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Many flows of practical interest occur at high Reynolds number, at which the flow in
most of the boundary layer is turbulent, showing apparently random fluctuations in
velocity across a wide range of scales. The range of scales over which these fluctuations
occur increases with the Reynolds number and hence high Reynolds number flows are
difficult to compute or predict. In this paper, we discuss the structure of these flows and
describe a physical model, based on the attached eddy hypothesis, which makes
predictions for the statistical properties of these flows and their variation with Reynolds
number. The predictions are shown to compare well with the results from recent
experiments in a new purpose-built high Reynolds number facility. The model is also
shown to provide a clear physical explanation for the trends in the data. The limits of
applicability of the model are also discussed.
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1. The mean velocity profile

The single most well-known (but not undisputed) classical relationship relating
to turbulent wall-bounded flows is the logarithmic dependence of the mean
streamwise velocity on the distance normal to the surface. Despite the continuing
controversy regarding this ‘law’, it is still the simplest description of the mean
velocity variation that is consistent with experimental data over a wide range of
flow conditions. It is discussed here since it is part of the classical description of
turbulent boundary layers and its derivation is a good example of the scaling
arguments and general approach used later. There are a variety of ways to derive
this variation, but here we will appeal to the simplest argument. In general, the
mean velocity in a turbulent wall-bounded flow will depend on the wall shear
stress, the kinematic viscosity of the fluid, the distance from the wall and the
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T. B. Nickels et al.808
thickness of the layer. The mean velocity itself, even far from the wall, will also
depend on the variation that occurs in the viscous-dominated sublayer and may
also be affected by the free-stream velocity. However, it is plausible that the
mean velocity gradient in the direction normal to the wall might depend only on
local conditions near the point of interest. Using this assumption, we can then
imagine a point far from the wall, where viscosity is no longer important, and
simultaneously far from the outer edge of the layer so that the outer velocity and
length-scale are irrelevant. Hence, the only relevant parameters are the wall
shear stress (or equivalently the wall shear velocity) and the distance from the
wall. Dimensional analysis then gives

dU

dz
Z

1

k

Ut

z
; ð1:1Þ

where U is the mean velocity at some distance z above the wall; UtZ
ffiffiffiffiffiffiffiffiffiffi
tw=r

p
is

the wall shear velocity; and k is the universal von Karman constant. tw is the
shear stress acting on the wall and r is the density of the fluid. Equation (1.1)
integrates to give the ‘log-law’, i.e.

UCZ
1

k
lnðzCÞCC ; ð1:2Þ

where UCZU/Ut and zCZzUt/n, where n is the kinematic viscosity of the fluid.
The data presented in §5 give strong support to this analysis. Note, however, that
some researchers dispute the existence of the log-law and offer other alternatives
(e.g. Barenblatt et al. 1997; George & Castillo 1997), but the authors of this paper
believe that this classical law has a sound theoretical basis and is well supported by
the data. The interested reader is directed to the references cited.
2. The attached eddy hypothesis

An attempt will be made here to summarize the main ideas behind the attached
eddy hypothesis of Townsend (1976) and the extension of that hypothesis to the
model of Perry & Chong (1982). The aim is to lay down the essential features of
the structure of turbulent boundary layers according to the model and point out
those that may be tested using the experimental results available.

In a book remarkable for its sheer density of original ideas, Townsend (1976)
laid out a model for the structure of wall-bounded equilibrium layers based on
arrays of large ‘eddies’. This was, in part, inspired by the success of similar
large eddies in explaining the correlation measurements of Grant (1958) in a
plane wake. These eddies may be thought of as the velocity fields of some
representative vortex structures.

Given the apparent success of the log-law in describing the mean velocity
profile, with characteristic insight Townsend notes, ‘it is difficult to imagine how
the presence of the wall could impose a dissipation length-scale proportional to
distance from it unless the main eddies of the flow have diameters proportional to
distance of their ‘centres’ from the wall, because their motion is directly
influenced by its presence. In other words, the velocity fields of the main eddies,
regarded as persistent, organized flow patterns, extend to the wall and, in a
sense, they are attached to the wall’. To put it more simply, any eddy with a size
Phil. Trans. R. Soc. A (2007)



809The attached eddy model
that scales with its distance from the wall may be considered to be attached to
the wall. Eddies further from the wall are larger in size and hence their velocity
fields still extend to the wall (of course the velocity fields of vortex structures
extend to infinity but they decay rapidly at large distances).

