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Perturbative behavior of a vortex in a trapped Bose-Einstein condensate
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We derive a set of equations that describes the shape and behavior of a single perturbed vortex line in
a Bose-Einstein condensate. Through the use of a matched asymptotic expansion and a unique coordinate
transform, a relation for a vortex’s velocity, anywhere along the line, is found in terms of the trapping, rotation,
and distortion of the line at that location. This relation is then used to find a set of differential equations that give
the line’s specific shape and motion. This work extends a previous similar derivation by Svidzinsky and Fetter
[Phys. Rev. A 62, 063617 (2000)], and enables a comparison with recent numerical results.
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I. INTRODUCTION

Experimental realizations of vortices in Bose-Einstein
condensates (BECs) [1–5] has spurred much research into the
behavior and effects that vortices have on a BEC [6,7]. Similar
to the vortices that Feynman predicted in superfluid He II [8],
vortices in BECs have quantized circulation, ensuring that the
condensate phase is a single-valued function (see Ref. [9] for
details). However, unlike in superfluid He II, the vortices in a
BEC are sufficiently described in the mean-field regime by the
Gross-Pitaevskii equation [10,11] with rotation [Eq. (1)],

[
− h̄2

2M
∇2 + Vtr (r) + g|�|2 − μ(�)

]
�

+ ih̄� · (r × ∇) � = ih̄
∂�

∂t
, (1)

where � is the condensate wave function, Vtr (r) is the external
trapping potential, � is the condensate rotation vector, g =
4πah̄2/M is the interparticle interaction strength, μ(�) is the
chemical potential, M is the particle mass, and a is the s-wave
scattering length.

In a stationary condensate, it is energetically unfa-
vorable to contain vortices; however, when � > �c =
5h̄ ln (R⊥/rc) /2MR2

⊥ (with R⊥ being the radius of the BEC
perpendicular to the rotation vector and rc being the vortex
core radius), a centered vortex becomes energetically favorable
[12]. Upon investigating the dissipation of such a vortex,
the vortex’s dissipation time was shown to depend on the
condensate’s temperature [13].

In a trapped BEC, a quantized vortex is rarely stationary,
usually moving or contorting. An off-centered straight-line
vortex is known to precess at φ̇ = 3�c/5(1 − ρ2

0/R2
⊥) (with

ρ0 being the cylindrical radial coordinate of the vortex line)
[12,14]. This straight structure is representative of a vortex
in a pancake-shaped condensate, R⊥/Rz > 1, where Rz is
the condensate radius parallel to the rotation vector. For
a cigar-shaped trap, R⊥/Rz < 1; however, the vortex line
bends. This result was shown numerically in Refs. [15,16],
seen experimentally by Rosenbusch et al. [17], and reasoned
physically by Modugno et al. [18]. A quantized vortex also
supports wave perturbations, coupling with and modifying
the normal modes of the condensate [19,20] or supporting
helical-wave structures, such as Kelvin waves [21], along its
length [10,22].

With such a wide range of behavior, a single set of equations
that completely describes the vortex has been desired. Early
attempts to derive this equation relied on the method of
matched asymptotic expansion [23,24]. This procedure was
extended by Svidzinsky and Fetter [25] to produce a set of
equations that should generally describe all small perturbations
from a straight-line vortex. This derivation used a coordinate
transform to account for vortex line bending; however, in its
execution, these coordinates were not formally defined, and the
outer and inner solutions matched through a pseudo “vector
potential.” This gave rise to a modified set of equations to those
that describe the vortex’s motion and structure.

This paper rederives this procedure to determine the
behavior and structure of a slightly perturbed straight-line
vortex, using coordinate transformations and the method
of matched asymptotic expansion. Section II justifies the
relevance and procedure of such an expansion, and Sec. III
defines the unique coordinate system used. An inner and outer
solution are then found (Secs. IV and V, respectively) and
matched (Sec. VI) to give a relation between the perturbed
vortex’s motion and shape. This relation contains an unknown
constant that is determined by comparing to known physical
scenarios (Sec. VII). This then allows simple results from the
relation to be calculated and compared to numerical simula-
tions (Sec. VIII). Finally, in Sec. IX, a general comparison
between this work and Ref. [25] is performed, illustrating the
differences in methodology and general results.

II. THE IDEA

BECs with vortices within them have two natural length
scales: the condensate length scale R⊥ and the vortex core
radius rc, with rc < R⊥. These two scales suggest that a
matched asymptotic expansion [26] can be performed to
determine the behavior near the vortex core, length scale rc, and
far from the vortex core, length scale R⊥, and matched to give
the system’s full behavior. Such an asymptotic expansion has
been previously preformed for vortices in simplified scenarios
in Refs. [23] and [24].

In the local coordinates of the vortex line, the inner solution
depends on properties of the vortex line, which when matched
to the outer solution creates a relation between the shape
and velocity of the line. This relationship then gives a set of
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FIG. 1. (Color online) Depiction of the local coordinate vectors
t̂, n̂, and b̂ of the curve c(T ) = {T 2/2,T 2/2,T }, with the coordinate
vectors plotted for T = 0 (red, lower set) and T = 1 (green,
upper set).

differential equations that describes the vortex line’s structure
and motion through space.

III. THE LOCAL COORDINATES OF THE VORTEX LINE

In a BEC, the localized vorticity from a vortex creates a
single vortex line. Each point on this line has a position and a
velocity; therefore, the vortex line, at a given time, is described
by two parametrized functions: a curve describing the line’s
shape and position, c(T ), and a velocity vector, V(T ). This
parametrization allows for the transformation into the local
coordinate system, with the curve c(T ) determining the axes
and V(T ) representing the line’s motion at a given point.

For any curve [c(T )], a tangent vector [Eq. (2)], a normal
vector [Eq. (3)], and a binormal vector [Eq. (4)] are defined;
see Fig. 1. These three orthogonal vectors form the basis to
the coordinate system of the curve, known as the Frenet-Serret
coordinates [27],

t̂ = c′(T )

|c′(T )| , (2)

n̂ = c′(T ) × [c′′(T ) × c′(T )]

|c′(T )| |c′′(T ) × c′(T )| , (3)

b̂ = t̂ × n̂. (4)

At a given T , such a basis is equivalent to the basis of a
Cartesian coordinate system, allowing the respective t̂, n̂, and
b̂ vectors to be locally treated as ẑ, x̂, and ŷ.

