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Summary 

Bayesian estimation of a collection of seemingly unrelated regressions, referred to as 

a ‘set of seemingly unrelated regressions’ is considered. The collection of seemingly 

unrelated regressions is linked by common coefficients and/or a common error 

covariance matrix. Gibbs samplers useful for estimating posterior quantities are 

described and applied to two examples – a set of linear expenditure functions and a 

cost function and share equations from production theory. 
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1. Introduction 

The seemingly unrelated regressions (SUR) model was introduced by Zellner (1962) 

to accommodate and take advantage of contemporaneous correlation in the errors of 

linear models that might otherwise appear unrelated.  Since then, it has been studied 

extensively (see surveys by Srivastava and Dwivedi (1979), Srivastava and Giles 

(1987), and Fiebig (2001)) and has become commonplace in economic applications 

involving joint estimation of a number of equations.  Such applications include joint 

estimation of equations for expenditures on different commodity groups (with 

repeated observations over households), joint estimation of production or cost 

functions and their corresponding first order equations for profit maximization (with 

repeated observation over firms), and various panel-data applications where several 

cross-sectional units are observed in a number of time periods. 

 In this paper, we are concerned with estimating a model that contains within it 

several SUR models. We are thus adding a third dimension to the conventional SUR 

model that typically has two dimensions, a number of equations and repeated 

observations on the variables in these equations.  We call the model that contains 

several SUR models “a set of seemingly unrelated regressions”. In the application that 

motivated this study, one involving estimation of household expenditure functions, 

the several SUR models are linked by a common coefficient vector.  The equations 

within each SUR model correspond to different expenditure categories, while the 

different SUR models correspond to households with different demographic 

compositions.  When considering linear expenditure functions derived from a Klein-

Rubin utility function with a common coefficient on supernumerary income, but with 

different subsistence levels for households with different demographic compositions, 

the demographic-specific coefficients vary over the SUR models whereas the 

demographic-invariant coefficients of income do not. A second application that we 

also consider in this paper relates to estimation of factor share equations for a 

production function, using pooled cross section and time series data, with the 

coefficients assumed constant over time except for the intercept and the trend 

coefficients which are time-varying.   

 Our approach is Bayesian.  Given the intractability of the joint posterior 

density function for all unknown parameters, we are interested in deriving convenient 
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conditional posterior densities that can be used within a Gibbs sampler for sampling 

from the joint posterior density.  Bayesian estimation of the SUR model was first 

considered by Zellner (1971) with analytical results for some special cases 

subsequently being derived by Dreze and Morales (1976), Richard and Tompa (1980), 

Richard and Steel (1988), and Steel (1992); importance sampling was suggested as a 

means for estimating marginal posterior density functions and their moments (Kloek 

and van Dijk, 1978).  More recently, the application of Markov-Chain Monte Carlo 

(MCMC) methodology to the SUR model, under various assumptions, has been 

considered by Percy (1992, 1996), Chib and Greenberg (1995), Griffiths and 

Chotikapanich (1997), and Smith and Kohn (2000, 2002).  Previous work on a set of 

models seems to have been confined to sampling-theory estimation of models with 

error components to handle the different cross-section and time-series dimensions.  

See, for example, Baltagi (2001, Chapter 6) and references therein.  In our work, each 

set is allowed to have a different unrestricted error covariance matrix. 

 The outline of the paper is as follows.  In Section 2, we begin by considering 

the traditional SUR model with non-informative prior. In addition to reviewing the 

normal and inverted Wishart conditional posterior densities that are typically used for 

drawing posterior observations on the coefficients and error covariance matrix, 

respectively, we suggest an alternative Gibbs sampler that does not require drawing 

observations on the error covariance matrix.  In the second part of Section 2, we 

describe Gibbs samplers that can be used for a set of SURs. The techniques are 

applied to estimation of equivalence scales from expenditure systems in Section 3 and 

to estimation of the parameters of a translog cost function in Section 4.  Some 

concluding remarks are made in Section 5.  Proofs of results are given in an appendix 

to the paper. 

2. Models and Gibbs Samplers 

2.1 The Traditional SUR Model 

To introduce the various Gibbs samplers relevant for a set of SUR models under 

alternative assumptions, we begin with the traditional SUR model with M equations 

written as 
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  1, 2, ,i i i iy X e i M= β + = …                 (1) 

where  is a T-dimensional vector of observations on a dependent variable, iy iX  is a 

 matrix of observations on  non-stochastic explanatory variables, possibly 

including a constant term,  is a -dimensional vector of unknown coefficients that 

we wish to estimate, and  is a T-dimensional unobserved random vector. The M 

equations can be combined into one big model written as 

( iT K× )

1

2

M M

e

e

⎤
⎥
⎥+ ⎥
⎥
⎥⎦

#

)

iK

iβ iK

ie

                  (2) 

1 1 1

2 2 2

M M

y X e

y X

y X

β⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢β⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢β⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

# % #

that we then write compactly as 

                      (3) y X e= β+

where y is of dimension ( , X is of dimension 1TM × ( )TM K× , with , 

the vector β  is (
1

M
iiK K== ∑

)1K ×  and e is ( )1TM × . We assume the distribution for e is given by 

                     (4) ( )~ 0, Te N IΣ⊗

Thus, the errors in each equation are homoskedastic and not autocorrelated. There is, 

however, contemporaneous correlation between corresponding errors in different 

equations. The variance of the error of the i-th equation we denote by , the i-th 

diagonal element of Σ. The covariance between two corresponding errors in different 

equations (say i and j), we write as 

iiσ

ijσ ; the ijσ  appear as off-diagonal elements of Σ. 

 Using ( ).f  as generic notation for a probability density function (pdf), the 

likelihood function for β  and Σ can be written as 
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( ) ( ) ( )( )

( )

/ 2/ 2

/ 2/ 2 1

1| , (2 ) exp
2

1(2 ) exp tr
2

TMT
T

TMT

f y y X I y X

A

−− −1

−− −

⎧ ⎫′β Σ = π Σ − − β Σ ⊗ − β⎨ ⎬
⎩ ⎭

⎧ ⎫= π Σ − Σ⎨ ⎬
⎩ ⎭

 (5) 

where A is an ( )M M×  matrix with -th element given by ( , )i j

  [ ]      (6) ( ) (i i i j j jij
A y X y X′= − β − β )

 The conventional non-informative prior for ( ),β Σ , and the one we shall 

employ throughout the paper, is (see for example, Zellner 1971, Ch. 8), 

  ( ) ( ) ( ) ( 1) / 2, Mf f f − +β Σ = β Σ ∝ Σ      (7) 

The marginal posterior pdf for β , obtained by combining the prior in (7) with the 

likelihood in (5), and integrating out Σ, is 

  ( ) / 2| Tf y A −β ∝        (8) 

For this posterior pdf to be proper, the sample size T must satisfy the condition 

, where ( *rankT M X≥ + ) ( )*
1 2, , , MX X X X= … . See Griffiths et al (2002) for a 

proof.  

