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Abstract

This paper gives analytic approximations for the distribution of a stochastic life annuity.
It is assumed that returns follow a geometric Brownian motion. The distribution of the
stochastic annuity may be used to answer questions such as “What is the probability that
an amount F is sufficient to fund a pension with annual amount y to a pensioner aged
x?” The main idea is to approximate the future lifetime distribution with a combination of
exponentials, and then apply a known formula (due to Marc Yor) related to the integral of
geometric Brownian motion. The approximations are very accurate in the cases studied.
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1. Introduction

Defined contribution pension arrangements, whether in the form of employer-sponsored pen-
sion plans or individual savings, have enjoyed great popularity lately. The main drawback of these
arrangements is the uncertainty of future lifetime and rates of return. As a consequence, retirees face
two difficult decisions: how much to draw form their savings every month, and how to invest what
is left. A mathematical difficulty is that the distribution of a life annuity including random duration
of life and random rates of return is not known in closed form. The main goal of this paper is to
present an apparently new way to approximate the distribution of such “stochastic life annuities.”

This problem has already appeared in the actuarial literature. Pollard (1971) was apparently the
first to consider the problem of finding the distribution of a life annuity, when both mortality and the
discount rates are random. Several authors have studied the same problem since, including Boyle
(1976), Waters (1978), Wilkie (1978), Panjer & Bellhouse (1980), Bellhouse & Panjer (1981), West-
cott (1981), Dufresne (1989, 1990, 1992), Beekman and Fuelling (1990), Frees (1991), De Schepper
et al. (1992abc, 1994), Vanneste et al. (1994, 1997), Parker (1994a, 1994b), and Hoedemakers et
al. (2005). The majority of the contributions focused on calculating the moments of the annuity, the
goal being to reconstruct or approximate the distribution from its moments; a few actuarial papers
dealt with the distribution of annuities with random rates of interest, or with their “comonotonic”
approximation. This paper proceeds differently. The distribution of a stochastic life annuity with an
exponential lifetime distribution is already known explicitly, in the case where rates of discount are
independent over time (more details below). It will then be seen that the same holds if the lifetime
has a density given by a combinations of exponentials. Next, because combinations of exponentials
are dense in the set of distributions on R+, any lifetime distribution may be approximated to any
degree of precision by a combination of exponentials. Consequently, the distribution of a stochastic
life annuity, with a given (arbitrary) lifetime distribution, may be approximated by the distributions
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of stochastic life annuities with lifetimes distributed as combinations of exponentials; moreover,
the error of this approximation tends to zero as the approximating lifetime distributions converge
to the true lifetime distribution. Each approximating stochastic life annuity distribution is known
exactly, and will be identified. Numerical illustrations are given.

Some of the papers cited above assumed that rates of discount form an autoregressive process,
probably to reflect the well-known serial dependence of interest rates. In this paper, the discounted
values of annuities are not based on an interest rate model, but are instead the amount of money
required to fund the annuity, given a particular investment policy. Let Ut be the time-t value of
one dollar invested at time 0. This dollar may have been invested in stocks, bonds, and so on. The
amount required at time 0 to fund a $ C cash-flow at time t is thus $ C/Ut. The amount initially
required to fund several cash flows {Cj} at times {tj} is then

S =
∑
j

Cj

Utj

.

This amount is of course random, and is not a “price” in any sense of the word. (No-arbitrage
pricing (as described, for instance, in Harrison & Pliska (1981)) does not lead to a unique price in
cases where cash flows depend on mortality, as the market is then incomplete.) Notwithstanding
this, there is an interest in knowing the probability distribution of S, for instance when comparing
investment strategies, or, possibly, when informing insurance contractholders of the likely amounts
of their benefit payments, if there is a “variable” component in their contracts.

It will be assumed that the rates of return on the investments chosen are serially independent.
This is the usual assumption for stocks, adopted by Black & Scholes (1973), though their “log-
normal” model goes back to Osborne (1959); the first appearance of Brownian motion was also in
the context of a financial model (Bachelier, 1900), and also featured returns which are independent
over time, though it is the asset values themselves (and not their logarithm) which were normally
distributed. Bond yields, however, are highly correlated over time. Nevertheless, it can be argued
that a managed portfolio of bonds would often have returns which are less correlated over time.

Let {Wt; t ≥ 0} be a standard Brownian motion, and define

Ut = emt+σWt .

The process {Ut; t ≥ 0} is called “geometric Brownian motion.” As indicated above, Ut will
represent the time-t value of one dollar invested at time 0. The parameters (m,σ) depend on the
available securities and on the investment strategy followed. The variable S defined above is then a
sum of lognormals, a topic studied from the point of view of Asian options by several authors (see
Dufresne (2004) for references).

There is another source of randomness in a stochastic life annuity. The variableT will represent
the future lifetime of an insured or pensioner. We will always assume that investment results and
survival do not affect one another, or, expressed mathematically, that T and the Brownian motion
W are stochastically independent. The amount required at time 0 to fund an annuity of 1 per annum
payable continuously while the pensioner is alive is

DT =
∫ T

0

U−1
s ds =

∫ T

0

e−ms−σWs ds. (1.1)
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This formula corresponds to a level annuity, but note that obvious modifications allow for (1)
payments that increase exponentially (say, with inflation), by including an exponential factor eyt in
the integral; and (2) guarantee periods, by replacing T with max(T, n). It does not seem possible
to apply our results to discretely paid annuities, though the difference between the discounted
values of annuities paid monthly and annuities paid continuously is not very great. Observe that the
distribution of T does not have to be continuous (see Sections 3 and 4).

