t

fT (t)] (VarXn)
1
2 .

The log-beta family of distributions will now be introduced, because it includes explicit combina-
tions of exponentials which converge to a constant.
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Definition. For parameters a, b, c > 0, the log-beta distribution has density

fa,b,c(x) = Ka,b,ce
−bx(1 − e−cx)a−11{x>0}.

This law is denoted LogBeta(a, b, c).

The name chosen is justified by the fact that

X ∼ LogBeta(a, b, c) ⇔ e−cX ∼ Beta(b/c, a).

The distribution is then a transformed beta distribution that includes the gamma as a limiting case,
since

LogBeta(1, b, c) = Exp(b), lim
c→0+

LogBeta(a, b, c) = Gamma(a, b).

The log-beta distribution is unimodal, just as the beta distribution.

(N.B. It would be possible to define the LogBeta(a, b, c) for a, b > 0 and −b/a < c < 0, since

(1 − e−cx)a−1e−bx = (−1)a−1(1 − ecx)a−1e−(b+ac)x.

is integrable over (0,∞). However, this law would then be identical to the LogBeta(a, b+ac,−c),
and no greater generality would be achieved.)

The next theorem collects some properties of the log-beta distributions; the proof may be found
in the Appendix. The digammma function is defined as

ψ(z) =
1

Γ(z)
d

dz
Γ(z) =

d

dz
log Γ(z).

It is known that (Lebedev, 1972, p.7)

ψ(z) = −γ +
∞∑
k=0

(
1

k + 1
− 1

k + z

)
, (4.1)

where γ is Euler’s constant. The derivatives ψ′(·), ψ′′(·), ψ(3)(·), . . . of the digamma function are
known as the polygamma functions, and can be obtained by differentiating (4.1) term by term.

Theorem 4.3. (Properties of the log-beta distribution) Suppose X ∼ LogBeta(a, b, c), a, b, c > 0.

(a) Ka,b,c =
cΓ( bc + a)
Γ( bc )Γ(a)

.

(b) Ee−sX =
Γ( bc + a)Γ( b+sc )
Γ( b+sc + a)Γ( bc )

, s > −b. Ifκ > 0 and Y = κX , thenY ∼LogBeta(a, b/κ, c/κ).

(c) The cumulants of the distribution are

κn =
(−1)n−1

cn

[
ψ(n−1)

(
b

c
+ a

)
− ψ(n−1)

(
b

c

)]
, n = 1, 2, . . . .

9
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In particular,

EX =
1
c

[
ψ

(
b

c
+ a

)
− ψ

(
b

c

)]
; VarX =

1
c2

[
ψ′

(
b

c

)
− ψ′

(
b

c
+ a

)]

E(X − EX)3 =
1
c3

[
ψ′′

(
b

c
+ a

)
− ψ′′

(
b

c

)]
.

(d) If c > 0 is fixed, b = κa for a fixed constant κ > 0, then

X
d→ x0 =

1
c

log
(
1 +

c

κ

)
as a → ∞.

Moreover,
lim
a→∞

EXk = xk0 , k = 1, 2, . . .

(e) If a = n ∈ N+, then

X
d= Y0 + · · · + Yn−1,

where
Yj ∼ Exp(b + jc), j = 0, . . . , n− 1,

are independent, and

EX =
n−1∑
j=0

1
b + jc

, VarX =
n−1∑
j=0

1
(b + jc)2

, E(X − EX)3 = 2
n−1∑
j=0

1
(b + jc)3

.

(f) If a = n ∈ N+, the density of X is

fn,b,c(x) =
n−1∑
j=0

αjλje
−λjx,

where

αj = c

(
b

c

)
n

(−1)j

j!(n− 1 − j)!(b + jc)
, λj = b + jc, j = 0, . . . , n− 1.

(g) Under the same assumptions as in (d),

X − EX√
VarX

d→ N(0, 1) as a → ∞.