 The posterior pdf ( ) / 2| Tf y A −β ∝  is analytically intractable in the sense that 

marginal posterior pdf’s for the individual elements in β , and their moments, cannot 

be readily derived. Thus, estimation of this pdf and its moments via MCMC is an 

attractive alternative. The most common MCMC algorithm is a Gibbs sampler used to 

draw from the conditional posterior pdfs for ( )|β Σ  and ( )Σ | β . It can be shown that 

these pdfs are the following normal and inverted Wishart pdfs, respectively 

  ( ) 11 ˆ| , exp ( ) ( ) ( )
2 Tf y X I X− ˆ⎧ ⎫′ ′β Σ ∝ − β−β Σ ⊗ β−β⎨ ⎬

⎩ ⎭
              (9) 
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  ( ) ( )( 1) / 2 11, exp tr
2

T Mf y A− + + −⎧ ⎫Σ | β ∝ Σ − Σ⎨ ⎬
⎩ ⎭

              (10) 

where  is the (sampling-theory) generalized least 

squares estimator.  

1 1 1ˆ [ ( ) ] ( )TX I X X I− − −′ ′β = Σ ⊗ Σ ⊗ T y

 Another possible Gibbs sampler can be obtained by considering the 

conditional posterior pdf for the coefficients of each equation iβ , conditional on the 

coefficients in the other equations, 1 1 1( , , , , , )i i i− − + M′ ′ ′ ′ ′β = β β β β… … , but not conditional 

on the covariance matrix Σ. By partitioning the posterior pdf ( ) / 2| Tf y A −β ∝  it can 

be shown that the conditional posterior pdf ( )| ,i if y−β β  is the multivariate t-

distribution 

  ( )
( ) /

2

( ) ( )| ,
i iK v

i i i i i i i
i i i

i

X Q Xf y v
s

− +

−

⎡ ⎤′ ′β −β β −β
β β ∝ +⎢ ⎥

⎣ ⎦

� �
�

2

,

            (11) 

where  is the idempotent matrix iQ 1( )i T i i i iQ I E E E E−
− − − −′ ′= −  with the [ (  

matrix  obtained by deleting the i-th column of 

1)T M× − ]

iE−

  [ ]1 1 1 2 2 2( ), ( ), , ( M M ME y X y X y X= − β − β − β… )

i

             (12) 

The degrees of freedom parameter is iv T K= − , the conditional mean is given by 

( ) 1
i i i i i iX Q X X Q y−′ ′β =� , and . 2 ( ) ( )i i i i i i i i is y X Q y X′= − β − β� �� / v

A proof of the result in equation (11) is given in the appendix.  

The mean iβ�  and inverse precision matrix ( 12
i i i is X Q X )−′�  can be found by 

regressing a “corrected”  on a “corrected” iy iX . The corrections are obtained by 

“subtracting out” , the influence of the residuals in the other equations. The 

required steps can be summarized as follows. 

iE−

1. Regress  and each of the columns of iy iX  on iE− , and compute the 

corresponding predictions 
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( )

( )

1

1

i i i i i

i i i i i

y E E E E yi

iX E E E E X

−∗
− − − −

−∗
− − − −

′ ′=

′ ′=

               (13) 

2. Construct the variables 

i i i i i

i i i i

y y y Q y

iX X X Q X

∗

∗

= − =

= − =

�

�
                (14) 

3. Regress  on iy� iX�  to obtain 

( ) ( )
1 1

i i i i i i i i i i iX X X y X Q X X Q y
− −′ ′ ′ ′β = =� � � � �              (15) 

and 

                (16) 
2 ( ) ( ) /

( ) ( )

i i i i i i i i

i i i i i i i

s y X y X v

y X Q y X v

′= − β − β

′= − β − β

� �� �� � �

� � / i

1

2

In some models there are cross-equation restrictions on some of the 

coefficients. Such is the case when theoretical considerations suggest the same 

coefficients appear in different equations, as is the case in the second of our 

applications in this paper. In these circumstances the conditional posterior pdfs for 

 and  can still be used in a Gibbs sampler, after redefining X in a suitable 

manner. As an example of how X can be redefined, consider the following two-

equation model with  common to each of the equations 

( | )β Σ ( | )Σ β

θ

  
1 11 12

2 21 22

y X X e

y X X e

= α + θ+

= δ+ θ+
                 (17) 

Writing these two equations jointly yields 

                 (18) 1 11 12

2 21 22

0

0

y X X e

y X X

α⎛ ⎞
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟

= δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟θ⎝ ⎠

1

2e
+

The Gibbs sampler that uses  and ( | )β Σ ( | )Σ β , now with ( , , )′ ′ ′ ′β = α δ θ , can proceed 

as before with X redefined as 
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   11 12

21 22

0

0

X X
X

X X
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

However, it is no longer straightforward to set up a Gibbs sampler by first 

integrating out Σ, and then considering the conditional posterior pdfs for , 

 and ( | . The conditional posterior pdfs for 

( | , )α δ θ

( | , )δ α θ , )θ α δ ( | , )α δ θ  and  can 

readily be derived as multivariate t distributions by defining ‘transformed dependent 

variables’  and 

( | , )δ α θ

1 1 12y y X∗ = − θ 2 2 22y y X∗ = − θ  and proceeding as we did previously to 

derive pdf’s analogous to the one in equation (11). The conditional posterior pdf for 

the common coefficients ( )| , ,f yθ α δ  remains a problem, however. It is still of the 

form / 2TA −  described in equation (8). To set up a Gibbs sampler involving , 

 and ( | , a Metropolis-Hastings step would be needed to draw from 

( | , )α δ θ

( | , )δ α θ , )θ α δ

( )| , ,f yθ α δ . 

2.2 A Set of SURs 

To motivate the idea of a set of SURs consider the first of our applications. We are 

estimating expenditure functions designed to explain household expenditure on 

several commodity groups. There is an equation for each commodity group and the 

equations for all commodity groups constitute an SUR model. Now suppose, as 

expected, our sample of households contains households with varying numbers of 

adults and children. We use the numbers of adults and children in a household to 

define a particular household type. For example, in our application we consider 8 

household types, 1 adult with 0, 1, 2 or 3 children and 2 adults with 0, 1, 2 or 3 

children. We are concerned with specifying a different SUR model for each household 

type. The collection of such SUR models we call a set of SURs. 

 To specify such a set, we return to equations (3) and (4) and rewrite them as 

                   (20) ( ) ( ) ( ) ( )h h hy X e= β + h

T                   (21) ( )( ) ~ 0,
hh he N IΣ ⊗
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for  where H is the number of SUR models (number of household types) 

in a set. The numbers of observations can be different in each of the SUR models. We 

denote them by , . The i-th equation in the h-th SUR model is written 

as 

1, 2, ,h = … H

HhT 1, 2, ,h = …

                   (22) ( ) ( ) ( ) ( )h i h i h i h iy X e= β +

where  is (( )h iy 1)hT × , ( )h iX  is ( )h iT K× , ( )h iβ  is ( 1)iK ×  and  is . For the 

complete model in equation (20), is 

( )h ie ( 1)hT ×

( )hy ( 1)hT M × , ( )hX  is ( )hT M K× ,  is ( 1  

and  is ( . 