Section 2 recalls some known results about the integral of Brownian motion which are used
in the sequel. Section 3 deals with the approximation of distributions on R+ by combinations
of exponentials, and Section 4 gives a proof that the distribution of a stochastic life annuity can
be approximated to any degree of precision by a stochastic annuity for a duration T that has a
combination of exponentials as density. Section 5 looks at transforms and moments of stochastic
life annuities, and shows that the distribution of a stochastic life annuity is in general NOT determined
by its moments (however, it may be determined by its reciprocal moments).

Section 6 lists the assumptions made in the numerical examples in the subsequent sections.
Section 7 identifies the Jacobi approximations used for the distribution of the future lifetime.
Numerical distributions of stochastic life annuities are given in Section 8. Section 9 shows how,
in certain cases, it is numerically feasible to use a more direct route to find the distribution of a
stochastic life annuity, and one such case is used as a check on the method described in Section
8. Section 10 is about deferred annuities, and Section 11 shows how the results presented may be
applied to stochastic annuities-certain.

Notation and vocabulary. The cdf of a probability distribution is its cumulative distribution
function, the ccdf is the complement of the cdf (one minus the cdf), and the pdf is its probability
density function. An atom is a point x ∈ R where a measure has positive mass, or, equivalently,
where its distribution function has a discontinuity. A sequence of random variables {Xn} is said
to converge in distribution to a random variable X if P(Xn ≤ x) converges to P(X ≤ x) for all x
where the distribution function of X is continuous; convergence in distribution is also called weak
convergence (see Billingsley, 1986). Finally, use will be made of the Pochhammer symbol

(a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1), n = 1, 2, . . .

2. Fundamental results on the integral of Brownian motion

This section collects some known results about the integral of Brownian motion. More details
can be found in the references; in particular, Yor (2001) contains several papers on these topics,
while Dufresne (2005) gives a summary of several of the results, with detailed references.

The expression in equation (1.1) depends on T , m and σ. The scaling property of Brownian
motion makes it possible to transform equation (1.1) in such a way that any one of these parameters
has a preset value. The connection with Bessel processes (Yor, 1992) makes the choice σ = 2 more
convenient in many developments. We thus adopt Yor’s notation

A
(µ)
t =

∫ t

0

e2(µs+Ws) ds, t ≥ 0, (2.1)
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where W is a standard Brownian motion. From the scaling property of Brownian motion, the
conversion rule between formulas (1.1) and (2.1) is:

DT =
∫ T

0

e−ms−σWs ds

has the same distribution as

4
σ2

A
(µ)
t , where t =

σ2T

4
, µ = −2m

σ2
. (2.2)

The process A(µ)
t has been studied in several contexts, notably in relation to Asian options (for

instance, Geman & Yor (1993)).

Moments of A(µ)
t . The distribution of A(µ)

t has all moments (positive and negative) finite, that
is,

E(A(µ)
t )r < ∞ ∀ r ∈ R.

Ramakrishnan (1954) showed that, for n = 1, 2 . . .,

E(A(µ)
t )n =

n∑
k=0

bn,ke
akt, ak = 2kµ+ 2k2, bn,k = n!

/ n∏
j �=k
j=0

(aj − ak). (2.3)

Proofs of this result may also be found in Dufresne (1989) and in Yor (1992). The conversion rule
(2.2) may be used in an obvious way to find corresponding formulas for

E
( ∫ T

0

e−ms−σWs ds

)n

, n = 1, 2 . . .

(see Section 5). Formulas for E[(A(µ)
t )−r], r > 0, can be found in Dufresne (2000).

The distribution of A(µ)
t sampled at an independent exponential time. The result below first

appeared in Yor (1992). Let Sλ ∼ Exponential(λ), that is, let Sλ be a random variable with density

fSλ
(x) = λe−λx1{x>0}.

Suppose, moreover, thatSλ is independent of the Brownian motionW in definition (2.1). A summary
of the proof of the following theorem is given in the Appendix.

Theorem 2.1 (Yor). The distribution ofA(µ)
Sλ

has a density given by equation (2.4), and is the same as
that of B1,α/2Gβ , where B1,α and Gβ are independent, B1,α ∼ Beta(1, α), Gβ ∼ Gamma(β, 1),
with

α =
γ + µ

2
, β =

γ − µ

2
, γ =

√
2λ+ µ2.

This is equivalent to

fλ(u) = λ(2u)(µ−γ)/2−1 Γ
(
µ+γ

2

)
Γ(γ + 1) 1F1

(
γ−µ

2 + 1, γ + 1;− 1
2u

)
1{u>0}, (2.4)
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where 1F1 is the confluent hypergeometric function:

1F1(a, b; z) =
∞∑
n=0

(a)n
(b)n

zn

n!
.

The distribution ofA(µ)
S is also known for three other distributions forS, see Yor (2001, pp.104-105).

Laplace transform of the distribution of A(µ)
t . It has been proved that the distribution of A(µ)

t

is not determined by its moments (Hörfelt, 2005); this makes sense intuitively, as the same situation
prevails for the lognormal distribution. Moreover, E exp(sA(µ)

t ) = ∞ for all s > 0, as for the
lognormal distribution. By contrast, and a little surprisingly, E exp(s/(2A(µ)

t )) < ∞ if s < 1,
which implies that the distribution of 1/A(µ)

t is determined by its moments (Dufresne, 2001). The
same reference shows formulas for the moments of 1/A(µ)

t . A formula is given for the Laplace
transform of A(µ)

t in Yor (2001, p.106).

The distribution of A(µ)
t . Several expressions have been found for the density of the integral

of geometric Brownian motion at a fixed time, but none of those expressions is simple. We give
only two examples, the reader is referred to Dufresne (2005) for more details. Other expressions
for the density are given in De Schepper et al. (1992ab) (see the comments in Deelstra & Delbaen
(1992)).