It is eddies of this type that form the basis of the attached eddy hypothesis.
The hypothesis itself is that the main energy-containing motion of a turbulent
wall-bounded flow may be described by a random superposition of such eddies of
different sizes, but with similar velocity distributions. These eddies should be
considered as statistically representative structures in that their geometry and
strength are derived from an ensemble average of many different structures
of similar scale. As such there may be no single eddy in the flow with this
precise structure (further explanation of this concept may be found in Nickels &
Marusic 2001).

Townsend then formed an expression for the contribution of a random
superposition of attached eddies of different sizes to the correlation functions
and, using the zero-penetration boundary condition at the wall, derived the
distribution of eddy sizes with wall distance necessary to produce the observed
invariance of the Reynolds shear stress ðuw=U 2

t Þ with distance from the wall.
This analysis effectively leads to a population density of eddies that varies
inversely with size and hence with distance from the wall. Simply, the number of
eddies of size z per unit wall area is A/z where A is a constant. Using this,
population density also leads to predictions for the variation of the other
(normal) components of the Reynolds stress, i.e.
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U 2
t
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z
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U 2
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ZC3; ð2:1Þ

where u2, v2 and w2 are the streamwise, spanwise and wall-normal components of
the Reynolds stress, respectively, d is the boundary layer thickness and C1, C2,
C3, D1 and D2 are constants. It may be noted that so far very little has been
specified about the eddies and the behaviour essentially arises due to the zero-
penetration boundary condition at the wall and the invariance ofKuw=U 2

t . The
choice of the detailed structure of the eddies changes the values of the constants.

The physical understanding of these relationships rests essentially on the fact
that the normal to the wall component and the shear stress component at a given
height, z, are mainly due to the influence of eddies with ‘centres’ at or close to z,
whereas the streamwise and spanwise fluctuations at a given distance from the
wall are due to all eddies with heights greater than z. That is why these
components increase as the distance from the wall is reduced: as we approach the
wall the number of eddies larger than our distance from the wall increases (see
Perry et al. 1986). Naturally, there is a limit to this increase since viscosity will
set a limit on the size of the smallest possible attached eddy. In the model of
Perry & Chong (1982), this limit is approximately 100 wall units (100n/Ut),
although its exact value is not critical.

The motions due to the larger eddies (well above the point of interest) are
mainly ‘sweeping’ or ‘sloshing’ motions which carry very little shear stress since
the scale of the flows is so large that they appear to be mostly parallel to the wall
on the scale of the local distance from the wall. It is these flows that Townsend
called ‘inactive’ since they carry little shear stress. It is important to note,
Phil. Trans. R. Soc. A (2007)
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however, that as Townsend explains ‘. the inactive flow at one level is an
essential part of active flow at other higher levels.’. In other words, when
measuring at a particular distance from the wall, z, the active motions come from
eddies with centres located at or near z, whereas the inactive motions are due to
eddies much larger than z. Which motions are considered active and inactive
depends on the location of the measurement.

The expressions above really only apply to the ‘main turbulent motion’, which
essentially relates to that regionwhere the important length-scale is distance fromthe
wall and the important velocity scale is the wall shear velocity, in other words the
log-law region. Since the size of the eddies scales with z and their velocities with Ut,
this is nicely consistent with the scaling arguments used to derive the log-law.

In order to proceed further, Townsend had to specify the detailed structure of
the eddies. He felt that conical eddies were appropriate and gave fairly good
agreement with available correlation measurements. He did note, however, that
‘Other possibilities exist, e.g. a distribution of shorter double-roller eddies of
various sizes each with a lateral extent comparable with distance from the wall.’

Perry & Chong (1982) developed a model for the mechanism of wall
turbulence in which the flow is made up of a superposition of attached eddies.
Rather than conical eddies, they had vortex loops in mind, in which the vortex
starts near or on the wall, rises above the wall and then bends back to meet the
wall again. These have variously been called hairpin eddies, horse-shoe eddies
and lambda eddies and are consistent with the flow visualization studies of
Head & Bandyopadhyay (1981). In the first part of their paper, they
concentrated on using such eddies to model the mean flow. They recognized
that the gradient of the mean velocity in the wall-normal direction is due to the
mean cross-stream (spanwise) vorticity component of the superposition of
attached eddies. Taking a random distribution of such eddies with a population
density that varies inversely with size (as in Townsend’s attached eddy model),
they found that the logarithmic velocity profile could be reproduced. As a result
of the similarity with the attached eddy model of Townsend, they also found the
same behaviour for the Reynolds stresses as in equation (2.1). In addition, they
considered the resulting spectral distribution of energy for the model and found
that, again primarily due to the population density, this results in a kK1