This local Cartesian behavior extends to the derivatives in
the n̂ and b̂ directions. Translations in these directions do not
change the basis vectors, and therefore the local derivatives
in n̂ and b̂ are identical to their Cartesian counterparts (∂n ≡
∂x,∂

2
n ≡ ∂2

x , etc.).
The curve progresses in t̂ causing the local derivatives in t̂

to not match its Cartesian equivalent. Using the chain rule, this
deviation can be quantified, showing the first-order derivatives
in t̂ to be

∂

∂T

∣∣∣∣
T =T0

= lim
T →T0

c′(T ) · ∇, (5)

from which higher-order derivatives can be constructed:

∂

∂T

(
∂

∂T

)∣∣∣∣
T =T0

= lim
T →T0

[c′′(T ) · ∇ + c′(T ) ⊗ c′(T ) : ∇ ⊗ ∇], (6)

where ⊗ represents the outer product and : represents a double
contraction.

In this case, the structure of the vortex line is unknown.
Therefore, in order to evaluate these derivatives, a pseu-
doparametrization, which describes the local behavior and can
take any shape, needs to be used.

Conveniently, any unique curve is defined through two
terms: curvature [Eq. (7)] and torsion [Eq. (8)]. These terms
describe how a curve bends and distorts through space,
irrespective of its location and choice of parametrization.
Curvature indicates how the curve bends in the t̂-n̂ plane (with
1/κ being the radius of a circle at a given point) and torsion
indicates how the curve twists out of the t̂-n̂ plane (how n̂ and
b̂ rotate as T progresses):

κ = |c′(T ) × c′′(T )|
|c′(T )|3 , (7)

τ = [c′(T ) × c′′(T )] · c′′′(T )

|c′(T ) × c′′(T )|2 . (8)

Generally, a curve’s torsion and curvature vary along its
length, allowing for all possible three-dimensional (3D) curve
structures to form. However, locally around any point the
torsion and curvature are effectively constant, prompting the
use of a modified helix for the pseudoparametrization of
the vortex line:

c(T ) = {a cos(T ),a sin(T ),bT } . (9)

Assuming the excitations on a vortex line are small com-
pared with the vortex’s overall structure, the curve’s tangent
vector will almost align with ẑ. This condition can be enforced
by adding appropriate linear terms to the parametrization to
make t̂|T =0 ≈ ẑ. This condition also implies that the length of
the curve is predominantly the length traveled in z (b is large);
this simplifies the renormalization of the parametrization, from
T into the arc length of the curve s ≈ z = bT . This is an easier
parametrization to work with, as curves parametrized by arc
length have |c′(s)| = 1.

Furthermore, helices have no variation in ρ. Hence for the
complete curve to take any form, a constant pseudocurvature k,
between ρ and z, needs to be added to the pseudoparametriza-
tion [with k being defined as ≈

√
ρ ′′(s)2 + z′′(s)2 ]. Keeping

013605-2



PERTURBATIVE BEHAVIOR OF A VORTEX IN A . . . PHYSICAL REVIEW A 86, 013605 (2012)

-1.0 X

-0.5
0.0

1.0

0.5

0.0 Z

-0.5

-1.0
0.2

0.0

-0.2
Y

FIG. 2. (Color online) Plot of the pseudoparametrization used
(dimensionless) [Eq. (10) with a = 1, k = 2, and b = 5].

the z(s) form [z(s) = s], ρ ′′(s) equals −k. Hence the pseu-
doparametrization becomes (Fig. 2)

c(s) =
{(

a − k

2
s2

)
cos

(
s

b

)
+ αs,(

a − k

2
s2

)
sin

(
s

b

)
−

(
a

b
− β

)
s,s

}
, (10)

where α and β are the small angles of deviation from ẑ in the
x̂ and ŷ directions, respectively, i.e., t̂|s=0 = {α,β,1}.

This parametrization makes the curvature, torsion, and
local derivatives in s, to the first order in α and β,

to be

κ = a

b2
+ k, (11)

τ = a + 3b2k

b(a + b2k)
, (12)

∂

∂s
→ ∂

∂z
+ α

∂

∂x
+ β

∂

∂y
, (13)

and
∂2

∂s2
→ ∂2

∂z2
− κ

∂

∂x
+ 2α

∂2

∂x ∂z
+ 2β

∂2

∂y ∂z
. (14)

This makes the gradient and Laplacian operators (∇′ and ∇′2)

∇′ = ∇ +
(

α
∂

∂x
+ β

∂

∂y

)
ẑ, (15)

and

∇′2 = ∇2 − κ
∂

∂x
+ 2α

∂2

∂x ∂z
+ 2β

∂2

∂y ∂z
, (16)

where ∇ has the standard Cartesian definition
(∇ = {∂x,∂y,∂z}).

Using these to transform the Gross-Pitaevskii equation
[Eq. (1)] into the local coordinates around a point on the vortex
line r0, assuming that � is in ẑ, and assuming that the vortex
line has no velocity in ẑ, the equation for the behavior near the
vortex core becomes

− h̄2

2M

(
∇2 − κ

∂

∂x
+ 2α

∂2

∂x ∂z
+ 2β

∂2

∂y ∂z

)
�

+Vtr (r0) � + g|�|2 � − μ(�) �

+� r ·
[
∇ +

(
α

∂

∂x
+ β

∂

∂y

)
ẑ
]

Vtr (r0)

+ ih̄(� × r0) · ∇� = ih̄

(
∂�

∂t
− V · ∇�

)
, (17)

where the trap terms have been expanded to the first order
(order rc), r is the position vector in the local coordinate
system, � is the rotation vector, and V is the velocity of the
vortex line at r0.

This equation describes the behavior of the condensate near
the vortex core in terms of the properties of the vortex core
itself. Hence, solving this equation gives the desired inner-
region behavior of the BEC.