The following expression for the density of A(µ)
t is due to Yor (1992):

g(t, x) =
e−µ2t/2

x

∫ ∞

−∞
eµu−

1
2x (1+e2u)θeu/x(t) du,

where

θr(t) =
re

π2
2t√

2π3t

∫ ∞

0

exp(−y2/2t) exp(−r cosh y) sinh(y) sin
(
πy
t

)
dy.

Another expression for the distribution of A(µ)
t is given in Dufresne (2001). If

q(y, t) =
e

π2
8t − y2

2t

π
√

2t
cosh y,

then the density of 1/(2A(µ)
t ) is

2−µx−
µ+1
2 e−µ2t/2

∫ ∞

−∞
e−x cosh2 yq(y, t) cos

(
π
2 (yt − µ)

)
Hµ(

√
x sinh y)dy. (2.5)

Here Hµ is the Hermite function (Lebedev, 1972, Chapter 10). The above expression reduces
to a single integral when µ = 0, 1, 2, . . ., but is otherwise a double integral.
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The distribution of A(µ)
∞ . For any m,σ > 0 (Dufresne, 1990),

2
σ2

(∫ ∞

0

e−mt−σWt dt

)−1

∼ Gamma
(

2m
σ2 , 1

) ∀m,σ > 0. (2.6)

If m ≤ 0, then

lim
t→∞

∫ t

0

e−ms−σWs ds = ∞ a.s.

3. Approximating distributions on R+ by combinations of exponentials

By “combination of exponentials” we mean a function of the form

f(t) =
n∑

j=1

ajλje
−λjt1{t>0}, (3.1)

where {aj}, {λj} are constants. This function is a probability density function if

(1)
n∑

j=1

aj = 1; (2) λj > 0 ∀ j; (3) f(x) ≥ 0 ∀x ≥ 0.

Conditions (1) and (2) imply that the function f(·) integrates to one over R+, but they do not imply
(3); for example, consider

f(x) = e−x − 16e−2x + 24e−3x = e−x[24(e−x − 1
3 )2 − 5

3 ].

If aj > 0 for all j, then (3.1) is called a “mixture of exponentials.” A proof of the following result
is given in the Appendix.

Theorem 3.1. (a) Suppose T is a non-negative random variable. Then there exists a sequence of
random variables {Tn} each with a pdf given by a combination of exponentials and such that Tn
converges in distribution to T .

(b) If the distribution of T has no atom, then

lim
n→∞ sup

0≤t<∞
|FT (t) − FTn(t)| = 0.

A method will now be presented for approximating probability distributions by combinations
of exponentials. More details can be found in Dufresne (2006) (two other methods are presented in
that paper).

For α, β > −1, the shifted Jacobi polynomials are defined as

R(α,β)
n (x) =

(α + 1)n
n! 2F1 (−n, n+ α + β + 1, α + 1; 1 − x) =

n∑
j=0

ρnjx
j ,
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where 2F1 is the Gauss hypergeometric function and

ρnj =
(−1)n(β + 1)n(−n)j(n+ λ)j

(β + 1)jn!j!
.

The shifted Jacobi polynomials are orthogonal on [0, 1], for the weight function

w(α,β)(x) = (1 − x)αxβ .

Based on the properties of the Jacobi polynomials, it is possible to prove that for a wide class
of functions φ(·) defined on (0, 1) (including all continuous and bounded functions),

φ(x) =
∞∑
n=0

cnR
(α,β)
n (x), cn =

1
hn

∫ 1

0

φ(x)(1 − x)αxβR(α,β)
n (x) dx

hn =
∫ 1

0

(1 − x)αxβ [R(α,β)
n (x)]2 dx =

Γ(n+ α + 1)Γ(n+ β + 1)
(2n+ λ)n!Γ(n+ λ)

.

This can be applied to probability distributions on R+ in the following way. Let

F (t) = 1 − F (t) = P(T > t)

and define, for some r > 0,

g(x) = F
(
− 1
r

log(x)
)
, 0 < x ≤ 1, g(0) = 0.

(If T represents the time-until-death of a life currently aged x, then F (t) = tpx.) This maps the
interval [0,∞) onto (0, 1], t = 0 corresponding to x = 1, and t → ∞ corresponding to x → 0+;
since F (∞) = 0, we set g(0) = 0. If α, β, p and {bk} are found such that

g(x) = xp
∞∑
k=0

bkR
(α,β)
k (x), 0 < x ≤ 1,

then

F (t) = e−prt
∞∑
k=0

bk
∑
j

ρkje
−jrt.

If p > 0, a combination of exponentials is obtained when this series is truncated. The constants
{bk} can be found by

bk =
1
hk

∫ 1

0

x−pg(x)R(α,β)
k (x)(1 − x)αxβ dx

=
r

hk

∫ ∞

0

e−(β−p+1)rt(1 − e−rt)αR(α,β)
k (e−rt)F (t) dt.
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This is a combination of terms of the form∫ ∞

0

e−(β−p+j+1)rt(1 − e−rt)αF (t) dt, j = 0, 1, . . . , k. (3.2)

If α = 0, 1, 2 . . ., then this integral is a combination of values of the Laplace transform of F (·); the
latter may be expressed in terms of the Laplace transform of the distribution of T :

∫ ∞

0

e−stF (t) dt = −1
s

∫ ∞

0

F (t) de−st =
1
s
[1 − Ee−sT ], s > 0. (3.3)

The following results are consequences of the classical theory of orthogonal polynomials (see
Dufresne (2006) for proofs).