(h) Suppose X1 ∼ LogBeta(a1, b, c) and X2 ∼ LogBeta(a2, b + a1c, c) are independent. Then
X1 + X2 ∼ LogBeta(a1 + a2, b, c)
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Corollary 4.4. For n ∈ N+ and any fixed κ, c, y0 > 0, the LogBeta(n, nκx0/y0, cx0/y0) dis-
tribution has a pdf which is a combination of exponentials, and it tends to δy0 as n → ∞, if
x0 = log(1 + c/κ)/c. The same holds if x0 is replaced with the mean of the LogBeta(n, nκ, c)
distribution.

Remark. The classical result that combinations of exponentials are dense in the set of distri-
butions on R+ may thus be proved as follows: approximate the given distribution by a discrete
distribution with a finite number of atoms; then approximate each atom by a log-beta distribution
as in Corollary 4.4.

Section 6 applies Corollary 4.4 to some of the usual distributions. It is possible to be a little
explicit about the maximum error made by using the combination of exponentials obtained (see
Theorem 4.2). The proof of the next result is in the Appendix.

Theorem 4.5. Suppose Xn ∼ LogBeta(n, nκx0/t0, cx0/t0) as in Corollary 4.4. Then

VarXn ∼ 1
n

t20
x2

0

1
κ(κ + c)

as n → ∞.

If, moreover, the variable T (0 ≤ T ≤ t0) has a pdf FT (·), and ET−p < ∞ for some p > 1, then
FTn(0) = O(n− p∧2

2 ), and the upper bound in Theorem 4.4 becomes

sup
z

|FT (z) − FCn(z)| ≤ [sup
t

fT (t)] [VarXn]
1
2 + FTn(0) ∼ [sup

t
fT (t)] [VarXn]

1
2 = O(1/

√
n).

Hence, under the assumptions of this theorem, a rule of thumb is that the maximum error is
approximately

1√
n

[sup
t

fT (t)]
t0
x0

1√
κ(κ + c)

.

5. Examples of Jacobi approximations

We apply the ideas above to some parametric distributions. The analysis focuses on the cdf or
ccdf, rather than on the pdf.

For Methods A and B some trial and error is required to determine “good” parameters α,
β, p and r. All the computations were performed with Mathematica. It is not suggested that the
particular approximations presented are the best in any sense. In the case of continuous distributions,
a measure of the accuracy of an approximation F̂ of a distribution function F is the maximum of
the difference between the true distribution function F and an approximation F̂ , which we denote

‖F − F̂‖ = sup
t≥0

|F (t) − F̂ (t)|.

Some of the low-order approximations are shown in graphs, as their larger errors make the curves
distinguishable.
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Example 5.1. The degenerate distribution at x = 1

In this case the Jacobi polynomials lead to highly oscillatory approximations. This can be seen
in Figure 1. The log-beta approximations do better, but at the cost of a larger number of exponentials.
See next section.

Example 5.2. The uniform distribution

This is not known to be the easiest distribution to approximate by exponentials. Figure 2 shows
the ccdf of the U(1, 2) distribution, as well as two approximations found for it using method A. The
parameters used are

α = 0, β = 0, r = .7, p = .1.

The 3-term approximation of the ccdf is (Method A) is

F
A

3 (t) = −0.364027e−0.07t + 3.497327e−0.77t − 2.137705e−1.47t

and is not good. The 10-term approximation does better. Both approximations are sometimes smaller
than 0, sometimes greater than 1, and sometimes increasing, all things that a ccdf should not do.
The accuracies do improve with the number of terms used:

‖F − FA
3 ‖ = .31, ‖F − FA

5 ‖ = .16, ‖F − FA
10‖ = .065, ‖F − FA

20‖ = .038.

Method B is illustrated in Figure 3. In this particular case there is a very convenient simplification,
since

√
f = f. The same Jacobi approximation is thus used for

√
f . Differentiating F 3, squaring

and rescaling yields

F
B

5 (t)
= 0.01014e−0.14t − 0.357203e−.84t + 10.522656e−1.54t − 16.518849e−2.24t + 7.343256e−2.94t.