( )hβ )K ×

( )he 1)hT M ×

 The parameters  and ( )hβ hΣ  in equations (20) and (21) are different in each of 

the SUR models, although we vary this assumption in the subsections to follow. If we 

specify independent non-informative priors for each model, 

  ( )( ) ( ), M
h h hf −( +1)/2β Σ ∝ Σ    1, 2, ,h H= …             (23) 

then, in terms of deriving posterior pdfs for the parameters, each of the SUR models 

can be treated separately. The Gibbs samplers described in Section 2.1 are relevant. If, 

however, a set of SUR models has parameters common to each SUR model, then a 

new set of conditional posterior pdfs is required for Gibbs sampling to proceed. We 

now consider two such situations. In the first some elements in ( )hβ  are common; in 

the second we also assume the error covariance matrices hΣ  are identical for all h.  

A set of SURs with common coefficient vector 

 The effect of household composition on expenditure patterns is often 

estimated by specifying a vector of intercepts that is different for each household type, 

while at the same time assuming a vector of income coefficients that is common to all 

household types. To accommodate common elements in ( )hβ , we partition it as 

, and partition  correspondingly, so that the SUR model in 

equation (20) can be rewritten as 

( )( , )h′ ′θ η ′ )h( ) ( ) ( )( ,h hX Z W=
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  ( ) ( ) ( ) ( ) ( )h h h hy Z W e h= θ + η+                 (24) 

The i-th equation in this SUR model we write as 

                  (25) ( ) ( ) ( ) ( ) ( )h i h i h i h i i h iy Z W e= θ + η +

Note that the vector  is indexed by i but not h. Thus, this coefficient vector is 

different for all equations within a given SUR model, but each SUR model has the 

same set of , 

iη

iη 1, 2,...,i M= . For example, in the household expenditure model that 

follows, the different equations represent expenditure on different commodity groups 

and the different SUR models correspond to different household compositions. The 

coefficient of income is different for each of the commodity groups, but the vector of 

income coefficients is assumed to be the same for each household composition. 

 The following notation will be useful for describing the conditional posterior 

pdf’s for this model.   

  

{ }

{ }

{ }

{ }

{ }

( )

( )

( )

| 1, 2, ,

|

| 1, 2, ,

| 1, 2, ,

|

h

h k

h

h

h k

h H

k h

Y y h H

h H

k h

−

−

θ = θ =

θ = θ ≠

= =

Σ = Σ =

Σ = Σ ≠

…

…

…

 

Using the non-informative prior pdfs in equation (23), the following conditional 

posterior pdfs can be derived. Proofs are given in the appendix.  

 The conditional posterior pdf for hΣ  is the inverted Wishart distribution 

  
( ) ( )( 1) / 2 11| , , , exp tr

2

1, 2, ,

hT M
h h h h hf Y A

h H

− + + −⎧ ⎫Σ θ η Σ ∝ Σ − Σ⎨ ⎬
⎩ ⎭

= …

   (26) 

where  is an hA ( )M M×  matrix with  element equal to  th( , )i j



 11

  [ ]           (27) ( ) (( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h h i h i h i h i i h j h j h j h j jij
A y Z W y Z W′= − θ − η − θ − η )

The conditional posterior pdf for ( )( ) | , , ,h h Y−θ θ η Σ  is multivariate normal 

           (28) 
( ) ( ) 1

1
( ) ( ) ( ) ( )

ˆ| , , , ~ ,

1,2, ,

hh h h h h T hY N Z I Z

h H

−
−

−
⎡ ⎤⎡ ⎤′θ θ η Σ θ Σ ⊗⎣ ⎦⎢ ⎥⎣ ⎦

= …

where 

              (29) ( ) ( )(1
1 1

( ) ( ) ( ) ( ) ( ) ( )
ˆ

h hh h h T h h h T h hZ I Z Z I y W
−

− −⎡ ⎤′ ′θ = Σ ⊗ Σ ⊗ − η⎣ ⎦ )

In the special case where η is a vector of slope coefficients and  are intercept 

coefficients, 

( )hθ

( )hZ is a matrix of dummy variables. It can be written as , 

where  is a  - dimensional vector of ones. Equations (28) and (29) simplify to 

( ) hh MZ I= ⊗ ιT

hTι hT

  ( ) 1
( ) ( )

ˆ| , , , ~ ,h h h h hY N T −
−

⎡ ⎤θ θ η Σ θ Σ⎣ ⎦                (30) 

and 

  ( )( )1
( ) ( ) ( )

ˆ
hh M h T h hI T y W− ′θ = ⊗ ι − η                (31) 

respectively. 

 The remaining conditional posterior pdf is that for the common coefficients η. 

It is the following multivariate normal pdf 

               (32) ( ) ( )
1

1
( ) ( )

1
ˆ| , , ~ ,

h

H

h h T h
h

Y N W I W
−

−

=

⎛ ⎞⎛ ′η θ Σ η Σ ⊗⎜ ⎟⎜⎜ ⎟⎝ ⎠⎝ ⎠
∑ ⎞

⎟

)

where 

             (33) ( ) ( )(
1

1 1
( ) ( ) ( ) ( ) ( ) ( )

1 1
ˆ

h h

H H

h h T h h h T h h h
h h

W I W W I y Z
−

− −

= =

⎡ ⎤′ ′η = Σ ⊗ Σ ⊗ − θ⎢ ⎥⎣ ⎦
∑ ∑
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The conditional posterior pdf’s in equations (26) through (33) can be readily used in a 

Gibbs’ sampling algorithm. 