1 power
law spectrum for the streamwise velocity fluctuation (where k1 is the streamwise
wavenumber) in a region close enough to the wall. Perry & Chong (1982) also
made the connection between the spectra and the stresses and pointed out that a
kK1
1 spectrum integrates to give a logarithmic dependence of the streamwise stress

on the wall-normal position as given in equation (2.1). Note that a precise kK1

region in the spectrum is not necessary for the streamwise stress to exhibit a
logarithmic dependence since the integral is not sensitive to small departures
from this behaviour. It is also worth noting here that the particular conical eddies
favoured by Townsend would not produce a kK1

1 law in the streamwise
component and this is reflected in the equations for the stresses since the
conical eddies give D1Z0 in equation (2.1).

Physically, in terms of the attached eddy model, the occurrence of a kK1
1 region

in the spectrum can be explained in terms of the velocity signatures of attached
eddies. The argument follows the same reasoning as given above for the stresses.
At a given distance from the wall, z, a probe measuring streamwise or spanwise
fluctuations will only register contributions from eddies of size greater than or
Phil. Trans. R. Soc. A (2007)



811The attached eddy model
equal to z. The largest eddy contributing to the kK1
1 region may be expected to be

of size z0.1d (since this is the largest eddy within the logarithmic region of the
flow). The smallest eddy that contributes is of order of the distance from the
wall, z. If we then wish to estimate the length of the kK1

1 region, we find the ratio
of contributing scales is z0.1d/z. In order to see a decade of kK1

1 in the spectrum,
we would need 0.1d/zz10 and the distance from the wall would need to be
z/d!0.01. It turns out that this estimate is a little generous and the
measurements presented later show that the distance needs to be even less
(Nickels et al. 2005 estimated that z/d!0.002 is required for one decade). This
explains why Morrison et al. (2004) and McKeon & Morrison (2007) did not
observe any kK1

1 region in their spectrum since the lowest level examined was
z/dZ0.03 where a kK1

1 region in the spectrum cannot be expected. At this point,
the ratio of the largest to the smallest attached eddy in the turbulent wall region
and contributing to the streamwise stress is only three at the most.

A further point should be noted. While it is necessary to approach the wall
closely in order to observe kK1

1 behaviour, the closeness of approach is limited by
the effects of viscosity which become more important nearer the wall. Results,
to be presented later, suggest that these effects are quite small at zCR100.
McKeon & Morrison (2007) have examined this question in terms of the local
Reynolds number required to establish a Kolmogorov-type inertial range in the
spectrum. The idea is that a sufficient scale separation is required between the
large eddies in the flow and those responsible for the dissipation. This can be
related to the value of the Taylor microscale Reynolds number, Rl. McKeon &
Morrison (2007) consider previous research and available data and suggest a
value of RlR100 as a sufficient criterion.

This very brief summary of the attached eddy model and the developments of
it by Perry & Chong (1982) and others is sufficient to provide a basis for
understanding the predictions of this ‘classical’ approach for high Reynolds
number boundary layers. Note that the approach here is considered classical in
that it fits nicely within the classical framework for high Reynolds number
boundary layers in terms of the appropriate scaling arguments and underlying
structure. The physics follows logically from the derivation of the logarithmic
velocity variation for the boundary layer and it makes testable predictions for
the spectra and stresses. It should be noted here that this model has extensively
been refined and developed in the last 20 years and the reader is referred to
Perry & Marusic (1995) and Marusic (2001) for a summary of some recent
developments and further details of the model.