There are now 2 × 3 − 1 = 5 distinct frequencies λj . Some of the maximum errors observed are:

‖F − FB
3 ‖ = .8, ‖F − FB

5 ‖ = .26, ‖F − FB
11‖ = .28, ‖F − FB

21‖ = .11.

The B approximations are all true distributions (here the 11-term B approximation happens to be a
little worse than the 5-term). The 5-term B approximation does slightly better than than the 3-term
A approximation, although it is really based on the same 3-term Jacobi polynomial. However, the
5-term A approximation has better precision, although it is not a true ccdf.

Overall, the Jacobi approximation is not terribly efficient for the uniform distribution, as the
maximum errors above show. The graphs also reveal that the cdf (and therefore pdf) oscillates
significantly. Other computations also indicate that the accuracy of the approximation varies with
the interval chosen for the uniform distribution. The log-beta approximations are much smoother,
see Section 6.

Example 5.3. The Pareto distribution

The tail of the Pareto distribution is heavier than that of a combination of exponentials, and it is
not obvious a priori that the approximations we are considering would perform well. We consider
a Pareto distribution with ccdf

F (t) =
1

1 + t
, t ≥ 0.

12
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Figure 4 compares the 3 and 5-term A approximations for the ccdf, while Figure 5 shows the same
3-term A approximation against the 5-term B approximation. The parameters are

α = 0, β = 0, r = .1, p = .1.

The accuracy increases with the number of terms used:

‖F − FA
3 ‖ = .31, ‖F − FA

5 ‖ = .12, ‖F − FA
10‖ = .006, ‖F − FA

20‖ = .0015.

Finding the B approximations was easy, because the square root of the pdf of this distribution is
precisely its CDF, so the same Mathematica code could be used. The same parameters α, β, r and
p were used, and produced:

‖F − FB
3 ‖ = .31, ‖F − FB

5 ‖ = .24, ‖F − FB
11‖ = .018, ‖F − FB

21‖ = .0038.

Example 5.4. The lognormal distribution

The lognormal distribution has a tail which is heavier than the exponential, but lighter than
the Pareto. This may explain why combinations of exponentials appear to do a little better with the
lognormal than with the Pareto (see Figures 6 and 7). The parameters of the lognormal are 0 and
.25 (meaning that the logarithm of a variable with this distribution has a normal distribution with
mean 0 and variance .25). The first parameter of the lognormal has no importance (it only affects
the scale of the distribution), but the numerical experiments performed appear to show that smaller
values of the second parameter lead to worse approximations.

Figure 6 shows that the 3-term approximation does not do well at all, but that the 5-term is
quite good (the exact and approximate may be difficult to distinguish). The parameters used are

α = 0, β = .5, r = 1, p = .2,

and some of the precisions obtained are

‖F −FA
3 ‖ = .11, ‖F −FA

5 ‖ = .014, ‖F −FA
10‖ = .0003, ‖F −FA

20‖ = 1.5× 10−6.

The Method B approximations were found by first noting that the square root of the pdf of the
Lognormal(µ, σ2) distribution is a constant times the pdf of a Lognormal(µ + σ2, 2σ2):

[
1

xσ
√

2π
e−(log(x)−µ)2/(2σ2)

]1/2

= (8πσ2)1/4e(σ2+2µ)/4 1
xσ

√
2
√

2π
e−[(log x−(µ+σ2)]2/4σ2

.

It is possible to find an approximating combination of exponentials by computing a Jacobi ex-
pansion for the pdf on the right, or else by finding one for the ccdf of the same distribution, and
then differentiating. The two possibilities were compared, and the differences were minute. It was
therefore decided to adopt the latter approach. The parameters used are

α = 0, β = −.3, r = .7, p = .1,

and some of the results found are

‖F − FB
3 ‖ = .46, ‖F − FB

5 ‖ = .23, ‖F − FB
11‖ = .0065, ‖F − FB

21‖ = .0003.

13
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These are less accurate than the corresponding A approximations, but they do improve as the number
of terms increases. Figure 7 compares the true ccdf with the 5 and 11 term B approximations. Overall,
the approximations did better for the lognormal than for the Pareto in the specific cases chosen, but
no general conclusion can be made based on two specific cases.