 In Section 2.1 we showed that, for a single SUR model, it was possible to 

integrate out the error covariance matrix Σ, and then set up a Gibbs’ sampler 

involving multivariate t conditional posterior pdfs for the coefficients  from each 

equation. In the Appendix we investigate the consequences of a similar strategy for 

the model defined in equation (24) where we have a set of SURs with a common 

coefficient. We find that the conditional posterior pdfs for the 

iβ

( )h iθ  are multivariate t 

pdfs and those for the  are poly-t pdfs. iη

A set of SURs with common coefficient vector and common error covariance matrix 

Consider again the model in equation (24) 

  ( ) ( ) ( ) ( ) ( )h h h hy Z W e h= θ + η+                 (34) 

but this time with a common error covariance matrix Σ. That is, 

                   (35) ( )( ) ~ 0,
hh Te N IΣ⊗

We use the non-informative prior pdf 

  ( ) ( 1) / 2, , Mf − +θ η Σ ∝ Σ                  (36) 

Defining  and , the conditional posterior pdf for Σ is the 

inverted Wishart pdf, 

1
H

hhT == ∑ T A1
H

hhS == ∑

  ( ) ( )( 1) / 2 11, , exp tr
2

T Mf Y S− + + −⎧ ⎫Σ | θ η ∝ Σ − Σ⎨ ⎬
⎩ ⎭

             (37) 

The conditional posterior pdfs for ( )hθ  and η are identical to those in equations (28) 

and (32) except that  is replaced by Σ. These results follow immediately from the 

earlier ones after noting that the joint posterior pdf is  

hΣ
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( ) ( ) ( )( )

( )

( 1) / 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( 1) / 2 1

1, , exp
2

1exp tr
2

h

HT M
h h h h T h h h h

h

T M

f Y y Z W I y Z W

S

− + + −1

=

− + + −

⎧ ⎫′θ η Σ | ∝ Σ − − θ − η Σ ⊗ − θ − η⎨ ⎬
⎩ ⎭

⎧ ⎫= Σ − Σ⎨ ⎬
⎩ ⎭

∑

 

(38)

Also, it is worth noting that, with these assumptions, this set of SURs could be treated 

as a single SUR model. We can accommodate the parameters that are not common 

 by defining suitable dummy variables and then incorporating the products of the ( )hθ

( )hZ  and the dummy variables into the matrix . ( )hW

 Furthermore, it follows that we can integrate Σ out from equation (38) and 

then set up a Gibbs’ sampler involving multivariate t conditional posterior pdfs for 

 and . These pdf’s can be found from suitable partitionings of the posterior pdf ( )h iθ iη

( ) / 2, | Tf Y S −θ η ∝ . However, if some coefficients are common to more than one 

equation in each SUR model, a convenient partitioning of S that permits derivation of 

multivariate t student pdfs for all the coefficients cannot be found. 

3. Estimation of Household Equivalence Scales 

In the context of the notation introduced earlier, the first model we estimate can be 

written as a special case of equation (25). It is given by 

                 (39) ( ) ( ) ( ) ( )h i h i i h hy w= θ + η +  e

where  is a vector of expenditures on the  
( )h iy thi commodity group by households of 

type h and  is a vector of observations on income for households of type h. The 

intercept parameter  is assumed to vary over both commodity groups and 

household types. The slope coefficient 

( )hw

( )h iθ

iη , describing the response of expenditure to 

changes in income, is assumed to be different for different commodity groups, but the 

same for different household types. Using Australian household expenditure survey 

data, Griffiths and Valenzuela (2004) obtained maximum likelihood estimates of the 

parameters of this model and of functions of the parameters called equivalence scales. 

The model is known as an extended linear expenditure system (Lluch 1973, Kakwani 
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1977); it is derived from the so-called Klein-Rubin utility function where 

consumption of each commodity must exceed a subsistence level to generate utility, 

and a micro-consumption function that relates total expenditure to income. To 

accommodate the fact that larger households (those with more adults and/or children) 

need to consume more of a commodity before a subsistence level is reached, 

commodity-specific equivalence scales are included in the utility function as deflators 

of quantity consumed. The  thi commodity’s equivalence scale for household type h 

can be viewed as the proportional increase in consumption of that commodity that is 

needed for subsistence, relative to the consumption needed by a reference household. 

Let this commodity equivalence scale be denoted by ihφ . By definition, the 

equivalence scale for a reference household r is given by 1irφ = . In our study a 

reference household is taken as one with two adults and no children. Thus, for 

households with one adult and no children we would expect 1ihφ < . For those with 

two adults and a positive number of children, we would expect . Including 

equivalence scales in this way leads to intercepts that vary over household types, but 

income coefficients that do not, as represented in equation (39). In terms of the 

parameters of that equation, it can be shown that  

1ihφ >

   
( ) ( )

1 1

( ) ( )
1 1

1

1

M M

h i j i h j
j j

ih M M

r i j i r j
j j

= =

= =

⎛ ⎞
θ − η + η θ⎜ ⎟

⎝ ⎠φ =
⎛ ⎞

θ − η + η θ⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
              (40) 

where M is the number of commodity groups. Details of the utility function and the 

derivation of equation (40) can be found in Griffiths and Valenzuela (2004). 

 In addition to the commodity-specific equivalence scales, interest often centres 

on a general equivalence scale for household type h, defined as the proportional 

increase in income necessary to make the utility of that household equal to the utility 

level of the reference household. Denoting this general scale by hφ , it is possible to 

show that (Griffiths and Valenzuela 2004) 
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( ) ( )

1 1

1

1 1

1
1 1

i

M M

h j r j M
j j b

h ihM M i
r j r j

j j
w w

= =

=

= =

⎛ ⎞ ⎛ ⎞
θ θ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟φ = + − φ
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞

− η − η⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑
∏

∑ ∑
                (41) 

where  and  is the income level of the reference household. 

Equivalence scales are important devices for assessing the relative costs of living for 

households of different compositions. They are used by governments for assessing tax 

policies and welfare payments. For example, a comparison of equivalence scales for 

households with and without children is a popular means of representing the costs of 

raising children. Such costs are used for deciding the level of government support in 

income maintenance programs.  

1
/

M

i i
j

b
=

= η η∑ j rw

 A sample of 5532 households was drawn from the 1988-89 Household 

Expenditure Survey conducted by the Australian Bureau of Statistics. Eight types of 

households were considered, those with 1 adult and 0, 1, 2 and 3 children and 2 adults 

and 0, 1, 2 and 3 children. Expenditure was divided into 11 different commodity 

groups. Thus, in terms of our earlier notation, there are 8H =  different SUR models, 

each with 11M =  equations. The 11 different expenditure categories are listed in the 

first column of Table 1. The numbers of observations on each household type, 

, are given in the first row in the body of Table 1. The Gibbs sampler given 

by the conditional posterior pdfs in equations (26), (30) and (32) was used to generate 

18,000 observations on the parameters 

1 2 8, ,...,T T T

( )h iθ , iη  and hΣ . No convergence problems 

were encountered. After discarding 3,000 observations for a burn in, the remaining 

15,000 were used to estimate the posterior pdfs of the equivalence scales defined in 

equations (40) and (41). The general scales hφ  depend on a chosen level of income 

for the reference household, . Rather than condition on one value of , for the 

posterior pdfs for the general scales we used the empirical distribution of  to 

marginalise over this variable. Symbolically, the resulting posterior pdf for the general 

scale can be written as 

rw rw

rw

( | ) ( | , ) ( )
r r

h h r
w a

r rf Y f w Y f w
>

φ = φ∫ dw               (42) 
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In each Gibbs sampling iteration, a value for  was drawn from its empirical 

distribution and used along with the current drawings of the parameters to compute a 

value for . If a draw for  was such that income was less than subsistence 

expenditure, another draw for  was taken until the inequality  was satisfied, 

where  is total subsistence expenditure given by  

rw

hφ rw

rw rw a> r

ra

   
( )