Theorem 3.2. Suppose α, β > −1, that F (·) is continuous on [0,∞), and that the function

eprtF (t)

has a finite limit as t tends to infinity for some p ∈ R (this is always true when p ≥ 0). Then

F (t) = e−prt
∞∑
k=0

bkR
(α,β)
k (e−rt)

for every t in (0,∞), and the convergence is uniform over every interval [a, b], for 0 < a < b < ∞.

Not all distributions satisfy the condition in Theorem 3.2 for some p > 0. The next result does
not need this assumption.

Theorem 3.3. Suppose α, β > −1 and that for some p ∈ R and r > 0

∫ ∞

0

e−(β+1−2p)rt(1 − e−rt)αF (t)2 dt < ∞

(this is always true if p < (β + 1)/2). Then

lim
N→∞

∫ ∞

0

[
F (t) − e−prt

N∑
k=0

bkR
(α,β)
k (e−rt)

]2

e−(β+1−2p)rt(1 − e−rt)α dt = 0.

Theorem 3.2 gives convergence at every point in (0,∞), while Theorem 3.3 gives mean square
convergence.

The truncated series obtained using this method are not true distribution functions. The function
may be smaller than 0 or greater than 1 in places, or it might decrease over some intervals. This is
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good enough for the purposes of this paper, but the method can be modified in such a way that a
true distribution function results. See Sections 3 and 4 of Dufresne (2006).

4. The distribution of a stochastic life annuity

Given that T is independent of the Brownian motion W , the distribution of A(µ)
T can be found

by conditioning on T :

P(A(µ)
T ≤ x) =

∫
P(A(µ)

t ≤ x) dFT (t). (4.1)

However, in light of the known expressions for the density of A(µ)
t (see Section 2), it appears that

formula (4.1) may not be easy to use in numerical applications. In fact, the computation of the
density of A(µ)

t for fixed t is itself a problem, see Dufresne (2004), Ishiyama (2005). The only
exceptions are when µ = 0, 1, 2, . . ., in which case the pdf of A(µ)

t may be expressed as a single
integral (see equation (2.5)); this is illustrated in Section 9 below. The approach suggested in this
paper is to approximate the distribution of T by a combination of exponentials, and then apply
Theorem 2.1.

The following result says that the error made in approximating the distribution of A(µ)
T1

by

A
(µ)
T2

is never larger than the error made in approximating T1 by T2, which is a very good thing
numerically.

Theorem 4.1. Let T1, T2 ≥ 0 be random variables with distribution functions FT1(·), FT2(·),
respectively, and that are independent of W . Then

|P(A(µ)
T1

≤ x) − P(A(µ)
T2

≤ x)| ≤ sup
0≤t<∞

|FT1(t) − FT2(t)| ∀x. (4.2)

If µ < 0, then

|P(A(µ)
T1

≤ x) − P(A(µ)
T2

≤ x)| ≤ C(x) sup
0≤t<∞

|FT1(t) − FT2(t)|,

where

C(x) =
1

Γ(−µ)

∫ 1
2x

0

y−µ−1e−y dy < 1.

Proof. Integration by parts in formula (4.1), we get, for x > 0,

P(A(µ)
T ≤ x) = −

∫
P(A(µ)

t ≤ x) d[1 − FT (t)]

= 1 −
∫

[1 − FT (t)] dtP(A(µ)
t > x).
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The function t �→ P(A(µ)
t > x) is non-decreasing. Hence

|P(A(µ)
T1

≤ x) − P(A(µ)
T2

≤ x)| ≤
∫

|FT1(t) − FT2(t)| dtP(A(µ)
t > x)

≤
(

sup
0≤t<∞

|FT1(t) − FT2(t)|
)
P( lim

t→∞A
(µ)
t > x).

This proves inequality (4.2). If µ < 0, we may then apply result (2.6), which says that, if Γ−µ ∼
Gamma(−µ, 1),

P(A(µ)
∞ > x) = P(Γ−µ < 1

2x ) = C(x).

Remark. This theorem does not rest on the particular definition of the process {A(µ)
t }, as the

same proof holds more generally: if T1, T2 are independent of a non-decreasing process {Xt} with
Xt = 0 for t < 0, then, for all x,

|P(XT1 ≤ x) − P(XT2 ≤ x)| ≤ P( lim
t→∞Xt > x) sup

0≤t<∞
|FT1(t) − FT2(t)|.

A question arises, however, in cases where the cdf of A(µ)
T is approximated by a function

which is not a true distribution function. Specifically, the approximation for FT (·), call itG(·), may
be smaller than 0 or greater than 1 in places, or may decrease in places. The approximation for
P(A(µ)

T1
≤ x) is then

H(x) =
∫

P(A(µ)
t ≤ x) dG(t).

Do the upper bounds in Theorem 4.1 still hold? A review of the proof of Theorem 4.1 shows that
the result becomes:

Theorem 4.2. Suppose G(·) has bounded variation, with G(t) = 0 for t < 0, and suppose also
that

lim
t→∞G(t) = G(∞)

exists. Then

|P(A(µ)
T ≤ x) −H(x)| ≤ |1 −G(∞)|P( lim

t→∞At ≤ x) + sup
0≤t<∞

|FT (t) −G(t)|P( lim
t→∞At > x)

≤ sup
0≤t<∞

|FT (t) −G(t)| ∀x.

An immediate consequence of Theorems 3.1 and 4.1 is that if T, {Tn} are independent of W ,
if FT (·) is continuous, and if Tn converges in distribution to T , then A(µ)

Tn
converges in distribution

to A(µ)
T . A more general result is easily obtained.