One refinement examined in Marusic (2001) was the incorporation of long
structures into the basic model. These structures lead to a low-wavenumber
‘hump’ in the streamwise spectrum which is not present in predictions from the
attached eddy model. Marusic (2001) found that this could be accounted for by
considering ‘packets’ of attached eddies, aligned in the streamwise direction, as
the basic structural unit of the flow. In the original model of Perry & Chong
(1982), individual eddies were considered uncorrelated and hence the longest
extent of streamwise correlation could only be of the size of the largest eddy in
the flow (of order d, the boundary layer thickness). This simple modification
leaves the general structure and predictions of the model unchanged but
replicates the contributions of these longer structures very well. Hence, the
presence of long structures is compatible with the attached eddy model. The size
Phil. Trans. R. Soc. A (2007)
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of this hump in the energy spectrum seems to increase with Reynolds numbers
for low Reynolds number flows (see Kim & Adrian 1999; Hutchins & Marusic
2007); however, indications are that this increase either stops or becomes quite
small beyond dCz10 000. This may be confirmed by examining fig. 4 in Nickels
et al. (2005) in which two Reynolds numbers are shown and, perhaps more
convincingly by comparing these results to those presented in McKeon &
Morrison (2007) in the Princeton superpipe. The Reynolds number differs by a
factor of two between these results (in different flows) and yet the height of the
low wavenumber hump is virtually the same (this does not, of course, preclude a
very slow growth in the height of the hump). A further comparison can be made
with other superpipe data presented in Morrison et al. (2004) in which the
Reynolds number is higher by a factor of 10. Here there appears to be a small
increase in the maximum height of the peak of approximately 15%. A final
comparison may be made with the atmospheric data of Kunkel & Marusic (2006)
in the atmospheric boundary layer. While these measurements (in common with
virtually all atmospheric data) suffer from lack of complete convergence at the
low wavenumbers, and hence have a very large scatter, it is still possible to make
a rough estimate of the height of the hump. These measurements with a
Reynolds number approximately 400 times as high as in Nickels et al. (2005) give
a best estimate of hump height only approximately 20% greater. It appears then
that if there is any increase at higher Reynolds numbers it is very small.
Particular attention has been paid to this issue since it has been suggested that
the growth of this peak might ‘swamp’ the occurrence of a kK1

1 region in the
spectra. This now seems unlikely at all terrestrial Reynolds numbers.
3. Measurements of boundary layers at high Reynolds number

In order to examine any predictions regarding the structure of turbulent boundary
layers at high Reynolds number, it is first necessary to make careful and accurate
measurements of such flows. These measurements are not trivial and can suffer from
uncertainties due to the establishment of the flow and the resolution of the
measurement technique. In this section, we discuss some of the issues relating to the
resolution of themeasurements before going on to examine the actual measurements
that have been made to test the predictions of the models discussed above.

Hot-wire anemometry is one of the most commonly used measuring techniques
for turbulence research. It involves measuring the heat transfer from a very small
heated wire and hence inferring the velocity of the fluid passing over the wire.
While the sensors used in turbulence research are very small (typically from 0.2 to
1 mm in length and 1 to 5 mm in diameter), they still have finite dimensions and
can only resolve motions in the flow larger than the wire length. Smaller motions
are spatially averaged over the length of the wire. Since the scales of motion in
turbulence at high Reynolds number can become very small, this spatial averaging
can lead to misleading results if it is not considered carefully. Eddies of smaller size
than the wire length will not fully contribute to the higher order statistics of the
flow. The inability to resolve these small eddies is relevant for turbulence
measurements of flows at high Reynolds number and for measurements close to
solid boundaries. This is a direct result of the reduction in the size of the small
scale viscous dissipative eddies and also a reduction in the size of the smallest
Phil. Trans. R. Soc. A (2007)
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anisotropic (‘attached’) eddy as the Reynolds number is increased. Ligrani &
Bradshaw (1987) carried out extensive normal hot-wire measurements in a
boundary layer flow with RqZ2620. Near-wall measurements with subminiature
normal hot-wire sensors revealed that a wire of length, lChlUt/n!20–25 is
sufficient to yield turbulence intensity measurements within 10% of the ‘true’
values all the way to the wall. They also suggested that wires with an aspect ratio
(length/diameter) of approximately 200 will produce a uniform temperature along
the wire length that will reduce the end conduction effects and improve the
temporal resolution of the wire. These limits are commonly used as a guide for
selecting sensors for the turbulence measurements. The effect of the sensor size in
turbulence measurements has also been investigated by Hites (1997) in a high
Reynolds number boundary layer. Normal hot-wire measurements were carried
out along a cylindrical model with a diameter of 45.7 cm and length of 900 cm.
Different wires with diameters ranging from 0.5 to 3.8 mm were tested at two
measuring stations. The first measuring station was located at 184 cm from the
tripping device. At this station Rq varied from 4100 to 9720, corresponding to
viscous length, n/Ut, of 26 to 11 mm. The second measuring station was 733 cm
from the tripping device with free-stream velocity of 28.6 m sK1, RqZ19 300 and
n/UtZ17 mm. Turbulence intensity profiles measured with two different wires,
lCZ6 and 31, which should not collapse due to the large difference in lC, showed
complete collapse. This implies that a wire length of lCZ30 is sufficiently small to
resolve these turbulent flows. This is inconsistent with the findings of Ligrani &
Bradshaw (1987). Given the inconsistency in the literature, the safest approach for
an experimentalist is to test for spatial resolution effects in the flow of interest by
using sensors of different sizes.
4. Apparatus and experimental techniques