1

1
1

M

r j
j

r M

j
j

a =

=

θ
=

− η

∑

∑
                 (43) 

 The estimated posterior means and standard deviations for the commodity-

specific and general equivalence scales appear in Table 1, and the complete posterior 

pdfs for the scales for food, clothing and housing are graphed in Figures 1, 2 and 

respectively. The posterior pdfs for the general scales appear in Figure 4. The relative 

magnitudes of the various scales are generally as expected. For example, the posterior 

means for the first three commodity groups in Table 1 suggest that the arrival of a 

child in a household of two adults increases housing costs by 49%, fuel & power costs 

by 22% and food costs by 24%. The arrival of two children increases costs further, but 

by lesser amounts. For example, relative to a childless couple, the cost increases are 

51%, 34% and 42% for housing, fuel & power and food, respectively. Housing costs 

for households with one adult are 82% of those for two adults while the corresponding 

figures for fuel & power and food are 67% and 53%, respectively. The estimated 

scales for alcohol and tobacco decline as the number of children in the household 

increases. It seems the presence of children in the household tends to influence 

expenses away from so-called ‘adult goods’.  

The relationships between the scales for different household types and their 

precision of estimation are seen clearly in the posterior pdfs graphed in Figures 1-4. 

The food scales are the most precisely estimated with distinct pdfs that have little 

overlap except for that from the pdf for (1,3)-type households. In general, estimation 

of scales for (1,3)-type households is relatively imprecise because of the smaller 

number of observations in this category. At the other end of the spectrum, the 

posterior pdfs for scales for (1,0)-type households are very sharp, reflecting the 

relatively large number of observations in this category. The scales for housing and 

clothing are less precisely estimated than those for food, and there is considerable 
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overlap of the pdfs for different household types. Nevertheless, their location shifts to 

the right as expected when larger numbers of household members are present. Similar 

remarks can be made about the pdfs for the general scales that appear in Figure 4; in 

this case the increased cost of running a 2-adult household relative to a 1-adult 

household is quite distinct, irrespective of the number of children present in the 

household.  

4. Estimating a Translog Cost Function 

The second application is a modification of the translog cost function and share 

equations estimated by O’Donnell and Woodland (1995) and Griffiths, et.al. (2000) 

for the Australian merino wool growing section.  These studies consider the constant 

returns to scale functional form  

0
1 1 1

ln ln 0.5 ln( ) ln( )
I I I

T T i i ij i j
i i j

C t w w
q = = =

⎛ ⎞
= α +α + α + α⎜ ⎟

⎝ ⎠
∑ ∑∑ w

I

                  (44) 

where C represents total costs, q denotes output, wi represents the price of input i,  

is a time trend used to capture the effects of exogenous technical change, and I is the 

number of inputs. The factor share equations obtained using Shephard’s lemma are 

Tt

1
ln

I

i i ij j
j

s w
=

= α + α∑       1, 2,...,i =                 (45) 

where  represents the cost share of input i.  It is clear from these equations that our 

assumed form of technical change is Hicks-neutral; factor shares are unaffected by 

technical change while unit cost decreases at a constant percentage rate. 

is

Our sample consists of 310 time-series and cross section observations on 

Australian merino wool growers, over periods 1952-53 to 1962-63 ( ) and 

1964-65 to 1975-76 ( ). Thus, data are available for a total of 23 years. 

Each observation in the original data set is a record of the average financial and 

physical characteristics for a group of firms. The number of groups of firms in each 

year varies, but it is equal to 12, 13 or 14. The data were used to construct 

observations on output (q), total cost (C), input prices (w) and input quantities.  Inputs 

1,2,...11Tt =

13,14,..., 24Tt =
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were grouped into one of four broad categories: land, capital, livestock and other 

inputs (including labour, equipment, materials and services). A more complete 

description of the data can be found in O’Donnell and Woodland (1995). 

The modification of the above model considered here is a replacement of the 

intercept and trend term in the cost function ( )0 T Ttα +α  with a time-varying intercept 

. The subscript h is in line with the notation used earlier. In this case, h refers to 

the  year. Having a different intercept for each year continues the assumption of 

Hicks-neutral technical change, but no longer imposes the restriction that unit costs 

decrease at a constant percentage rate. In the context of the discussion in Section 2, 

the cost function and 3 share equations make up an SUR model ( , we have a 

different SUR model for each year (

( )hθ

thh

4)

)

M =

23H = , and the collection of SUR models for all 

years we call a set of SUR models. The number of observations available in each year 

(  in our earlier notation) varies between 12 and 14. The intercept in the cost 

function is different for each model, but the other coefficients, the  and , are 

assumed to be constant over time and hence the same for each SUR model. Since 

getting a reliable estimate of a (4 × 4) error covariance matrix with only 12 or 14 

observations is somewhat ambitious, we assume identical error covariance matrices 

for each year, except for the following qualification. Each observation is based on an 

average from a group of firms. The number of firms used to create each average 

varies. To accommodate the fact that averages for large groups are more reliable than 

averages from small groups, we assume that the (4

hT

iα ijα

4)×  error covariance matrix is 

given by  where  is the number of firms used to form the average for the / hjNΣ hjN

thj  observation ( 1, 2,..., )hj T=  in the  year thh ( 1, 2,..., 23)h = . After multiplying the 

 observation on all variables by th( , )h j hjN , the covariance matrix for the 4-

dimensional transformed error term is Σ . 

Before making these assumptions explicit, some rearranging of the variables 

and the matrices defined earlier is necessary to impose homogeneity and symmetry 

restrictions and to allow for the fact that the same iα and ijα appear in more than one 

equation. Linear homogeneity and symmetry will be satisfied if  
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1
1

I

i
j=
α =∑                  (46) 

                           (47) 
1

0 ( 1,..., )
I

ij
j

i
=
α = =∑ I

3

1 2

x
x x

( , 1,..., )ij ji i j Iα = α = .              (48) 

Introducing these restrictions, defining appropriately transformed variables and 

adding error terms leads to the following system of four equations (note the equation 

for the fourth share is redundant) 

1 2 3 4 5 6 7 8 9 1

1 1 2 3 2

2 2 1 3

3 3 4

1
1 0 0 0 0 00
0 1 0 0 0 00
0 0 1 0 0 00

h

y x x x x x x x x x e
s x x x e
s x x e
s x e

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= θ + η+
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