Theorem 4.3. If T, {Tn} are independent of W , and if Tn converges in distribution to T , then

(eW
(µ)
Tn , A

(µ)
Tn

) converges in distribution to (eW
(µ)
T , A

(µ)
T ).
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Proof. Write the joint characteristic function of the pair (eW
(µ)
Tn , A

(µ)
Tn

) as∫
E eis1e

W
(µ)
t +is2A

(µ)
t dFTn

(t), s1, s2 ∈ R.

The function f(t) = E exp(is1eW
(µ)
t + is2A

(µ)
t ) is continuous and bounded, and thus the weak

convergence of {Tn} to T implies that E f(Tn) converges to E f(T ) (this is a classical result, see
for instance Billingsley (1986), p.344, Theorem 25.8).

Corollary 4.4. Suppose {Tn} converges in distribution to T . Then

lim
n→∞P(A(µ)

Tn
≤ x) = P(A(µ)

T ≤ x) ∀x.

Proof. Since the distribution of A(µ)
T is continuous, this is a direct consequence of Theorem 4.3.

Let g(t, x) be the the density function of A(µ)
t . If Sλ ∼ Exponential(λ) is independent of W ,

then the density of A(µ)
Sλ

is (see formula (2.4))

fλ(x) =
∫ ∞

0

λe−λtg(t, x) dt = λ(2x)(µ−γ)/2−1 Γ
(
µ+γ

2

)
Γ(γ + 1) 1F1

(
γ−µ

2 + 1, γ + 1;− 1
2x

)
1{x>0}.

Recall that γ =
√

2λ+ µ2 in this expression. Now, suppose that T has an arbitrary distribution
on R+, that it is independent of W , and that FT (·) is approximated by G(·), a combination of
exponentials, with

dG(t)
dt

=
n∑

j=1

ajλje
−λjt, t > 0. (4.3)

The density of A(µ)
t is then approximated by

n∑
j=1

ajfλj (x). (4.4)

It is possible to find the ccdf of the corresponding approximation for A(µ)
T in closed form. Theorem

2.1 implies that, if x > 0,

P(A(µ)
Sλ

> x) = P

(
B1,α

Gβ
> 2x

)

= −
∫ 1

0

P

(
u

Gβ
> 2x

)
du(1 − u)α

= −
∫ 1

0

∫ u/2x

0

vβ−1

Γ(β)
e−v dv du(1 − u)α

=
1

(2x)βΓ(β)

∫ 1

0

uβ−1(1 − u)αe−
u
2x du

= (2x)−β Γ(α + 1)
Γ(γ + 1) 1F1

(
β, γ + 1;− 1

2x

)
.
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We have thus proved the following result.

Theorem 4.5. If G is as in equation (4.3), then

∫
P(A(µ)

t > x) dG(t) =
n∑

j=1

aj(2x)
µ−γj

2
Γ(µ+γj

2 + 1)
Γ(γj + 1) 1F1

(γj−µ
2 , γj + 1;− 1

2x

)
, (4.5)

where γj =
√

2λj + µ2.

5. Moments and Laplace transform of stochastic life annuities

Using results (2.2)-(2.3) and the independence ofT andW , we obtain formulas for the moments
of stochastic life annuities. Recall that

µ = −2m
σ2

.

Theorem 5.1. If n ∈ N+ and E exp[(−km+ k2σ2/2)T ] < ∞ for k = 1, . . . , n, then

EDn
T =

(
4
σ2

)n n∑
k=0

bn,kE e
(−km+k2σ2/2)T .

Note that E e−δT is the actuarial value of an insurance of one unit payable at the moment of
death (usually writtenAx), with an instantaneous rate of interest equal to δ. In practical applications
it would be finite for any δ (observe that −km+ k2σ2/2 may be positive or negative depending on
k, m and σ).

The Laplace transform of A(µ)
T may also be obtained from that of A(µ)

t by conditioning on T ,

E e−sA
(µ)
T =

∫
E e−sA

(µ)
t dFT (t);

this is finite for all s > 0.

Theorem 5.2. (a) If P(T > 0) > 0, then

EesA
(µ)
T = ∞ ∀ s > 0.

(b) If the distribution of T has one or more atoms in (0,∞), then the distribution of A(µ)
T is not

determined by its moments.

(c) If T ≥ ε for some ε > 0, then

Ees/(2A
(µ)
T

) < ∞ ∀ s < 1,
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and the distribution of 1/A(µ)
T is determined by its moments.

Proof. (a) Condition on T , and use the result for fixed t (Section 2).

(b) Hörfelt (2005) has shown that the distribution of A(µ)
t is not determined by its moments,

for any fixed t > 0. Suppose t0 is an atom of the distribution of T . Then there are two distinct
distributions with the same moments as A(µ)

t0 . We can then produce two distinct distributions with

the same moments as A(µ)
T , by changing the distribution of A(µ)

T on the set {T = t0}.

(c) The result is obvious if s ≤ 0, so let 0 < s < 1. It is known that Ees/(2A
(µ)
t ) < ∞ for

every t > 0 (Dufresne, 2001). Since A(µ)
t is non-decreasing in t, T ≥ ε > 0 implies

Ees/(2A
(µ)
T

) ≤ Ees/(2A
(µ)
ε ) < ∞.

It is well known that a distribution which has a finite Laplace transform in a neighborhood of the
origin is determined by its moments.

Part (b) above shows that, at least when the distribution of T has one or more atoms, there is
no justification in approximating the distribution of the stochastic life annuity based on its moments
only, as was suggested by several authors. It is plausible that the same holds for arbitrary distributions
for T .

6. Model assumptions

The next sections will use the following mortality assumptions. The lifetimes of the annuitants
obey Makeham’s law, with

µx = A+Bcx.