The test facility was purpose built for the study of high Reynolds number,
turbulent boundary layers and consists of an open return blower wind tunnel
with a 27 m working length and a 2!1 m cross-section. The flow conditioning
consists of a honeycomb section, a perforated plate followed by six screens and a
contraction of area ratio 6.25, where the aspect ratio is held constant along the
length to minimize corner flow influences (Callan & Marusic 2001). The
maximum speed of the wind tunnel is 45 m sK1 and it has a free-stream
turbulence intensity of 0.05% (at 30 m sK1). Measurements were carried out for
boundary layers developing on the tunnel floor, which is covered by aluminium
plates of 6!2 m in size and 6 mm in thickness. The surface roughness of these
plates is 1.5 mm (r.m.s.) as measured with a Perthometer M3. Measurements for
the main study, developing flows, were limited to three reference unit Reynolds
numbersUN/nZ6.48!105, 1.33!106 and 1.94!106 per metre. They correspond to
nominal reference free-stream velocity, UN, of 10, 20 and 30 m sK1, respectively
(some measurements were also taken at 40 m sK1 for one downstream station).
Further measurements at matched Reynolds number, constant Rq, were carried
out at three reference unit Reynolds numbers of 6.48!105, 1.03!106 and
1.59!106 per metre, and the corresponding nominal reference free-stream velocity
of 10, 16 and 24 m sK1, respectively. Ambient flow conditions were measured using
a calibrated thermocouple and an electronic barometer.
Phil. Trans. R. Soc. A (2007)
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A nominally zero pressure-gradient was maintained along the working section
using a series of 1 m width adjustable ceiling panels. Air bleeding and adjusting
the height of these panels were the two mechanisms used to control the
streamwise pressure variation. A biplane screen, 25 mm square-mesh with 3 mm
wire diameter, was placed at the exit of the working section so as to increase
the pressure in the working section and facilitate the bleeding of air. The
adjustable ceiling panels were located sufficiently far from the plate such that
the flow near the boundary layer on the floor was as for a normal zero pressure-
gradient boundary layer. A similar technique was used by Marusic & Perry
(1995) to impose various pressure gradients on a boundary layer. Careful
measurements of their flow showed that the bleeding did not have any
detrimental effect on the normal development of the layer. It was possible to
maintain the pressure-coefficient (Cp) variation along the entire measuring
section of the tunnel, to within G0.7% for the 20 and 30 m sK1 cases, but for
the 10 m sK1 case, the Cp distribution varied by G1.0%. Mean flow velocity
profiles were measured using 1.0 mm total head Pitot tube and with single
normal hot-wires. The static pressure was measured by a static tube placed
approximately 25 mm above the total head tube. The Pitot tube readings were
corrected for the effect of shear using the MacMillan (1956) correction. The
Clauser chart technique was used employing traditional constants, kZ0.41 and
AZ5.0, to deduce local skin friction coefficient, CfZ2tw=rU

2
1 . After conducting

a careful study of tripping devices and locations, the decision was made to
trip all boundary layers developing along the inner surface of the contraction
using sandpaper sheets, grade 40 of 115 mm width, placed 750 mm upstream
from the exit.