           (49) 

where 1 2 3 11 22 33 12 13 23( , , , , , , , , , )′η = α α α α α α α α α , ( )1 1 4ln /x w w= ( )2 2 4ln /, x w w=

ln /

, 

( )3 3 4x w w= ( ) 4ln / lny C q w= −

h

, , 

))(ln(ln)(ln5.)(ln5. 41
2

4
2

14 wwwwx −+=  

))(ln(ln)(ln5.)(ln5. 42
2

4
2

25 wwwwx −+=  

))(ln(ln)(ln5.)(ln5. 43
2

4
2

36 wwwwx −+=  

2
44241217 )(ln))(ln(ln))(ln(ln))(ln(ln wwwwwwwx +−−=  

2
44341318 )(ln))(ln(ln))(ln(ln))(ln(ln wwwwwwwx +−−=  

2
44342329 )(ln)ln(ln)(ln))(ln(ln))(ln(ln wwwwwwwx +−−=  

If the variables  in equation (49) are vectors of length , containing all 

observations for the  year, then this equation fits the structure of equation (24), 

and can be written as 

( , ,1, )i i iy s x hT

thh

  ( ) ( ) ( ) ( ) ( )h h h hy Z W e= θ + η+                 (50) 
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However, our assumption about the nature of the heteroskedasticity induced by the 

different numbers of firms used to construct each observation means that the 

covariance matrix for  will be given by ( )he

  ( )( ) ( ) ( )h h hE e e N′ = Σ⊗                  (51) 

where  is the diagonal matrix ( )hN ( ) 1 2diag( , ,..., )
hh h hN N N NhT= . To overcome this 

problem we apply a Gibbs’ sampler to the transformed model 

                  (52) ( ) ( ) ( ) ( ) ( )h h h hy Z W e∗ ∗ ∗= θ + η+ h
∗

h hwhere , 1/ 2
( ) ( ) ( )( )

hh T hy I N y∗ −= ⊗ 1/ 2
( ) ( ) ( )( )

hh T hZ I N Z∗ −= ⊗ , , 

 and . Note that the 

covariance matrix for the transformed error term in (52) is 

1/ 2
( ) ( ) ( )( )

hh T hX I N X∗ −= ⊗ h

) h hT
−1/ 2

( ) ( ) ( )(
hh T he I N e∗ −= ⊗ 1/ 2 1/ 2 1/ 2 1/ 2

( ) 1 2diag( , ,..., )
hh h hN N N N− − −=

( )( ) ( ) hh h TE e e I∗ ∗ ′ = Σ⊗ . 

 The Gibbs’ sampler described in and below equation (37) was used to generate 

23000 observations with 3000 discarded as a burn in. The posterior means and 

standard deviations for the , hθ iα  and ijα  appear in Table 2. The posterior pdfs of 

some economic quantities of interest are graphed in Figures 5, 6 and 7.  Figure 5 

contains the posterior pdfs of four technical change coefficients that approximately 

equidistant in time,  and 2 9 15, ,θ θ θ 22θ .  If the assumption of a constant percentage 

decline in unit costs is a reasonable one, the four posterior pdfs for the  should be 

approximately equidistant. What we find is that the posterior pdfs for  and  are 

approximately the same, and those for 

hθ

9θ 15θ

2θ  and 22θ  are approximately equidistant on 

each side of those for  and . The assumption has some merit, but may be too 

restrictive when all years are considered. 

9θ 15θ

 Figure 6 contains the posterior pdfs for the input demand elasticities for capital 

 and livestock  evaluated at the input means. These quantities are defined as  2( )η 3( )η

   1 2ii
i i

i

s i
s
α

η = + − = ,3  
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where the shares  are also evaluated at the input means. The capital elasticity is 

much larger (in absolute value) and more precisely estimated than that for labour. The 

posterior pdf for the labour elasticity suggests its value could be positive or negative, 

although the posterior probability of a (realistic) negative value is still high. Finally, in 

Figure 7 we plot two quite different posterior pdfs for two input substitution 

elasticities, that for land and capital 

is

12( )ε  and that for capital and livestock . 

These elasticities are defined as  

23( )ε

  1ij
ij

i j

i j
s s
α

ε = + ≠  

We find that  is precisely estimated and relatively large whereas there is 

considerable uncertainty about the value of 

12ε

23ε . 

5.    Concluding Remarks 

Bayesian estimation of a set of seemingly unrelated regression models that are linked 

by common coefficients and/or a common covariance matrix has been considered. 

Building on alternative Gibbs’ samplers that can be used for the case of a single SUR 

model, we explored various alternatives that can be employed when we have several 

models with common parameters. Samplers that involve the error covariance matrix 

as well as those obtained after integrating out this covariance matrix were considered. 

The results from two examples of applications were presented. The first was designed 

to obtain posterior pdfs for commodity and general household equivalence scales that 

are functions of the parameters in a linear expenditure system. In the second, posterior 

pdfs describing the changing impact of technical change in a translog cost function, 

and input demand and substitution elasticites were estimated. 
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Appendix 

Derivation of the conditional posterior pdf for ( | , )i if y−β β  given in equation (11)  

The starting point for derivation of the conditional posterior pdf ( | , )i if y−β β  is the 

marginal posterior pdf for the complete vector β  

  ( ) / 2 / 2| T Tf y A E E− −′β ∝ =                (A1) 

where 

  [ ]1 1 1 2 2 2( ), ( ), , ( M M ME y X y X y X= − β − β − β… )

1)

            (A2) 

For convenience, suppose the columns of E are reordered such that the i-th column 

comes first, followed by the remaining (M −  columns, such that we can partition E 

as 

   [( ), ]i i i iE y X E−= − β                (A3) 

Then,  

  
( ) ( ) ( )

( )
i i i i i i i i i i

i i i i i i

y X y X y X E
A

E y X E E
−

− −

′ ′− β − β − β

−

⎡ ⎤
= ⎢ ⎥′ ′− β⎣ ⎦

            (A4) 

Using a result on the determinant of a partitioned matrix, we have 

( )1( ) ( ) ( ) ( ) ( )i i i i i i i i i i i i i i i i i iA E E y X y X y X E E E E y X−
− − − − − −′ ′ ′ ′ ′= − β − β − − β − β

i i

  (A5) 

Defining  and 1( )i T i i iQ I E E E E−
− − − −′ ′= − 1( )i i i i i iX Q X X Q y−′ ′β =� , the second term on 

the right side of the above equation can be written as  

        (A6) 

1( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) (

i i i i i i i i i i i i i i i i

i i i i i i i

i i i i i i i i i i i i i i

y X y X y X E E E E y X

y X Q y X

y X Q y X X Q X

−
− − − −′ ′ ′ ′− β − β − − β − β

′= − β − β

′ ′ ′= − β − β + β −β β −β� � � )�

Substituting these results into the equation ( ) / 2 / 2| Tf y A E E− ′β ∝ = T− , and letting 

i iE E− −′  be absorbed into the proportionality constant, we can write 
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( ) ( ) /2
1

( ) / 2

2

| , [ ( ) ( )]