Example 5.5. The Makeham distribution

This distribution is used to represent the lifetime of insureds. It has failure rate

µx = A + Bcx.

We chose the parameters used in Bowers et al. (1997, p.78):

A = .0007, B = 5 × 10−5, c = 10.04.

Figure 8 shows how the 3 and 7-term approximations do. The parameters chosen were

α = 0, β = 0, r = .08, p = .2,

and higher degree Jacobi approximations have accuracies

‖F − FA
3 ‖ = .08, ‖F − FA

5 ‖ = .04, ‖F − FA
10‖ = .0065, ‖F − FA

20‖ = .00024.

The accuracy is worse than with the lognormal. An explanation may be that the tail of the Makeham
is much thinner than that of the exponential.

6. Examples of log-beta approximations

Example 6.1. The degenerate distribution at x = 1

Figure 9 shows two log-beta approximations for a Dirac mass at x = 1. The combinations of
exponentials used are the LogBeta(n, nκ, c) distribution with n = 20 and 200, c = .1 and κ =
.1/(e.1−1). The approximate ccdf’s are very smooth, by comparison with the Jacobi approximations
(Figure 1).

Example 6.2. The uniform distribution

The pdf and ccdf of some log-beta approximations for the U(1, 2) distribution are shown
in Figures 10 and 11. The LogBeta(n, nκ, c) distribution with n = 20 and 200, c = .1 and
κ = .1/(e.2−1) was used. The approximations do not oscillate at all, as the Jacobi approximations
do (Figures 2 and 3). The precisions attained were

‖FT − FC20‖ = .178, ‖FT − FC200‖ = .0567.

The error bounds given by Theorem 4.2 are 0.451 and 0.142, respectively. In this case, ET−p < ∞
for any p, and P(Tn < 0) (which is a term in the error bound in Theorem 4.2) tends to 0 very

14
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quickly: P(T20 < 0) = .000265, while P(T200 < 0) is of the order of 10−9. The asymptotic
expression for VarXn (Theorem 4.5) is extremely good here:

VarX20 = 0.202698,
1
20

1
κ(κ + c)

= 0.200668

VarX200 = 0.020087,
1

200
1

κ(κ + c)
= 0.0200668.

Example 6.3. Squared sine distribution

In order to test this method for a density which may not be as friendly as the previous two,
consider the pdf

fT (t) = 2 sin2(2πt)1(0,1)(t).

The LogBeta(n, nκ, c) distribution withn = 20 and 200, c = .1 and κ = .1/(e.1−1) was used.The
results are shown in Figures 12 and 13. The precisions were

‖FT − FC20‖ = .125, ‖FT − FC200‖ = .0296.

The error bounds given by Theorem 4.2 are .521 and .142, respectively. In this case ET−2 < ∞,
P(T20 < 0) = 0.0725, and P(T200 < 0) = .00590. The asymptotic expression forVarXn (Theorem
4.5) is excellent in this case too:

VarX20 = 0.0502929,
1
20

1
κ(κ + c)

= 0.0500417

VarX200 = 0.00500667,
1

200
1

κ(κ + c)
= 0.00500417.

7. Application to sums of independent variables

Textbook examples of explicit distributions of sums of independent random variables are the
normal and the gamma distributions, in the latter case only if the scale parameters are the same.
In applications, however, convolutions of other distributions routinely appear, and some numerical
technique is needed to approximate the distribution of the sum of two random variables. This explains
why numerical convolutions (or simulations) are often required. The convolutions of combinations
of exponentials being relatively easy to calculate, one might ask whether the approximations of
Section 5 could be used to approximate convolutions of distributions.