The normal single sensor probe is a DANTEC 55P05 and was used with a
constant temperature anemometer system (AN-1003 from AA lab systems)
operating at an overheat ratio of 1.8. The frequency response of the system to a
2 kHz internal pulse was greater than 200 kHz. Wollaston wires are soldered to
the probe and etched to give a platinum filament with core diameters of 5.0
and 2.5 mm, with active lengths of approximately 0.9 and 0.4–0.6 mm,
respectively. A static calibration technique, with a third-order polynomial
curve fit, is used to convert the measured anemometer output voltage into
velocity. The normal hot-wire is statically calibrated against a Pitot–static
tube pair. The uncertainty in the wall distance is estimated to be G5 mm.
Hot-wire signals were sampled online using a Microstar 16 bit data acquisition
board model DAP3000a/21. Turbulence intensity measurements were taken in
bursts of 8000 samples and four bursts were found to be sufficient to obtain
results converged to within 1%. The signals were sampled at 200 Hz and
filtered at 20 kHz. The u -spectra were measured with calibrated normal wires
and the signals were sampled at 80 kHz and low-pass filtered at 32 kHz. Data
were sampled in bursts of 218 points and 500 bursts were found to give
converged results. More details regarding spectra measurements can be found
in Nickels et al. (2005). Taylor’s hypothesis of frozen turbulence was used
to transform the spectral argument from the frequency domain, f, to the
wavenumber domain k1, such that

k1 Z
2pf

Uc

; ð4:1Þ
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Figure 1. Log-law for highest Reynolds number (RqZ64 000) mean velocity profile. The symbol
size indicates the uncertainty in the measurements.
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where Uc is the local mean convection velocity, which is assumed to be equal to
the local mean velocity. The spectra were normalized such thatðN

0
f11ðk1Þdk1 Z u2 ; ð4:2Þ

where f11(k1) is the power spectral density (PSD) per unit streamwise wave-
number k1.
5. Results and discussion

(a ) Mean flow results

In order to demonstrate the applicability and extent of the logarithmic law
derived earlier, figure 1 shows the log-law compared with the variation of the
mean velocity for the highest Reynolds number boundary layer measured. The
log-law for these data certainly seems to be a good approximation over two
decades in wall distance where it lies well within the (small) uncertainty of the
data. Further measurements were made at eight streamwise stations with the
first station located 0.4 m after the tripping device and the last station at 21.7 m.
Detailed mean flow analysis can be found in Hafez et al. (2004). Mean flow
velocity profiles for the developing flow are shown in inner flow scaling in figure 2.
The profiles are also compared with the log-law of the wall employing traditional
constants. Apart from a slight overshoot within the buffer region, there is very
good collapse of the data in the turbulent wall region, TWR, across the
full Reynolds number range, 1.1!103!Rq!5.2!104. Here, the TWR is defined
Phil. Trans. R. Soc. A (2007)



Figure 2. Mean low-velocity profiles with inner flow scaling. Profiles are shifted up 5 units for the
20 m sK1, 10 units for the 30 m sK1 and no change for the 10 m sK1; dashed-line represents log-law,
kZ0.41 and AZ5.0. Reynolds number range: 1.1!103!Rq!5.2!104.
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as zCO100 and z/d!0.15. Outside the TWR, deviation from the log-law and
later blending with the background irrotational flow occurs smoothly. It should
be noted that the collapse of the data with inner scaling is due to the use of the
Clauser-chart method for estimating Ut. The logarithmic variation of the mean
flow, however, is unaffected by the method of analysis.
(b ) Streamwise stress

(i) Spatial resolution

Figure 3 shows the streamwise turbulence intensity profiles taken for positions
with the same Reynolds number (Rqz18 000), but with different wire lengths.
We might expect the attenuation to extend to a wall distance which is some
multiple of lC and an examination of the results suggests that the attenuation
starts to occur where zC!3lC, approximately. The 10 m sK1 case represents the
most resolved measurement in our study (lCz10 and 22 shown in the graph) and
the only small differences between the two different wire lengths are limited to
values of zC!60. This result is in agreement with the finding of Ligrani &
Bradshaw (1987), but not with Hites (1997). The data of Hites at RqZ19 000
(as discussed earlier), were measured with wires length lC of 6 and 31. Hites’
data gave a peak value of approximately 7.3 at about zCZ15, and roughly
constant value of 5.8 for 70!zC!700. These values agree well with the present
Phil. Trans. R. Soc. A (2007)