( ) ( )

i i

i i

K v
i i i i i i i i i i i

K v

i i i i i i i
i

i

f y v s X Q X

X Q Xv
s

− +
−

− +

′ ′β β ∝ + β −β β −β

⎡ ′ ′β −β β −β
∝ +⎢ ⎥
⎣ ⎦

� ��

� �
�

2

⎤

) / iv�

            (A7) 

where  and .  This pdf is in the form of a 

multivariate t-distribution with degrees of freedom , location vector , and inverse 

precision matrix .   

i iv T K= − 2 ( ) (i i i i i i i is y X Q y X′= − β − β��

iv iβ�

2 1( )i i i is X Q X −′�

Derivation of conditional posteriors for hΣ , ( )hθ  and η in equations (26), (28), (32)  

The complete likelihood function for all SUR models in the set is given by 

( ) ( ) ( )( )

( )

/ 2 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

/ 2 1

1

1| , , exp
2

1exp tr
2

h

h

h

H T
h h h h h h T h h h

h

H T
h h h

h

f Y y Z W I y Z W

A

− −

=

− −

=

h
⎡ ⎤⎧ ⎫′θ Σ η ∝ Σ − − θ − η Σ ⊗ − θ − η⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

⎡ ⎤⎧ ⎫= Σ − Σ⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

∏

∏

 

(A8)

from which we obtain a joint posterior pdf given by 

( ) ( ) ( )( )

( )

( 1) / 2 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( 1) / 2 1

1

1, , exp
2

1exp tr
2

h

h

h

H T M
h h h h h h T h h h

h

H T M
h h h

h

f Y y Z W I y Z W

A

− + + −

=

− + + −

=

h
⎡ ⎤⎧ ⎫′θ η Σ | ∝ Σ − − θ − η Σ ⊗ − θ − η⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

⎡ ⎤⎧ ⎫= Σ − Σ⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

∏

∏

 

(A9)

It is immediately clear that the conditional posterior pdf for hΣ  is given by 

  ( ) ( )( 1) / 2 11| , , exp tr
2

hT M
h h hf Y A− + + −

h
⎧ ⎫Σ θ η ∝ Σ − Σ⎨ ⎬
⎩ ⎭

          (A10) 

For the conditional posterior pdf for ( )hθ , we note that  

( ) ( ) ( )( )1
) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1, , , exp
2 hh h h h h h h T h h h hf Y y Z W I y Z W−

( −
⎧ ⎫′θ | θ η Σ ∝ − − θ − η Σ ⊗ − θ − η⎨ ⎬
⎩ ⎭

 

The term in the exponent of this pdf can be written as 
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( ) ( )( )

( )
( )

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) (A

ˆ ˆ( ) ( )

h

h

h

h h h h h T h h h h

h h h h T h h h

h h h h h T h h h h

y Z W I y Z W

Z I Z

y Z W I y Z W

−

−

−

′− θ − η Σ ⊗ − θ − η

′ ′= θ − θ Σ ⊗ θ −θ

′+ − θ −

11)

η Σ ⊗ − θ − η

 

where 

   ( ) ( )( )1
1 1

( ) ( ) ( ) ( ) ( ) ( )
ˆ

h hh h h T h h h T h hZ I Z Z I y W
−

− −⎡ ⎤′ ′θ = Σ ⊗ Σ ⊗ − η⎣ ⎦

Absorbing the exponent of the second term in (A11) into the factor of proportionality, 

we have 

( ) ( ) ( ) (1
) ( ) ( ) ( ) ( ) ( ) ( )

1 ˆ ˆ, , , exp
2 hh h h h h h T h h hf Y Z I Z−

( −

⎧ ⎫′ ′θ | θ η Σ ∝ − θ −θ Σ ⊗ θ −θ⎨ ⎬
⎩ ⎭

)         (A12) 

which is the normal distribution specified in equation (28). 

 To recognize the form of the conditional posterior pdf for η , we first note that, 

from (A9), this pdf can be written as 

( ) ( ) ( )( )1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1| , , exp
2 h

H

h h h h h T h h h h
h

f Y y Z W I y Z W−

=

⎧ ⎫′η θ Σ ∝ − − θ − η Σ ⊗ − θ − η⎨ ⎬
⎩ ⎭

∑  

(A13) 
The term in the exponent can be written as 

                  (A14) 

( ) ( )( )

( ) ( )( )

( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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1
( ) ( )

1

ˆ ˆ

ˆ ˆ
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−

=

′− θ − η Σ ⊗ − θ − η

′= − θ − η Σ ⊗ − θ − η

⎡ ⎤′ ′+ η−η Σ ⊗ η−η⎢ ⎥⎣ ⎦

∑

∑

∑

where 

          (A15) ( ) ( )(
1

1 1
( ) ( ) ( ) ( ) ( ) ( )

1 1
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H H

h h T h h h T h h h
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W I W W I y Z
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− −
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∑ ∑ )
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Absorbing the exponent of the first term in (A14) into the proportionality constant in 

(A13) yields the multivariate normal distribution given in equation (32), namely 

 ( ) ( ) ( ) ( )1
( ) ( )

1

1 ˆ ˆ| , , exp
2 h

H

h h T h
h

f Y W I W−

=

⎧ ⎫⎡′ ′η θ Σ ∝ − η−η Σ ⊗ η−η⎨ ⎬⎢⎣ ⎦⎩ ⎭
∑ ⎤

⎥          (A16) 

Derivation of conditional posterior pdfs after integrating out the hΣ  

Integrating the  out of the joint posterior pdf in equation (A9) yields hΣ

  ( ) / 2

1
, | h

H T
h

h
f Y A −

=
θ η ∝∏              (A17) 

It is interesting to ask what happens if we use (A17) to derive conditional posterior 

pdfs for the  and η. ( )hθ

 If we write the model as 

                (A18) ( ) ( ) ( ) ( )h h hy Z e∗ = θ + h

where 

  ( ) ( ) ( )h h hy y W∗ = − η               (A19) 

then the derivation in equations (A1) to (A7) holds separately for each of the 

equations in each of the SUR models, providing we replace  by  and  by 

. Thus, the conditional posterior pdf for 

iy ( )h iy∗
iβ

( )h iθ ( )h iθ  is the multivariate t distribution  

   ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 2

( )

| , ,

i hiK v

h i h i h i h i h i h i h i
h i h i hi

h i

Z Q Z
f Y v

s

∗ ∗− +

∗
−

⎡ ⎤′ ′θ − θ θ −θ⎢ ⎥θ θ η ∝ +⎢ ⎥
⎢ ⎥⎣ ⎦

� �

�

/ 2

−

    (A20) 

where, using obvious extensions of earlier notation, 

  ( ) 1

( ) ( ) ( ) ( ) ( )hh i T h i h i h i h iQ I E E E E
−

− − −′ ′= −             (A21) 
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  ( ) ( )1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h i h i h i h i h i h i h i h i iZ Q Z Z Q y W
−

′ ′θ = − η�           (A22) 

          (A23) ( ) ( )2 *
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) /h i h i h i h i h i i h i h i h i h i h i i his y Z W Q y Z W′= − θ − η − θ − η� �� v

∗and  where ,hi h iv T K∗ = − iK ∗  is the dimension of ( )h iθ . Equation (A20) holds for all 

equations in all SUR models and hence represents MH  conditional posterior pdfs. 