IV. THE BEHAVIOR NEAR THE VORTEX CORE

The steady-state solutions of Eq. (17) describe a condensate
containing a vortex with standing waves along the line of the
vortex. Hence to determine a relation for these standing waves,
the inner equation to solve is

− h̄2

2M

(
∇2 − κ

∂

∂x
+ 2α

∂2

∂x ∂z
+ 2β

∂2

∂y ∂z

)
�

+Vtr (r0) � + g|�|2 � − μ(�) �

+� r ·
[
∇ +

(
α

∂

∂x
+ β

∂

∂y

)
ẑ
]

Vtr (r0)

= −ih̄V′ · ∇�, (18)

where V′ = V + (� × r0).
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The small nature of the wave perturbations gives four small
parameters (assumed to be of similar order) to use for a
perturbation expansion: κ , α, β, and rc. The zeroth-order terms
of this expansion describe a condensate with an unperturbed
vortex,[

− h̄2

2M
∇2 + Vtr (r0) + g|�0|2 − μ(�)

]
�0 = 0. (19)

The first-order terms account for the perturbations on the
vortex line,

− h̄2

2M
∇2�1 + Vtr (r0)�1 + 2g|�0|2�1 + g�2

0�∗
1 − μ(�)�1

= −h̄2κ

2M

∂�0

∂x
+ h̄2α

M

∂2�0

∂x ∂z
+ h̄2β

M

∂2�0

∂y ∂z

− ih̄V′ · ∇�0 − �0 r ·
[
∇ +

(
α

∂

∂x
+ β

∂

∂y

)
ẑ
]

Vtr (r0).

(20)

Only the far-from-core behavior of the inner solution is
used for matching. Hence, the large ρ =

√
x2 + y2 behavior

of Eq. (20) is required. In this regime, |�0| should be
cylindrically symmetric, and can be approximated by the
Thomas-Fermi solution |�T F | ≈ √

[μ(�) − Vtr (r0)]/g. This
simplifies Eq. (20) to

− h̄2

2M
∇2�1 + g|�0|2�1 + g�2

0�∗
1

= −�0z ∂z′Vtr (r0)+ cos(φ)

[
h̄2α

M

∂2�0

∂ρ ∂z
−�0 ρ |∇Vtr (r0)|x

+ h̄2β

Mρ

∂2�0

∂φ ∂z
− ih̄V ′

y

ρ

∂�0

∂φ
−

(
h̄2κ

2M
+ ih̄V ′

x

)
∂�0

∂ρ

]

+ sin(φ)

[
h̄2β

M

∂2�0

∂ρ ∂z
− �0 ρ |∇Vtr (r0)|y − h̄2α

Mρ

∂2�0

∂φ ∂z

− ih̄V ′
y

∂�0

∂ρ
+ 1

ρ

(
h̄2κ

2M
+ ih̄V ′

x

)
∂�0

∂φ

]
, (21)

where ∂z′ = ∂z + α∂x + β∂y , and |∇Vtr (r0)|i and V ′
i are the

trap gradient and vortex line velocity, respectively, in the i

direction.
Assuming that the wave function has the form

� = [|�0| + D(ρ,z) + χ (ρ,z) cos(φ)

+ ζ (ρ,z) sin(φ)] eiqφ+iη(ρ,z) cos(φ)+iλ(ρ,z) sin(φ) (22)

makes �0 = |�0| eiqφ and

�1 = [D(ρ,z) + χ (ρ,z) cos(φ)

+ ζ (ρ,z) sin(φ) + i |�0| η(ρ,z) cos(φ)

+ i |�0| λ(ρ,z) sin(φ)] eiqφ, (23)

where q is the winding number of the vortex.
This reduces Eq. (21) into five coupled differential equa-

tions describing the behavior of the perturbation functions D,

χ , ζ , η, and λ:

1

ρ

∂

∂ρ

(
ρ

∂D

∂ρ

)
+ ∂2D

∂z2
− q2D

ρ2
− 4Mg |�0|2 D

h̄2

= 2M|�0| z

h̄2 ∂z′Vtr (r0), (24)

1

ρ

∂

∂ρ

(
ρ

∂χ

∂ρ

)
+ ∂2χ

∂z2
− (q2 + 1)χ

ρ2
− 2q |�0| λ

ρ2

− 4Mg |�0|2 χ

h̄2 = 2M |�0| |∇Vtr |x ρ

h̄2

− 2Mq |�0| V ′
y

h̄ρ
+ κ

∂ |�0|
∂ρ

− 2α
∂2 |�0|
∂ρ ∂z

, (25)

1

ρ

∂

∂ρ

(
ρ

∂ζ

∂ρ

)
+ ∂2ζ

∂z2
− (q2 + 1)ζ

ρ2
+ 2q |�0| η

ρ2

− 4Mg |�0|2 ζ

h̄2 = 2M |�0| |∇Vtr |y ρ

h̄2

+ 2Mq |�0| V ′
x

h̄ρ
− 2β

∂2 |�0|
∂ρ ∂z

, (26)

|�0|
(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ ∂2

∂z2
− 1

ρ2

)
η

+ 2

(
∂ |�0|

∂ρ

∂η

∂ρ
+ ∂ |�0|

∂z

∂η

∂z
+ qζ

ρ2

)

= 2MV ′
x

h̄

∂ |�0|
∂ρ

− 2qβ

ρ

∂ |�0|
∂z

, (27)

|�0|
(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ ∂2

∂z2
− 1

ρ2

)
λ

+ 2

(
∂ |�0|

∂ρ

∂λ

∂ρ
+ ∂ |�0|

∂z

∂λ

∂z
− qχ

ρ2

)

= 2MV ′
y

h̄

∂ |�0|
∂ρ

+ 2qα

ρ

∂ |�0|
∂z

− qκ |�0|
ρ

. (28)

These equations separate into two connected groups:
equations describing perturbations on condensate density
[Eqs. (24)–(26)] and equations describing perturbations on the
condensate’s phase [Eqs. (27) and (28)]. The different groups
have different assumptions and transformations that simplify
the set of equations.