Figure 3. Effect of spatial resolution. Streamwise turbulence intensity profiles at the same Reynolds
number (Rqz18 000), but with different non-dimensional wire lengths.
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measurements at 24 m sK1 and wire length lC of 32.4, which is attenuated due to
spatial resolution. It is odd that the lCZ6 measurements appear to be
attenuated despite the nominally good spatial resolution. Another interesting
feature of the plots is that the highly attenuated profiles, lCZ35 and 53, can be
seen to have double peaks, one close to the wall and the other further away (the
peak for lCZ35 is harder to see on this plot due to the number of profiles shown).
This behaviour represents an attenuation of turbulence energy over a large
portion of the boundary layer. Similar trends have been observed in boundary
layer flows by Fernholz et al. (1995) and more recently by Morrison et al. (2004)
in which a peak is becomes apparent when lCO30: this is also when it becomes
apparent in the results shown above. This observation is consistent with an
explanation for its appearance as being due to insufficient spatial resolution. An
interesting feature of this second, spurious, outer peak in our results is that its
position depends on lC. In the case of lCZ35, it is at zCpZ170 and for lCZ53, it
is at zCpZ240. Since zCp varies with lC then if a wire of a fixed physical length
is used to measure a flow with changing Reynolds number (which leads to
changing lC) then the position of this peak will appear to be a function of
Reynolds number. This is an example of the way in which insufficient spatial
resolution can give misleading results. In the case of all of the other results
presented here, the worst spatial resolution of the hot-wire was lCZ32 and
conclusions are only based on measurements taken in regions of the flow where
the attenuation due to spatial resolution was negligible. Inadequate spatial
resolution is, then, one possible explanation for the appearance and movement of
Phil. Trans. R. Soc. A (2007)



Figure 4. Variation of the streamwise turbulence intensity at zCZ300 versus dC. Data compared
with the attached eddy prediction.
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the outer peak in the streamwise Reynolds stress observed by Fernholz et al.
(1995) and Morrison et al. (2004). Measurements with much smaller probes are
planned for the superpipe at Princeton and should help to resolve this issue.
(ii) Predictions of the attached eddy model

Since we are interested in predicting the behaviour of boundary layers at high
Reynolds number, it is useful to examine the prediction of the attached eddy
model for the variation of the streamwise stress with Reynolds number. Equation
(2.1) can be rewritten

u2

U 2
t

ZC1CD1log
d

z

� �
ZC1CD1log dCKD1log zC: ð5:1Þ

If we now examine a fixed value of zCZ300, say, then we have an equation for
the variation of the streamwise stress at this non-dimensional location with the
Reynolds number, dC. Figure 4 shows the result compared with the theory and
the agreement is quite good over about a decade in Reynolds number. There are
two reasons for choosing the value of zCZ300. The first is that this is far enough
from the wall for the effects of spatial resolution to be negligible for all the
measurements and the second is that Marusic et al. (1997) have shown that there
is a correction to the basic behaviour which varies approximately as (zC)K1/2

which is fairly small at zCZ300. There are actually several corrections which
account for viscous effects and outer flow effects, but these have been neglected
here since they are not significant in this case. These corrections should be seen
as refinements to the essential attached eddy model and approach. The reader is
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directed to the reference for further information. The value of D1 used here
should be universal and is the same as that used in Marusic et al. (1997) to
analyse other data (D1Z1.03). The model is particularly useful since it not only
gives a good prediction of the functional form of the relation but also, more
importantly, gives a simple physical explanation for the increase with Reynolds
number. Fixing zC and increasing the Reynolds number, dC means moving closer
to the wall since z/dZzC/dC. As noted earlier, moving closer to the wall leads to
an increase in the streamwise (and spanwise) stress due to the increased number of
eddies that are above the probe position and hence contribute to these quantities.
Kunkel & Marusic (2006) also showed that the logarithmic dependence is
apparent in the atmospheric boundary layer at dCz4!106—two orders of
magnitude higher than the measurements shown here (with the same
constant, D1). The model has also recently been extended by Marusic & Kunkel
(2003) to predict the near-wall peak of the streamwise stress that occurs in the
buffer region of the layer (at zCz15).
(iii) Spectra

As mentioned earlier, the attached eddy model as extended by Perry & Chong
(1982) also predicts a kK1

1 variation for the streamwise spectra. This variation can
also be derived from scaling arguments, but implicit in these arguments is a
structure consistent with the attached eddy model discussed here. Essentially, it
assumes that there is a range of sizes of eddies in the flow with characteristic
velocities that scale with Ut and with sizes that scale with z. From this basis there
are various ways of deriving the kK1