 For the conditional posterior pdf for iη  (the vector of coefficients of , 

assumed different for each equation, but the same for the i-th equation in all SUR 

models), we write the i-th equation in the h-th model as 

( )h iW

                (A24) 0
( ) ( )h i h i i iy W= η + e

where 

                (A25) 0
( ) ( ) ( ) ( )h i h i h i h iy y Z= − θ

The derivation in equations (A1) to (A7) can again be applied to each of the equations 

in each of the SUR models; this time with  replaced by  and iy 0
( )h iy iβ  replaced by . 

However, because  appears in each of the terms 

iη

iη hA  in equation (A17), the 

resulting pdf will be the product of H multivariate-t kernels. Specifically, 

 ( ) ( ) ( )
( )0 0 / 2

( ) ( ) ( ) ( ) ( )0
2

1 ( )

ˆ ˆ
| , ,

ˆ

i hiK v

H i h i h i h i h i i h i
i i hi

h h i

W Q W
f Y v

s

− +

−
=

⎡ ⎤′ ′η −η η −η⎢ ⎥η η θ ∝ +⎢ ⎥
⎢ ⎥⎣ ⎦

∏     (A26) 

where 

 ( ) ( )1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ h i h i h i h i h i h i h i h i h iW Q W W Q y Z
−

′ ′η = − θ            (A27) 

     (A28) ( ) ( )2 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ /h i h i h i h i h i h i h i h i h i h i h i h i his y Z W Q y Z W′= − θ − η − θ − η v

and  where 0 0
hi h iv T K= − 0

iK  is the dimension of iη . The pdf in equation (A26) belongs 

to a class of  poly-t densities. See, for example, Drèze (1977), Richard and 0H −
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Tompa (1980) and Bauwens and Richard (1985). Except in special cases, it is not 

possible to draw directly from such pdfs.  
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Table 1. Posterior Means and (Standard Deviations) of Equivalence Scales 

 Household Type (no. of adults, no. of children) 

 (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3) 

         
Sample size 1372 132 103 42 2074 532 889 388 
         
 Commodity Specific Scales 
  
Housing 0.823 1.026 1.148 1.280 1.000 1.488 1.516 1.650 
 (0.040) (0.084) (0.096) (0.225)  -  (0.092) (0.079) (0.100) 
         
Fuel & Power 0.673 0.920 1.063 1.110 1.000 1.216 1.343 1.439 
 (0.019) (0.052) (0.060) (0.137)  -  (0.040) (0.039) (0.050) 
         
Food 0.530 0.727 0.944 1.059 1.000 1.236 1.423 1.575 
 (0.013) (0.041) (0.048) (0.121)  -  (0.033) (0.032) (0.044) 
         
Alcohol & Tobacco 0.573 0.464 0.388 0.345 1.000 0.949 0.864 0.763 
 (0.034) (0.053) (0.060) (0.079)  -  (0.066) (0.063) (0.054) 
         
Clothing & Footwear 0.534 0.910 0.921 1.410 1.000 1.280 1.402 1.647 
 (0.049) (0.156) (0.156) (0.356)  -  (0.116) (0.112) (0.153) 
         
Household Furnishings 0.548 0.664 0.773 0.814 1.000 1.451 1.152 1.325 
     & Equipment (0.040) (0.083) (0.116) (0.242)  -  (0.138) (0.094) (0.111) 
         
Medical & Health Care 0.538 0.468 0.676 0.507 1.000 1.261 1.280 1.313 
 (0.042) (0.082) (0.123) (0.166)  -  (0.084) (0.057) (0.071) 
         
Transport 0.525 0.571 0.623 0.781 1.000 1.018 1.192 1.366 
 (0.039) (0.076) (0.095) (0.281)  -  (0.077) (0.077) (0.130) 
         
Recreation 0.538 0.576 0.513 0.827 1.000 1.029 1.285 1.369 
     & Entertainment (0.041) (0.099) (0.076) (0.249)  -  (0.105) (0.115) (0.146) 
         
Personal Care 0.542 0.781 0.972 0.734 1.000 1.194 1.291 1.176 
 (0.037) (0.100) (0.160) (0.168)  -  (0.095) (0.080) (0.093) 
         
Others 0.567 1.024 0.890 0.809 1.000 1.397 1.794 2.083 
  (0.065) (0.173) (0.118) (0.176)  -  (0.142) (0.190) (0.272) 
         
General Scales 

0.582 0.723 0.786 0.899 1.000 1.234 1.334 1.470 
 (0.022) (0.053) (0.056) (0.154) - (0.057) (0.055) (0.073) 
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Table 2.  Posterior Means and (Standard Deviations) for hθ , iα  and ijα  

Parameter 
 
 

 
Posterior  

means 
& std.devs 

 

Parameter 
 
 

Posterior  
means 

& std.devs  
 

Parameter 
 
 

 
Posterior  

means 
& std.devs  

 

1θ  -0.717 13θ  -0.869 1α  0.24148 

 (0.079)  (0.075)  (0.00567) 

2θ  -0.611 14θ  -1.087 2α  0.67164 

 (0.081)  (0.076)  (0.02181) 

3θ  -0.595 15θ  -0.919 3α  0.44929 

 (0.081)  (0.075)  (0.01236) 

4θ  -0.782 16θ  -1.185 11α  0.02161 

 (0.080)  (0.078)  (0.00068) 

5θ  -0.794 17θ  -1.169 22α  0.11583 

 (0.077)  (0.080)  (0.00682) 

6θ  -0.576 18θ  -1.022 33α  0.07679 

 (0.072)  (0.095)  (0.00222) 

7θ  -0.809 19θ  -1.328 12α  0.01673 

 (0.076)  (0.099)  (0.00095) 

8θ  -0.918 20θ  -1.135 13α  -0.00555 

 (0.076)  (0.080)  (0.00063) 

9θ  -0.941 21θ  -1.274 23α  -0.00737 

 (0.078)  (0.092)  (0.00268) 

10θ  -0.965 22θ  -1.267   
 (0.078)  (0.097)   

11θ  -1.005 23θ  -1.347   
 (0.077)  (0.098)   

12θ  -0.953     
 (0.075)     
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Figure 1: Posterior Distributions of Food Scales 
by Household Type
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Figure 2: Posterior Distributions of Clothing Scales for each 
Household Type 
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Figure 3: Posterior Distributions for Housing Scales
for each Household Type
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Figure 4: Posterior Distributions of General Scales by 
Household Type
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      Figure 5. Posterior Distributions for Technical 
Change Coefficients        
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Figure 6.  Posterior Distributions for Input Demand 
Elasticities
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Figure 7. Posterior Distrbutions for Elasticities 
of Substitution
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