(i) Substituting η and λ with η + ρV ′
xM/h̄ and λ +

ρV ′
xM/h̄, removes the V′ dependence from the describing

equations. As ρ is a solution to ∂2
ρf (ρ) + ∂ρf (ρ)/ρ − f (ρ)/

ρ2 = 0, an arbitrary constant multiplied by ρ can be added to
f (ρ) without changing its final solution; consequently, this
constant should be chosen to best simplify the equations,
removing the V′ dependence.

(ii) Derivatives of the phase terms with respect to z can
be omitted (and by association η and λ). The gradient of the
phase defines the condensate’s velocity, with the variation in
z therefore inducing flow in ẑ. This kind of flow is caused
by either the addition of sources and sinks or vortex rings
to the BEC. This derivation only considers the behavior of a
“straight” vortex in a condensate, and therefore should have
no velocity in ẑ.

(iii) The phase terms ∂ρ |�0|∂ρη and ∂ρ |�0|∂ρλ can be
removed. In Eqs. (27) and (28), there are two terms involving
the first derivatives of the phase with respect to ρ, having
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coefficients |ψ0|/ρ and ∂ρ |�0|. As mentioned previously, at
large ρ, |�0| is approximately |�T F |, and varies on length
scales of the order trap radius R⊥; therefore, the change in
|�0| with respect to ρ (varies on rc) is small compared with
|ψ0|/ρ, which is approximately constant, and so has little
effect.

(iv) Kinetic-energy terms, from the wave density, can be
ignored. In the Thomas-Fermi regime, the kinetic energy from
the wave density is assumed to be negligible, giving the well-
known inverted parabola structure (g|�T F |2 = μT F −Vtr ). As
this behavior is expected in the matching region, the Laplacians
(∇2) of Eqs. (24)–(26) are approximately 0, removing the
differential behavior from these equations. Applying these
assumptions and rearranging Eqs. (24)–(28), we find

D(ρ,z) = − z

2g |�0| ∂z′Vtr (r0), (29)

χ (ρ,z) = −|∇Vtr |x ρ

2g |�0| − h̄2κ

4Mg |�0|2
∂ |�0|

∂ρ

+ h̄2α

2Mg |�0|2
∂2 |�0|
∂ρ ∂z

− qh̄2λ

2Mg |�0| ρ2
, (30)

ζ (ρ,z) = −|∇Vtr |y ρ

2g |�0| + h̄2β

2Mg |�0|2
∂2 |�0|
∂ρ ∂z

+ qh̄2η

2Mg |�0| ρ2
,

(31)

|�0|
(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

)
η + 2qζ

ρ2
= −2qβ

ρ

∂ |�0|
∂z

, (32)

|�0|
(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

)
λ − 2qχ

ρ2
=2qα

ρ

∂ |�0|
∂z

−qκ |�0|
ρ

(33)

Equation (29) solves for the perturbation D(ρ,z), being
the first-order correction to the local Thomas-Fermi profile,
i.e., correcting for the changing condensate density in the z
direction.

The remaining density perturbations, given by Eqs. (30) and
(31), are linear. These equations contain appropriate Thomas-
Fermi, curvature, and ẑ deviation correction terms and a term
that depends on a phase perturbation. As a consequence, these
will be solved once the phase perturbations are known. Using
these to remove χ and ζ dependence from Eqs. (32) and (33),
two independent differential equations for η and λ are found:

[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

(
1 − q2h̄2

Mg |�0| ρ2

)]
η

= − 2qβ

|�0| ρ
∂ |�0|

∂z
+ q |∇Vtr |y

g |�0|2 ρ
− h̄2qβ

Mg |�0|3 ρ2

∂2 |�0|
∂ρ ∂z

,

(34)[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

(
1 − h̄2q2

Mg |�0| ρ2

)]
λ

= 2qα

|�0| ρ
∂ |�0|

∂z
− q |∇Vtr |x

g |�0|2 ρ
− h̄2qκ

2Mg |�0|3 ρ2

∂ |�0|
∂ρ

+ h̄2qα

Mg |�0|3 ρ2

∂2 |�0|
∂ρ ∂z

− qκ

ρ
. (35)

Comparing the relative terms, h̄2q2

Mg|�0|ρ2 , h̄2qκ

2Mg|�0|3ρ2
∂|�0|
∂ρ

,
h̄2qα

Mg|�0|3ρ2
∂2|�0|
∂ρ ∂z

, and h̄2qβ

Mg|�0|3ρ2
∂2|�0|
∂ρ ∂z

are much smaller than their
corresponding counterparts by at least an order of 1/R⊥
(especially as ρ gets large). Consequently, these terms do
not significantly affect the far-from-core behavior and can be
omitted, turning Eqs. (34) and (35) into(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

)
η

≈ qβ

g |�T F |2 ρ

∂Vtr

∂z
+ 2q |∇Vtr |y

g |�T F |2 ρ
, (36)(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

)
λ

≈ − qα

g |�T F |2 ρ

∂Vtr

∂z
− qκ

ρ
− q |∇Vtr |x

g |�T F |2 ρ
, (37)

where |�0| has been replaced with |�T F |.
Given that |�T F |, |∇Vtr |, and ∂Vtr

∂z
are constant in the inner-

solution expansion, these equations are Euler homogeneous
equations and have solutions of the form ρn. By solving
these equations and making them nondivergent at ρ = 0, the
solutions become

η =
(

q |∇Vtr |y
2g |�T F |2 + qβ

2g |�T F |2
∂Vtr

∂z

)
ρ ln(ρ)

+ M

h̄
ρV ′

x + ρ A, (38)

λ = −
(

q |∇Vtr |x
2g |�T F |2 + qα

2g |�T F |2
∂Vtr

∂z
+ qκ

2

)
ρ ln(ρ)

+ M

h̄
ρV ′

y + ρ B, (39)

where A and B are unknown constants that can depend on
|�T F |, |∇Vtr |, κ , and ∂Vtr

∂z
.