The parameters used will be those chosen by Bowers et al. (1997, p.78):

A = .0007, B = 5 × 10−5, c = 10.04.

For the joint and last survivor example both annuitants have the same future lifetime distribution.

On the financial side, one dollar invested at time 0 grows to

emt+σWt

at time t, where W is standard Brownian motion. This is the same assumption as for the risky asset
in the usual Black-Scholes. The benchmark scenario will be: m = .06, σ = .20.

7. Jacobi approximations of lifetime distributions

The technique for finding an approximation for the future lifetime distribution is described in
Section 3. The parameters of the 20-term Jacobi expansion of

F (t) = P(T65 > t)
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[Table 1 about here]

are given in Table 1. The other parameters required (see Section 3) are

α = 0, β = 0, p = .2, r = .08.

The same procedure was applied to the duration of the last-to-die status T65:65, and the parameters
are also shown in Table 1. The other parameters are

α = 0, β = 0, p = .1, r = .055.

The precision of an approximation F̂ of F was chosen as the sup norm of the difference:

‖F̂ − F‖ = sup
t≥0

|F̂ (t) − F (t)|.

In the case of one life, the estimated precisions are

‖F − F3‖ = 0.082, ‖F − F5‖ = 0.043, ‖F − F10‖ = 0.0065

‖F − F20‖ = 0.00024, ‖F − F40‖ = 5.0 × 10−6.

In the case of two lives,

‖F − F3‖ = 0.15, ‖F − F5‖ = 0.082,
‖F − F10‖ = 0.012 ‖F − F20‖ = 0.00030.

[Figure 1 about here]

Figure 1 shows some of the low-order approximations of the ccdf of T65:65; the higher order approx-
imations cannot be distinguished visually from the exact ccdf. Table 2 compares the exact values
of a65 and a65:65 with the values obtained using the 20-term approximations of the distributions of
T65 and T65:65.

[Table 2 about here]

Some practical considerations

The numerical examples in this paper uses a Makeham survival function, but in practice the
life table will most likely be given by a table of 7x or qx values at integer ages x. If this is the case,
then the first step is to turn this table into a survival function F (t) = P(T > t) for a continuous
parameter t ≥ 0, in order to be able to compute the integrals in expression (3.2). Theorem 4.1 and
Corollary 4.4 hold for any variable T ≥ 0, but, since a combination of exponentials is continuous,
the maximum error

sup
0≤t<∞

|F̂ (t) − F (t)|

does not tend to 0 if T has one or more atoms. This would make the error bound in Theorem 4.2
useless for estimating the error on the distribution of the stochastic annuity. We will thus consider
continuous functions F (t).
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Any interpolation technique is acceptable here, provided the resulting function F (t) is a true
ccdf, but linear interpolation is particularly convenient, as will now be shown, at least when the
parameter α is an integer. Given a retirement age w (an integer), let

F (t) = (1 − u)kpw + u · k+1pw, u = t− k ∈ (0, 1), k = 0, 1 . . . .

This is equivalent to the uniform distribution of deaths assumption. When α is an integer, then
expression (3.2) may be expanded as a combination of integrals of the form∫ ∞

0

e−γtF (t) dt.

Under the assumption that F (t) is linear between integers, this is

∞∑
k=0

∫ 1

0

e−γ(k+u)[(1 − u)F (k) + uF (k + 1)] du

=
∞∑
k=0

e−γk
kpw

∫ 1

0

[e−γu + eγu](1 − u) du−
∫ 1

0

(1 − u)eγu du.

The second integral in the last expression equals

1
γ2

(eγ − 1 − γ),

while the first integral is

2
∫ 1

0

cosh(γu)(1 − u) du =
2
γ

∫ 1

0

sinh(γu) du =
2
γ2

[cosh(γ) − 1].

Hence, ∫ ∞

0

e−γtF (t) dt =
2
γ2

[cosh(γ) − 1]äw − 1
γ2

(eγ − 1 − γ),

where the annuity is computed at rate i = eγ − 1. This agrees with the limit as m tends to infinity
of formula (5.4.14) in Bowers et al. (1997, p.152).

8. Distributions of stochastic life annuities: numerical illustrations

In this section, we present two numerical examples which involve the distribution of stochastic
life annuities. In all cases (except when σ = 0) the distribution of DT is approximated by formula
(4.5), using the 20-term approximations for the distribution of T shown in Section 7.

Example 8.1. Distibution function of DT for σ = 0 and σ = .2. Figure 2 compares the
ccdf’s of DT (for a single-life annuity) in the cases where σ = 0 and σ = .2. A simple check
on the accuracy of the approximation is to calculate the first and second moments of DT . When
σ = 0, the exact first moment is 9.2709, while with the approximate distribution function is also
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9.2709 to five decimal places; the exact and approximate standard deviations are both 3.5725 to five
decimal places. When σ = .20, the exact and approximate first moments are both 10.823; the exact
and approximate standard deviations are 7.6716 and 7.6667, respectively. The very small errors in
moments are not surprising, since the moments of DT are combinations of annuity values, and the
Jacobi approximation is based on the Laplace transform of F , which is itself an annuity value when
α = 0 (see equations (3.2)-(3.3)).

The standard deviation is significantly higher when σ = .20, which could have been guessed
from the thicker tail of the distribution of DT . For instance, the probability that $ 15 is sufficient
to fund a $ 1 per annum annuity is .9993 when σ = 0, while it is only .7981 when σ = .2; the
same computation for an intial amount of $ 12 yields probabilities of .7339 and .6739, respectively;
recall that the expected value of DT here is 9.2709 when σ = 0, and 10.823 when σ = .20.