1 behaviour, for example an overlap argument
as used by Nickels et al. (2005). Essentially, the idea is that there is a range in
wavenumber space in which the effects of both viscosity and the outer length-scale
(e.g. the boundary layer thickness or the pipe radius) are negligible. The essential
feature of this region is that an overlap exists where both inner and outer scaling
are simultaneously valid. Inner scaling here refers to non-dimensionalization
using the length-scale z, the wall-normal position and the velocity scale Ut, the
friction velocity. Outer scaling uses the length-scale d, the boundary layer
thickness and the same velocity scale Ut. Inner scaling requires that

f11ðk1zÞ
U 2

t

Z
f11ðk1Þ
zU 2

t

Z f ðk1zÞ; ð5:2Þ

and outer flow scaling requires that

f11ðk1dÞ
U 2

t

Z
f11ðk1Þ
dU 2

t

Z f ðk1dÞ; ð5:3Þ

where f11(k1z) is the PSD of the streamwise velocity fluctuation per unit non-
dimensional wavenumber k1z. If there is a region where these two scalings are
simultaneously valid, then the streamwise spectrum (PSD) must vary as kK1

1 .
Figure 5 shows spectra measured in the Melbourne facility taken from Nickels
et al. (2005). The Reynolds number for this flow is dCz15 000, which is
comparable with the Reynolds numbers examined in McKeon & Morrison (2007;
figure 4) from the Princeton superpipe. In this plot, the spectra have been
premultiplied by k1 such that a plateau on the plot corresponds to the kK1

1
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Figure 5. Spectra showing kK1 region.
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behaviour. On this plot, which is scaled with the distance from the wall z, the
curves peel-off from the plateau as the wall-distance is increased—a behaviour
which is consistent both with the scaling arguments and the attached eddy model.
When plotted scaled with outer scaling, the profiles collapse at the low
wavenumber end and peel-off at the high end—consistent with the scaling
arguments and the attached eddymodel. The reader is directed to the reference for
more details regarding both the measurements and the conclusions drawn from
these measurements. For the purposes of this paper, it is sufficient to show that
there is a region of kK1 behaviour in the streamwise spectra and its appearance,
location and scaling are all consistent with the attached eddy model as discussed
here. An important point should be stressed here. The authors have chosen to
present the results premultiplied and in close up to show the variation of the levels.
Even the results that peel-off are quite close to kK1 behaviour if the numbers are
compared. When this plot is shown in non-premultiplied form in the usual way
(on log–log axes), the kK1 slope appears to cover almost two decades. That is why
the integration of the spectra still effectively gives logarithmic behaviour for the
stresses even where the close-up premultiplied spectrum appear to have peeled-off
from the kK1 plateau. The level shown that is closest to the wall is at zCZ100. As
mentioned earlier, it is important that the effects of viscosity should be small at
this level. Following the analysis of McKeon & Morrison (2007), it is possible to
work out the value of Rl at this level. The value is RlZ147 which comfortably
exceeds the minimum requirement of RlR100 as suggested in their paper.

It is also worth pointing out that the model predicts the same behaviour
for the spectrum of the spanwise velocity component, f22(k1), but different
behaviour for the spectrum of the wall-normal component, f33(k1). Using the
argument that the contributions to the wall-normal component come mostly
Phil. Trans. R. Soc. A (2007)
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from eddies of size z, we then expect inner scaling for f33(k1), but not outer
scaling and hence there is no overlap. Kunkel & Marusic (2006) have shown that
inner scaling does indeed collapse f33(k1), over a range of three orders of
magnitude in Reynolds number, whereas outer scaling does not work at all and,
as a result, there is no kK1 region apparent in the spectrum. This observation
provides additional support for the model.
6. Conclusions

It has been shown that the attached eddy model of the turbulent boundary layer
provides testable predictions of the behaviour of these flows at high Reynolds
numbers. It does this by postulating a particular underlying physical structure for
the flow and then developing the implications of such a structure for the
measurable statistical properties of the flow such as the mean velocity, the
Reynolds stresses and the spectra. While some of this behaviour might be
predicted based on other assumptions, the beauty of the model is that it ties
together scaling arguments, mean-flow behaviour, Reynolds stresses and spectra
in one internally consistent physical model. The empirical evidence presented here
is consistent with the predictions of the model and lends support to the underlying
ideas. The experiments presented for comparison are unique in providing well-
converged data measured with good spatial resolution at high Reynolds number.
High Reynolds number data of this quality are necessary in order to test the
predictions of this, and other, models. The quality of the measurements presented
here has been achieved through the careful design and construction of the purpose-
built high Reynolds number facility at the University of Melbourne.
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