Therefore, the phase of the inner solution is

S = qφ +
(

q |∇Vtr |y
2g |�T F |2 + qβ

2g |�T F |2
∂Vtr

∂z

)
x ln(ρ)

−
(

q |∇Vtr |x
2g |�T F |2 + qα

2g |�T F |2
∂Vtr

∂z
+ qκ

2

)
y ln(ρ)

+ x A + y B + M

h̄
xV ′

x + M

h̄
yV ′

y (40)

or

S = qφ + r · M

h̄
(V + � × r0)

− r · q ln(ρ)

2g |�T F |2 [κg |�T F |2 b̂ + ẑ × ∇Vtr (r0)]

+ r · q ln(ρ)

2g |�T F |2
[

(ẑ × t̂)
∂Vtr

∂z

∣∣∣∣
r=r0

]

+ r · E
[
κb̂,

ẑ × ∇Vtr (r0)

g |�T F |2 ,
ẑ × t̂

g |�T F |2
∂Vtr

∂z

∣∣∣∣
r=r0

,r0

]
,

(41)

as t̂ = {α,β,1}, and E = {A,B,0}. The dependent terms in
E are written down here to emphasize that the constant can
depend on |�T F |, |∇Vtr |, κ , and ∂Vtr

∂z
, with the structure of the
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dependents chosen because of the structure of the other terms
in Eq. (41).

Using Eqs. (38) and (39), the density perturbations are

D = − z

2g |�T F | ∂z′Vtr (r0), (42)

χ = −|∇Vtr |x ρ

2g |�T F | − h̄2κ

4Mg |�T F |2
∂ |�T F |

∂ρ

+ h̄2q2
( |∇Vtr |x + α ∂Vtr

∂z
+ κg|�T F |2) ln(ρ)

4Mg2 |�T F |3 ρ

+ h̄2α

2Mg |�T F |2
∂2 |�T F |
∂ρ ∂z

− qh̄2B

2Mg |�T F | ρ , (43)

ζ = −|∇Vtr |y ρ

2g |�T F | + h̄2β

2Mg |�T F |2
∂2 |�T F |
∂ρ ∂z

+ q2h̄2
(|∇Vtr |y + β ∂Vtr

∂z

)
ln(ρ)

4Mg2 |�T F |3 ρ
+ qh̄2A

2Mg |�T F | ρ . (44)

These density perturbations are independent of the vortex
core’s velocity (V), being, to the lowest order, corrections
to the local Thomas-Fermi profile. Hence these solutions
already match the Thomas-Fermi density profile of the outer
region. This indicates that the perturbations on a vortex
line predominantly affect the inner phase of the condensate
[Eq. (41)], which through matching to the outer-regions phase
should give the desired vortex relation.

V. THE PHASE OF THE OUTER REGION

Far from the vortex core, the BEC’s wave-function density
has the Thomas-Fermi profile, and its phase (S) solves

∇ · (|�T F |2∇S) − M

h̄
� · (r × ∇) |�T F |2 = 0, (45)

ẑ · ∇ × (∇S) = 2πqδ(2)(ρ − ρ0), (46)

where δ(2)(ρ − ρ0) is the delta function in ρ and φ.
These equations are linear, and therefore allow S to be

solved in two separate components: one dealing with rotation
[the particular solution of Eq. (45), S�] and one with everything
else (Sc):

∇ · (|�T F |2∇S�) − M

h̄
� · (r × ∇) |�T F |2 = 0, (47)

∇ × (∇S�) = 0, (48)

∇ · (|�T F |2∇Sc) = 0, (49)

ẑ · ∇ × (∇Sc) = 2πqδ(2)(ρ − ρ0). (50)

Assuming � = �ẑ, Eqs. (47) and (48) have the solution

S� = −M

h̄

(
ω2

x − ω2
y

)
(
ω2

x + ω2
y

)�xy, (51)

where ωx and ωy are the trapping frequencies in x and y,
respectively.

Transforming into the local coordinate system of the line
(r → r + r0), Eq. (51) becomes

S� → M

h̄

[
(� × r0) + 2

∇Vtr (r0) × �

∇2
⊥Vtr (r0)

]
· r. (52)

Sc is not as simple to solve, with no exact solution
existing for arbitrary ρ0. The gradient of Sc, however, can
be determined and consequently compared with its inner-
solution equivalent. To do this, ∇Sc is written as −q[∇ ×
(|�T F |2�ẑ)]/|�T F |2, so that it automatically satisfies Eq. (49),
and turns Eq. (50) into

ẑ · ∇ × (∇Sc) = ∇ · (∇Sc × ẑ)

= ∇ · [∇⊥� + �∇⊥ ln(|�T F |2)]

= 2πδ(2)(ρ − ρ0), (53)

which through rearrangement becomes

e− ln |�T F |∇2
⊥(�eln |�T F |) − ∇2

⊥(e− ln |�T F |)�eln |�T F |

= 2πδ(2)(ρ − ρ0). (54)

By transforming Eq. (54) into the local coordinates of
the vortex line, and taking ∇2

⊥e− ln |�T F | to be approximately
e− ln |�T F |∇2

⊥Vtr/2g|�T F |2, it becomes

∇2
⊥(�eln |�T F |) − ∇2

⊥Vtr

2g|�T F |2 �eln |�T F | = 2πδ(2)(ρ)eln |�T F |.

(55)

In this outer region, there should be no flow in the ρ̂ or ẑ, and
therefore � is purely a function of ρ. Furthermore, Anglin [28]
showed that in a complete hydrodynamic calculation, flow
only arises from the vortex’s vorticity, thereby indicating that
the homogeneous solution to Eq. (55) is irrelevant. Hence the
solution to Eq. (55) is

� = −K0

⎛
⎝ρ

√
∇2

⊥Vtr

2g|�T F |2

⎞
⎠ , (56)

where K0 is a modified Bessel function of the second kind,
and Vtr and g|�T F |2 are implicitly functions of r0.