[Figures 2 and 3 about here]

Example 8.2. In this example we look at the shortfall probability

P(DT > (1 + q)K)

for fixed q and K but when σ varies. Figure 3 shows the shortfall probability in the case of single
life, if

K = ā.0665 = 9.2709

and q = 0, .5. It can be seen that the probability of not having enough funds is more or less constant
when q = 0, but that it increases significantly as a function of σ when q = .5; this means that a
larger loading is required for a given shortfall probability when returns have greater volatility.

Figure 4 applies the same reasoning to the joint-and-last-survivor annuity. Here

K = ā.06
65:65

= 10.823,

and the same conclusions are reached as in the case of a single-life annuity.

[Figure 4 about here]

9. Check against exact distribution when µ = 0

Expression (2.5) for the density of 1/(2A(0)
t ) simplifies to a single integral if µ = 0, 1, 2, . . .

(this is because the Hermite function Hµ reduces to the usual Hermite polynomial in those cases).
The resulting pdf is not really “simple,” but it can be used more easily in numerical calculations
than when the pdf is a double integral. We will use the case µ = 0 to perform a check on the results
of the preceding section. The pdf of A(0)

t is

g(t, u) =
e

π2
8t

πu
3
2
√
t

∫ ∞

0

e−
1
2u cosh2 y− y2

2t cosh(y) cos
(πy

2t
)
dy. (9.1)

To obtain the pdf of A(0)
T , we will now integrate the pdf of A(0)

t times the pdf of T :

f
A

(0)
T

(x) =
∫ ∞

0

g(t, x)fT (t) dt. (9.2)

16 22-6-2006



Stochastic life annuities

A numerical problem arises when t is small, however, because of the oscillatory nature of the
function inside the integral (9.1). In order to circumvent this difficulty, the lognormal approximation
will be used for t small. It is known (Dufresne, 2004) that the distribution of the appropriately scaled
variable A(µ)

t tends to a lognormal as t → 0+.

Figure 5 compares the pdf’s of A(0)
.05, as computed from equation (9.1), with its lognormal

approximation (the latter is obtained by matching the first and second moments). The difference
is not very great, and becomes smaller when t < .05. It was decided that, in computing integral
(9.2), the integral density (9.1) would be replaced by its lognormal approximation for t < .05; this
should not cause a lot of difference in the numerical values of integral (9.2).

In order to find out whether the last claim is correct, the distribution ofA(0)
T was computed using

this approximation when T is exponential, and then compared with the known exact distribution
(Theorem 2.1). Figure 6 shows both curves (they cannot be distinguished visually). The largest
difference between the two pdfs is approximately .046, and is attained around x = .04. The
absolute difference between the two pdf’s quickly decreases as x increases, and is less than 10−9

for .2 ≤ x < 25. The error introduced in replacing the exact pdf with the lognormal approximation
for x < .05 thus appears very small.

Finally, a check was performed assuming T has the Makeham distribution of Section 7 (for
a single life). The pdf of A(0)

T was calculated using formula (9.2), and then integrated numerically

(using the trapeze rule) to give the ccdf of A(0)
T . This was compared with the Jacobi approximation

described in Section 8. The maximum absolute difference was estimated (see third column below).
The second column gives the precision of the Jacobi approximation of the distribution of T , from
Section 7. Theorem 4.2 says that, in theory, the maximum error in approximating the distribution
function of A(0)

T is never bigger than the error made in approximating the distribution of T . The
table below is in agreement with the theorem, and appears to confirm that the integral formula (9.2)
gave more precise results than the 20-term Jacobi approximation (of course at the cost of a greater
programming and computing effort).

No. of terms Precision Makeham ccdf Max. Difference (Integral-Jacobi)

3 .082 .078
5 .043 .034

10 .0065 .0026
20 .00024 .00024

10. Deferred annuities

Suppose the annuity is due to start being paid in n years, when the annuitant, if alive, is age
w. If T is the future lifetime at the current age, w − n, then the amount of money required to fund
this deferred annuity is

D =
1{T>n}
Un

∫ max(T−n,0)

0

Un

Un+s
ds, Ut = emt+σWt .
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Let T ′ be the random variable representing the future lifetime of the annuitant at age w, given
survival up to that age, and let

Y = e−mn−σWn , D′ =
∫ T ′

0

e−ms−σW ′
s ds,

where W ′ is another Brownian motion, independent of W .

The independent increments property of Brownian motion means that, for x ≥ 0,

P(D > x) = P(T > n)P(Y ·D′ > x),

Hence, conditionally on survival to age w, the distribution of D is as the product convolution of
a lognormal and the distribution of a stochastic life annuity, the latter calculated as in previous
sections.

11. Other techniques for approximating the density of A(µ)
t (t fixed)

The problem of approximating the distribution ofA(µ)
t for fixed tmay also be solved by finding

a combination of exponentials which approximates the degenerate distribution at t. In particular, it
is known (Dufresne, 2006) that if Xa ∼ LogBeta(a, b, c) (see Appendix for definition) with c > 0
fixed, b = κa for some constant κ > 0, then

Xa
d→ x0 =

1
c

log
(
1 +

c

κ

)
as a → ∞.

Rather than to use a combination of exponentials, it is possible to use a gamma approximation
for a degenerate distribution. Another way to look at this is to go back to the derivation of the
distribution of A(µ)

Sλ
in Section 2. The proof of the following theorem is in the Appendix.

Theorem 11.1. The density of A(µ)
t is

g(t, x)

= lim
n→∞

(−1)n−1

(n− 1)!

(n
t

)n[ ∂n−1

∂λn−1

(
(2u)(µ−γ)/2−1 Γ

(
µ+γ

2

)
Γ(γ + 1) 1F1

(
γ−µ

2 + 1, γ + 1;− 1
2x

))]
λ=

n
t

.