Table 1 presents the results of some experiments performed with the lognormal distribution.
The exact distribution function of the sum of two independent logormal distributions with first
parameter 0 and second parameter σ2 was computed numerically, as well as itsN -term combination
of exponentials approximation (the convolution of the approximation found as in Section 5). The
last colum shows the maximum difference between the distribution functions. It is interesting to
note that under Method A the error for the convolution is very nearly double what it is for the
original distribution, while under Method B the two errors are about the same. This author does not
have a good explanation for this difference between the methods, and does not know whether the
same holds more generally. More work is required here.
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Another possible technique is the following. Section 3 showed that when α = 0 the Fourier
coefficients are a weighted sum of the Laplace transform of the ccdf of the distribution (see (3.3)).
The latter is given by (3.4). Hence, the Jacobi expansion for the ccdf of the convolution of prob-
ability distributions may be found directly form the Laplace transforms of each of the indvidual
distributions, since

E e−µ(T1+···+Tm) =
m∏
k=1

E e−µTk .

For more on sums of lognormals, the reader is referred to Dufresne (2004b).

Table 1

Accuracy of convolutions of lognormals

σ2 Approx. N terms ‖F − FN‖ ‖F ∗2 − F ∗2
N ‖

1 A 3 .050 .102
1 A 7 .018 .037
1 A 11 .003 .006

.25 A 3 .105 .204

.25 A 7 .004 .008

.25 A 11 .00025 .0005

.25 B 5 .223 .205

.25 B 9 .050 .051

.25 B 13 .0015 .001

Conclusion

Two advantages of the Jacobi Methods A and B presented are, first, their simplicity, and,
second, the fact that all what is needed is the Laplace transform of the distribution at a finite number
of points. Two disadvantages may be mentioned. First, although the sequence converges to the true
value of the distribution function at all its continuity points, the truncated series under Method
A is in general not a true distribution function. Second, distributions which have atoms are more
difficult to approximate. A numerical problem which arises with these methods is the magnitude
of the Fourier coefficents as the order of the approximation increases; for instance, some 20-term
approximations have been seen to include coefficients of the order of 1025.

For completely monotone distributions, there is an alternative method, presented in Feldmann
& Whit (1998) (but going back to de Prony (1795)) which yields a hyper-exponential approximation
(this technique applies to some Weibull distributions and to the Pareto distribution, but not to the
lognormal or uniform). The coefficients of a hyper-exponential being all positive, they necessarily
must all be small.

The log-beta family includes explicit sequences which are combinations of exponentials and
also converge to the Dirac mass at any y0 ≥ 0; as shown in Section 4, this leads to a technique
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for approximating any distribution on a finite interval by combinations of exponentials. These
approximations do not have the oscillatory behaviour of the Jacobi approximations. The examples
in Section 6 show that it is possible to use log-beta combinations of exponentials of fairly high order
(the author has usedn = 600 in some cases) without incurring numerical difficulties. The precisions
achieved are modest, by comparison with the Jacobi methods. I have found, however, that the log-
beta method required far less trial and error than the Jacobi methods. The main disadvantage of
the log-beta approximations is that they apply only to distributions over a finite interval. A positive
point is, however, that there is a simple, computable error bound (Theorems 4.2 and 4.5) for the log-
beta approximations. Another advantage is that the log-beta approximating pdf’s are automatically
positive everywhere.

APPENDIX: PROOFS OF THEOREMS 4.3 AND 4.5

Proof of Theorem 4.3. Parts (a) and (b) follow from (if s > −b)

∫ ∞

0

e−(b+s)x(1 − e−cx)a−1 dx =
1
c

∫ 1

0

u
b+s

c −1(1 − u)a−1 du =
Γ( b+sc )Γ(a)
cΓ( b+sc + a)

.

Part (c) is obtained by differentiating the logarithm of Laplace transform in the usual way.