For small ρ,

� ≈ ln

(
ecρ

2R⊥

)
, (57)

where c = 0.577 . . . is the Euler constant, and ∇2
⊥Vtr/

2g|�T F |2 has been approximated by 1/R⊥ (as ∇2
⊥Vtr ≈ Mω2

⊥
and g|�T F |2 ≈ μT F = 1

2Mω2
⊥R2

⊥).
Using this, we get

∇Sc = −q

|�T F |2
[
∇ × |�T F |2 ln

(
ecρ

2R⊥

)
ẑ
]

= −q∇ × ln

(
ecρ

2R⊥

)
ẑ

−q ln

(
ecρ

2R⊥

)
∇ × ln |�T F |2ẑ

= q

ρ
φ̂ − q ln

(
ecρ

2R⊥

)
g|�T F |2 ẑ × ∇Vtr (r0), (58)

having used the identity ∇ × A(r)ẑ = −ẑ × ∇A(r).
Therefore, the outer phase is fully described by Eqs. (58)

and (52). Through matching these equations with the inner
phase [Eq. (41)], a relationship for the velocity of the vortex
line is determined.
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VI. MATCHING THE INNER AND OUTER SOLUTIONS

To match the inner and outer solutions, the inner phase
must be divided into the same S� and Sc structure as the outer
solution. By assuming that the core velocity V can be written
as a rotational V� and other Vc component, Eq. (41) separates
into

S�i
= M

h̄
(V� + � × r0) · r, (59)

and

Sci
= qφ + r · M

h̄
Vc − r · q ln(ρ)

2
κb̂

− r · q ln(ρ)

2g |�T F |2
[

ẑ × ∇Vtr (r0) + (ẑ × t̂)
∂Vtr

∂z

∣∣∣∣
r=r0

]

+ r · E
[
κb̂,

ẑ × ∇Vtr (r0)

g |�T F |2 ,
ẑ × t̂

g |�T F |2
∂Vtr

∂z

∣∣∣∣
r=r0

,r0

]
,

(60)

which can be compared to the outer S� [Eq. (52)] and Sc

[Eq. (58)] to find the matching condition for the velocity of
the line.

A comparison of Eq. (59) with Eq. (52) shows that V� is

V�(r0) = 2
∇Vtr (r0) × �

∇2
⊥Vtr (r0)

. (61)

To determine Vc, however, ∇Sc of the two regions must be
matched. Using Eq. (60), ∇Sci

for large ρ is

∇Sci
= q

ρ
φ̂ + M

h̄
Vc(r0) − q κb̂

2
[ln(ρ) + ρ̂ ⊗ ρ̂]

− q ẑ × ∇Vtr (r0)

2g |�T F |2 [ln(ρ) + ρ̂ ⊗ ρ̂]

−
q (ẑ × t̂) ∂Vtr

∂z

∣∣
r=r0

2g |�T F |2 [ln(ρ) + ρ̂ ⊗ ρ̂] + E, (62)

where for large ρ, r
ρ

≈ ρ̂ and ∇r = I (where I is the identity
matrix).

By matching Eqs. (62) and (58), at the vortex core radius
rc, the equation for Vc becomes

Vc(r0) = h̄q κb̂
2M

[ln(rc) + ρ̂ ⊗ ρ̂]

+ h̄q ẑ × ∇Vtr (r0)

2Mg |�T F |2 [ln(rc) + ρ̂ ⊗ ρ̂]

+
h̄q(ẑ × t̂) ∂Vtr

∂z

∣∣
r=r0

2Mg |�T F |2 [ln(rc) + ρ̂ ⊗ ρ̂]

+ E′
[
κb̂,

ẑ × ∇Vtr (r0)

g |�T F |2 ,
ẑ × t̂

g |�T F |2
∂Vtr

∂z

∣∣∣∣
r=r0

,r0

]

− h̄q ln
(

ecrc

2R⊥

)
Mg|�T F |2 [ẑ × ∇Vtr (r0)], (63)

where E′ = −h̄E/M .

Combining Vc [Eq. (63)] and V� [Eq. (61)], the relation
for velocity of the vortex line is

V(r0) = h̄q κb̂
2M

[ln(rc) + ρ̂ ⊗ ρ̂]

+ h̄q ẑ × ∇Vtr (r0)

2Mg |�T F |2 [ln(rc) + ρ̂ ⊗ ρ̂]

+
h̄q(ẑ × t̂) ∂Vtr

∂z

∣∣
r=r0

2Mg |�T F |2 [ln(rc) + ρ̂ ⊗ ρ̂]

+ E′
[
κb̂,

ẑ × ∇Vtr (r0)

g |�T F |2 ,
ẑ × t̂

g |�T F |2
∂Vtr

∂z

∣∣∣∣
r=r0

,r0

]

− h̄q ln
(

ecrc

2R⊥

)
Mg|�T F |2 [ẑ × ∇Vtr (r0)] + 2

∇Vtr (r0) × �

∇2
⊥Vtr (r0)

,

(64)

where ρ̂ is effectively the ρ vector in the condensate coordi-
nates (the difference between ρ̂ of the vortex line and ρ̂ of the
condensate is negligible at large distances).

This equation indicates how the local velocity of the vortex
line behaves in response to the line’s position and curvature,
and therefore reveals the local behavior of a vortex line.
Furthermore, the ẑ dependence in this equation indicates that it
is coordinate dependent. This is because the initially perturbed
system has a natural direction, which is the alignment of the
straight centered vortex. The ẑ dependence in Eq. (64) thereby
reflects this initial vortex line orientation.

Equation (64) also transforms to give a system of differ-
ential equations that describes the complete vortex behavior.
As the vortex line is a one-to-one function in z, the vortex
line’s shape and motion are fully parametrized through two
functions, ρ(t,z) and φ(t,z). This allows any point on the
line to be represented by r0 = ρ(t,z)ρ̂ + φ(t,z)φ̂ + zẑ, with
velocity and tangent vectors, respectively,

V = ∂ρ

∂t
ρ̂ + ρ

∂φ

∂t
φ̂, (65)

t̂ = ∂ρ

∂z
ρ̂ + ρ

∂φ

∂z
φ̂ + ẑ, (66)

and κb̂ (≈ ẑ × k, where k = ∂2
s r0) as

κb̂ = −
(

ρ
∂2φ

∂z2
+ 2

∂ρ

∂z

∂φ

∂z

)
ρ̂ +

[
∂2ρ

∂z2
− ρ

(
∂φ

∂z

)2 ]
φ̂,

(67)

where ρ and φ are implicitly functions of t and z, and z has
been approximated to be the arc length of the curve.