Conclusion

This paper has proposed an analytic technique for computing the distribution of stochastic
life annuities, when the returns are lognormal. The numerical examples presented indicate that the
method can be very accurate.

Some possible applications of the results are:

18 22-6-2006



Stochastic life annuities

(1) Given particular values for m and σ (which represent the type of investment strategy chosen),
find the probability that a pension will be paid in full by the initial amount invested.

(2) Find the effect on the distribution of the discounted annuity of introducing an n-year or a
joint-life guarantee.

(3) Among the set of pairs (m,σ) available in the market, find the one which maximise the probability
of a certain amount being sufficient to fund a pension.

APPENDIX

Proofs Theorems 2.1 and 11.1

The idea of the proof of Theorem 2.1 is to find a function hλ(·, ·) such that for any non-negative
functions f(·) and g(·),

E[f(eW
(µ)
Sλ )g(A(µ)

Sλ
)] =

∫ ∞

0

∫ ∞

0

f(r)g(u)hλ(r, u) dr du. (A.1)

(Here W (µ)
t = µt+Wt.) Then hλ(·, ·) is the joint density function of (eW

(µ)
Sλ , A

(µ)
Sλ

).

By the Cameron-Martin theorem,

E[f(eW
(µ)
t )g(A(µ)

t )] = e−µ2t/2E[eµWtf(eWt)g(At)],

and so

E[f(eW
(µ)
Sλ )g(A(µ)

Sλ
)] = E

∫ ∞

0

λe−λt−µ2t/2eµWtf(eWt)g(At) dt.

Yor (1992) used a stochastic time change and the properties of Bessel processes to show that, if
γ =

√
2λ+ µ2,

hλ(r, u) =
λ

u
rµ−1e−(1+r2)/2uIγ( r

u )1{r,u>0}, (A.2)

where I·(·) is the modified Bessel function of the first kind:

Ip(z) =
∞∑
n=0

(z/2)p+2n

n!Γ(n+ p+ 1)
.

The density of A(µ)
Sλ

may be found by integrating out r in formula (A.2); this yields formula (2.4).

Now, turn to Theorem 11.1. Suppose Sn,λ ∼ Gamma(n, λ); then Sn,λ converges in distribu-
tion to the degenerate distribution at t if n → ∞ and n/λ → t. Replacing Sλ with Sn,λ in equation
(A.1), we get

E[f(e
W

(µ)
Sn,λ )g(A(µ)

Sn,λ
)] = E

∫ ∞

0

λntn−1

Γ(n)
e−λt−µ2t/2eµWtf(eWt)g(At) dt

=
(−1)n−1λn

(n− 1)!
∂n−1

∂λn−1
E

∫ ∞

0

e−λt−µ2t/2eµWtf(eWt)g(At) dt.
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Then the joint density function of (e
W

(µ)
Sn,λ , A

(µ)
Sn,λ

) is

hn,λ(r, u) =
1
u
rµ−1e−(1+r2)/2u (−1)n−1λn

(n− 1)!
∂n−1

∂λn−1
Iγ( r

u )1{r,u>0}

and the density of A(µ)
Sn,λ

is

fn,λ(u) =
(−1)n−1λn

(n− 1)!
∂n−1

∂λn−1

[
(2u)(µ−γ)/2−1 Γ

(
µ+γ

2

)
Γ(γ + 1) 1F1

(
γ−µ

2 + 1, γ + 1;− 1
2u

)]
.

Letting n → ∞ we get Theorem 11.1. This result may be seen as an application of a classical
inversion theorem for Laplace transforms (see Feller, 1971, p.233).

Proof of Theorem 3.1

In the proof we use the logbeta distribution, which we now define.

Definition. For parameters a, b, c > 0, the logbeta distribution has density

fa,b,c(x) =
cΓ( bc + a)
Γ( bc )Γ(a)

e−bx(1 − e−cx)a−11{x>0}.

This law is denoted LogBeta(a, b, c).

The name chosen comes from the fact that

X ∼ LogBeta(a, b, c) ⇔ e−cX ∼ Beta(b/c, a).

It can be seen that when a = 1, 2, . . ., the pdf of the logbeta distribution is a combination of
exponentials.

(a) A distribution function F (·) can be approximated to any degree of precision (at all points
t) by some discrete distribution. For instance, one may define a new distribution by first giving it
the same atoms as F (·), and then, between those atoms, making it a step function close to F (·). The
problem then reduces to approximating discrete distributions that have a finite number of possible
values; the latter are convex combinations of degenerate distributions (that is, that take only one
value). Part (a) will then be proved if we find how to approximate a degenerate distribution at a point
t0 ≥ 0 by combinations of exponentials. It is known (Dufresne, 2006) that ifX ∼ LogBeta(a, b, c),
c > 0 is fixed, b = κa for a fixed constant κ > 0, then

X
d→ x0 =

1
c

log
(
1 +

c

κ

)
as a → ∞.

Rescaling as necessary, and letting a ∈ N tend to infinity, we see that there is indeed a sequence of
combinations of exponentials which converges in distribution to any constant in R+.
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(b) Suppose FT (·) is continuous, and let {Tn} be a sequence of random variables converging
to T in distribution. Let ε > 0, and find points t1 < · · · < tm such that

FT (t1) < ε, FT (tj+1) − FT (tj) < ε ∀ j = 1, . . . ,m− 1, FT (tm) > 1 − ε.

Then there exists n0 such that

|FTn
(tj) − FT (tj)| < ε, j = 1, . . . ,m, ∀n ≥ n0.

This implies
|FTn

(t) − FT (t)| ≤ 2ε ∀t ∈ R.
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