To prove the convergence in distribution in (d), one approach is to recall that e−cX has a beta
distribution, which yields exlicit formulas for the mean and variance of that variable. The mean
equals κ/(c+ κ), and the variance tends to 0. Alternatively, use the formula (Lebedev, 1972, p.15)

Γ(z + α)
Γ(z + β)

= zα−β
[
1 +

(α− β)(α + β − 1)
2z

+ O(|z|−2)
]

as |z| → ∞,

where α and β are arbitrary constants and | arg z| ≤ π − δ, for some δ > 0. It can be seen that it
implies

lim
a→∞

E e−sX = lim
a→∞

Γ(κac + a)Γ(κa+sc )
Γ(κa+sc + a)Γ(κac )

=
(

κ

κ + c

) s
c

for all s ∈ R. The convergence of moments results from the convergence of cumulants, which itself
is a consequence of the expression in (c) together with the asymptotic formulas (Abramowitz &
Stegun, 1972, Chapter 6):

ψ(z) ∼ log(z) − 1
2z

− 1
12z2

+ . . .

ψ(n)(z) ∼ (−1)(n−1)

[
(n− 1)!

zn
+

n!
2zn+1

+ . . .

]
, n = 1, 2, . . .

(A.1)

(valid as z → ∞ if | arg z| < π).

Next, turn to (e). If a = n ∈ N+, then

Ee−sX =

(
b
c

)
n(

b+s
c

)
n

=
b

b + s

b + c

b + c + s
· · · b + (n− 1)c

b + (n− 1)c + s
.
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This proves the representation of X as the sum of independent exponential variables. The mean,
variance and third central moment then follow by the additivity of cumulants, or else by using (4.1)
and part (c) of this theorem.

The expression in (f) is found by expanding the density using the binomial theorem.

To prove (g), first observe that, using (b), given κ > 0,

X ∼ LogBeta(a, κa, c) ⇔ κX ∼ LogBeta(a, a, c/κ).

It is then sufficient to prove the result for κ = 1. First let a = n ∈ N, and express X as

X
d= Yn,0 + · · · + Yn,n−1,

where the variables on the right are independent, and Yn,j ∼ Exp(n + jc). We will use the
Lyapounov central Limit Theorem (Billingsley, 1987, p.371), which says that the normal limit
holds if

lim
n→∞

1
S2+δ
n

n−1∑
j=0

E|Yn,j − EYn,j |2+δ = 0 (A.2)

for some δ > 0, with

S2
n =

n−1∑
j=0

VarYn,j .

Let δ = 2. If Y ∼Exp(1), then

VarY = 1, E(Y − 1)4 = 9.

This means that

VarYn,j =
1

(n + jc)2
, E(Yn,j − EYn,j)4 =

9
(n + jc)4

.

Then

S2
n ≥ 1

n(1 + c)2
,

n−1∑
j=0

E(Yn,j − EYn,j)4 ≤ 9
n3

,

which implies (A.2). For arbitrary a, let n = �a�, r = a− n, and note that

E e−sX =


n−1∏
j=0

a + (r + j)c
a + (r + j)c + s


 Γ(ac + r)Γ(a+sc )

Γ(a+sc + r)Γ(ac )
.

Hence,
X

d= Ya,0 + · · · + Ya,n−1 + Ya,n,

where Ya,j ∼Exp(b + (r + j)c), j = 0, . . . , n− 1, and Ya,n ∼ LogBeta(r, a, c). The Lyapounov
central Limit Theorem can again be applied, the only real difference is the additional term Yn,n.
This term does not change the limit, since it can be observed (see (4.1) and part (c)) that

EYa,n <
1
a
, VarYa,n <

1
a2

.
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This implies that

lim
a→∞

Var(Ya,0 + · · · + Ya,n−1)
Var(Ya,0 + · · · + Ya,n)

= 1,
Ya,n − EYa,n√

Var(Ya,0 + · · · + Ya,n)
d→ 0 as a → ∞.