As a result, the differential equations describing the full
vortex’s shape and motion are

∂ρ

∂t
= −h̄q [ln(rc) + 1]

2M

(
ρ

∂2φ

∂z2
+ 2

∂ρ

∂z

∂φ

∂z

)

− h̄q [ln(rc) + 1]

2Mg |�T F |2
(

1

ρ

∂Vtr

∂φ
+ ρ

∂φ

∂z

∂Vtr

∂z

)

+ 2�

ρ∇2
⊥Vtr

∂Vtr

∂φ
+ h̄q ln

(
ecrc

2R⊥

)
ρMg|�T F |2

∂Vtr

∂φ
+ ρ̂ · E′, (68)
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ρ
∂φ

∂t
= h̄q ln(rc)

2M

[
∂2ρ

∂z2
− ρ

(
∂φ

∂z

)2 ]

+ h̄q ln(rc)

2Mg |�T F |2
(

∂Vtr

∂ρ
+ ∂ρ

∂z

∂Vtr

∂z

)

− 2�

∇2
⊥Vtr

∂Vtr

∂ρ
−

h̄q ln
(

ecrc

2R⊥

)
Mg|�T F |2

∂Vtr

∂ρ
+ φ̂ · E′. (69)

The solutions of Eqs. (68) and (69) describe a vortex’s shape
and motion, and show the steady-state structures and waves
that the vortex supports. However, before these structures are
determined, the unknown constant E′ needs to be found.

VII. DETERMINATION OF E′

Before investigating Eqs. (68) and (69), E′ needs to be
determined. This can be done through comparing the specific
results from these equations to previously determined physical
scenarios.

Assuming that the trapping and curving dependence in
E′ can be treated separately, two different scenarios need to
be considered: one indicating a straight vortex’s reaction to
the trap confinement and one describing behavior of wave
perturbations on the line in the absence of confinement.

In a pancake-shaped condensate, it has been shown that the
vortex lines are straight, while for more-cigar-shaped traps,
the line tends to bend at the edges [15]. Such straight lines are
easy to work with mathematically and so the energetics and
behavior of these lines have been investigated [12,14]. These
investigations revealed that an off-centered straight-line vortex
precesses around a cylindrical condensate in the direction of
the vortex’s rotation, with a precession frequency

∂φ

∂t
=

3h̄ ln
(

R⊥
rc

)
2MR2

⊥
(
1 − ρ2

R2
⊥

) − �. (70)

Applying similar conditions to Eqs. (68) and (69) (discard-
ing z derivatives and setting Vtr = Mω2

⊥ρ2/2 + Mω2
zz

2/2)

and setting g|�T F |2 ≈ 1
2Mω2

⊥R2
⊥(1 − ρ2

R2
⊥

), the describing
equations become

∂ρ

∂t
= ρ̂ · E′

[
0,

2ρφ̂

R2
⊥
(
1 − ρ2

R2
⊥

) ,0,r

]
, (71)

ρ
∂φ

∂t
= −

h̄ ln
(

e2crc

4R2
⊥

)
ρ

MR2
⊥
(
1 − ρ2

R2
⊥

) − �ρ + φ̂ · E′
[
0,

2ρφ̂

R2
⊥
(
1 − ρ2

R2
⊥

) ,0,r

]
.

(72)

When matched to Eq. (70), these equations become

ρ̂ · E′
[

0,
2ρφ̂

R2
⊥
(
1 − ρ2

R2
⊥

) ,0,r

]
= 0, (73)

φ̂ · E′
[

0,
2ρφ̂

R2
⊥
(
1 − ρ2

R2
⊥

) ,0,r

]
=

h̄ ln
(

e2c

4
√

R⊥rc

)
ρ

MR2
⊥
(
1 − ρ2

R2
⊥

) . (74)

This suggests that the trap dependence in the constant term
has the form

E′
(

κb̂,
ẑ × ∇Vtr

g |�T F |2 ,
ẑ × t̂

g |�T F |2
∂Vtr

∂z
,r

)

=
h̄q ln

(
e2c

4
√

R⊥rc

)
(ẑ × ∇Vtr )

2Mg |�T F |2 + F(κb̂,r), (75)

where F is an unknown constant that describes the curvature
behavior.

Note that this condition, though intending to contain all trap
dependence, does not contain information on the line’s reaction
to the z trapping of the condensate. This indicates that another
condition relating specifically to this term is necessary (visible
through the ln term). Unfortunately, a suitable comparison was
not found and therefore this term could not be calibrated.

To determine the curvature-related behavior of the constant,
the behavior of a perturbed vortex (in a untrapped condensate)
needs to be known. It has been shown, theoretically, that
vortices in BECs support helical-wave perturbations [10] and
therefore are an ideal example. These waves rotate in the
opposite direction to the rotation of the vortex, and in a uniform
condensate have a dispersion relation (for large wavelengths)
of

ω = h̄k2

2M
ln

(
1

|k|rc

)
, (76)

where ω is the wave frequency, k is the wave number, and rc

is the vortex core radius. Hence by comparing this dispersion
relation to the equivalent derived from Eqs. (68) and (69), the
form of F can be determined.