Hence, including or excluding Yn,n in the normalised expression for X does not change the limit
distribution. Finally, (h) may be seen to follow from writing the product of the Laplace transforms
of X1 and X2:

Γ( bc + a1)Γ( b+sc )
Γ( b+sc + a1)Γ( bc )

× Γ( bc + a1 + a2)Γ( b+sc + a1)
Γ( b+sc + a1 + a2)Γ( bc + a1)

=
Γ( bc + a1 + a2)Γ( b+sc )
Γ( b+sc + a1 + a2)Γ( bc )

,

or else may be obtained by performing the convolution explicitly: for y > 0,∫ y

0

e−b(y−x)(1 − e−c(y−x))a1−1e−(b+a1c)x(1 − e−cx)a2−1 dx

= e−by
∫ y

0

e−cx(e−cx − e−cy)a1−1(1 − e−cx)a2−1 dx

=
e−by

c

∫ 1

e−cy

(u− e−cy)a1−1(1 − u)a2−1 du

= e−by(1 − e−cy)a1+a2−1 1
c

∫ 1

0

va1−1(1 − v)a2−1 dv.

Proof of Theorem 4.5. Applying Theorem 4.3 (c),

VarXn =
t20

c2x2
0

[
ψ′

(nκ

c

)
− ψ′

(nκ

c
+ n

)]
.

The asymptotic behaviour of the function ψ′(z) as z → ∞ is given by (A.1), and implies

VarXn ∼ t20
c2x2

0

(
c

nκ
− c

n(κ + c)

)
=

1
n

t20
x2

0

1
κ(κ + c)

.

Next, suppose ET−p < ∞ for some p > 1. If p > 2, then necessarily ET−2 < ∞, and p may be
replaced with 2 in what follows.

We have
P(Tn ≤ 0) = P(T + Xn − t0 ≤ 0)

=
∫ t0

0

P(Xn − t0 ≤ −t)fT (t) dt

≤
∫ t0

0

P(|Xn − t0| ≥ t)fT (t) dt

≤ E|Xn − t0|p
∫ t0

0

fT (t)
tp

dt

by Markov’s inequality. Now, let the Lr-norm of a random variable Y be

‖Y ‖r = [E(|Y |r)] 1
r .
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By applying Hölder’s inequality,

E|Xn − t0|p = ‖Xn − t0‖pp ≤ ‖Xn − t0‖p2 = [(E(Xn − t0)2]
p
2 ,

and, moreover,
E(Xn − t0)2 = VarXn + (EXn − t0)2.

We now need to know the asymptotic behaviour of EXn − t0 as n → ∞. From Theorem 4.3(c)
and (A.1),

EXn − t0 =
t0
cx0

[
ψ

(nκ

c
+ n

)
− ψ

(nκ

c

)]
− t0

∼ t0
cx0

[
log

(nκ

c
+ n

)
− log

(nκ

c

)]
− t0

2x0

(
1

nκ + cn
− 1

nκ

)
− t0

=
t0
cx0

log
(
κ + c

κ

)
+

ct0
2nx0

1
κ(κ + c)

− t0

=
ct0

2nx0

1
κ(κ + c)

.

Putting all this together, we get

E|Xn − t0|p = O(n− p
2 ).

This implies that

[sup
t

fT (t)] [VarXn]
1
2 + FTn(0) ∼ [sup

t
fT (t)] [VarXn]

1
2
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Figure 1. Example 5.1, degenerate distribution
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Figure 2. Example 5.2, uniform distribution

10-term A-approx.

3-term A-approx.

Exact



2 4 6 8 10
t

-0.2

0.2

0.4

0.6

0.8

1

1-CDF

Figure 3. Example 5.2, uniform distribution
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Figure 4. Example 5.3, Pareto distribution
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Figure 5. Example 5.3, Pareto distribution
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Figure 6. Example 5.4, lognormal distribution
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Figure 7. Example 5.4, lognormal distribution
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Figure 8. Example 5.5, Makeham distribution
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Figure 9. Example 6.1, degenerate distribution
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Figure 10. Example 6.2, uniform distribution

200-term approx.

20-term approx.

Exact



1 2 3 4
t

-0.2

0.2

0.4

0.6

0.8

1

1-CDF

Figure 11. Example 6.2, uniform distribution
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Figure 12. Example 6.3, squared sine distribution

200-term approx.

20-term approx.

Exact



0.5 1 1.5 2
t

-0.2

0.2

0.4

0.6

0.8

1

1-CDF

Figure 13. Example 6.3, squared sine distribution
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