A helical wave generally has the form x = a sin(kz − ωt +
φ0) and y = a cos(kz − ωt + φ0), which when transformed
into cylindrical coordinates is ρ = a and φ = kz − ωt + φ0

(with a being the wave amplitude and φ0 being an arbitrary
phase constant). By substituting this parametrization into
Eqs. (68) and (69), they become

0 = −h̄[ln(rc) + 1]

2Mg |�T F |2 (0) + ρ̂ · F(−ak2φ̂,r) (77)

and

− aω = −h̄ak2 ln(rc)

2M
+ φ̂ · F(−ak2φ̂,r). (78)

Hence, the conditions F satisfies are

ρ̂ · F(−ak2φ̂,r) = 0, (79)

φ̂ · F(−ak2φ̂,r) = a
h̄k2

2M
ln

(|k|r2
c

)
. (80)

Since all of the wave-number dependence in F must come
from the κb̂ term, a suitable form becomes

F =
h̄q ln

(
1
r2
c

√ −ρ

κb̂·φ̂
)

2M
κb̂. (81)
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By substituting the full form of E′ into Eq. (64), the velocity
condition becomes

V(r0) =
h̄q(ẑ × t̂) ∂Vtr

∂z

∣∣
r=r0

2Mg |�T F |2 [ln(rc) + ρ̂ ⊗ ρ̂]

+ h̄q κb̂
2M

[
ln

(
1

rc

√
−ρ0

κb̂ · φ̂

)
+ ρ̂ ⊗ ρ̂

]

+ h̄q[ẑ × ∇Vtr (r0)]

2Mg |�T F |2
[

3

2
ln

(
R⊥
rc

)
+ ρ̂ ⊗ ρ̂

]

+ 2
∇Vtr (r0) × �

∇2
⊥Vtr (r0)

. (82)

This is an almost complete relation for the velocity of
the vortex line, missing the calibration of the ∂zVtr term [as
evidenced by the units in the multiplying logarithm ln(rc)]. As
a suitable analytic form for this comparison could not be found,
and it does not affect any of the latter calculations performed,
this issue will be left for future work.

When transformed into a differential form (as per Sec. VI),
this equation gives

∂ρ

∂t
= −h̄qρ [ln(rc) + 1]

2Mg |�T F |2
∂φ

∂z

∂Vtr

∂z

−
h̄q

{
ln

[
1
rc

√
ρ

ρ(∂zφ)2−∂2
z ρ

]
+ 1

}
2M

(
ρ

∂2φ

∂z2
+ 2

∂ρ

∂z

∂φ

∂z

)

−
3h̄q

[
ln

(
R⊥
rc

)
+ 2

3

]
4ρMg |�T F |2

∂Vtr

∂φ
+ 2

�

ρ∇2
⊥Vtr

∂Vtr

∂φ
, (83)

and

ρ
∂φ

∂t
= h̄q ln(rc)

2Mg |�T F |2
∂ρ

∂z

∂Vtr

∂z
+

3h̄q ln
(

R⊥
rc

)
4Mg |�T F |2

∂Vtr

∂ρ

+
h̄q ln

[
1
rc

√
ρ

ρ(∂zφ)2−∂2
z ρ

]
2M

[
∂2ρ

∂z2
− ρ

(
∂φ

∂z

)2 ]

− 2
�

∇2
⊥Vtr

∂Vtr

∂ρ
. (84)

From these nonlinear equations, the complete behavior of
the vortex line can be determined; however, this paper will only
look at some general and simple examples of these equations.

VIII. WAVE INVESTIGATIONS

A. Qualitative comments

These equations give deterministic properties of a slightly
perturbed vortex in a BEC. However, before looking at a
special case of this, it is worth looking at qualitative behavior
from Eq. (82).

The vortex contains angular momentum in ẑ. Therefore,
as suggested by Fetter [7], the vortex can be considered
as a gyroscope spinning in ẑ, responding to any force by
moving perpendicular to it. In Eq. (82), there are three such
forces: a trap gradient force [−∇Vtr (r0)], a curvature force

(κn̂, b̂ ≈ ẑ × n̂), and a z-trap deviation force [∂zVtr (r0)t̂], with
each force contributing to the relation’s final form.

Similarly, the rotation of the condensate � also creates
gyroscopic motion. This rotation causes any point in the trap
to move perpendicular to the trap gradient force, and therefore
also pushes the vortex line accordingly.

Equation (82) also contains a collection of terms that
“amplifies” the velocity of the line in the ρ direction. These
terms are additional restoring forces, which attempt to return
the system to the the centered straight-line vortex state.

Hence the qualitative behavior depicted by Eq. (82) gives
understandable insight into how the vortex line moves; there-
fore, this indicates that it is practical to use it to quantitatively
determine the structure and motion of the vortex line in a
condensate.

B. More realistic helical-wave behavior

As previously mentioned, helical waves can exist on vortex
lines in a BEC. Hence it is relevant to consider the behavior of
such waves in the presence of a trapping potential. Assuming a
cylindrical trap (Vtr = Mω2

⊥ρ2/2, where ωz = 0) and that the
helix wave takes the same form used in Sec. VII (ρ = a and
φ = kz − ωt + φ0), Eq. (83) is solved and Eq. (84) becomes

ω = −
3h̄q ln

(
R⊥
rc

)
2MR2

⊥
(
1 − ρ2

R2
⊥

) +
h̄qk2 ln

(
1

rc|k|
)

2M
+ �. (85)

This equation shows that the precession helical wave in a
cylindrical trap is a combination of the precession of a straight-
line vortex and the motion of a helical wave in a uniform
condensate.

In a numerical simulation by Simula et al. [29,30], it was
shown that the dispersion relation of large-wavelength helical
waves in a cigar-shaped trap could be represented as

ω = ω0 +
h̄qk2 ln

(
1

rc |k|
)

2M
+ �, (86)

where ω0 is a constant precession frequency. The similarity of
these two equations is striking, and upon plotting (Fig. 3), the
similarities are still visible (in the change to ω to the changing
particle number); however, the specific values of the constant
vary by about ±0.1(ω/ω⊥) to the numerical value.

This deviation is not surprising. The constant precession
of Eq. (85) is that of a purely straight-line vortex. This
suggests that Eq. (85) is representative of pancake-shaped
traps where such vortices occur. Simula’s work, however, is
in a cigar-shaped trap and therefore the vortex line, without
wave perturbations, tends to bend, potentially changing its
precession. Therefore, to accurately depict this behavior, the
trapping of the condensate in z, and how it distorts the vortex,
needs to be considered.

IX. PREVIOUS SIMILAR WORK

A similar derivation has been carried out by Svidzinsky
and Fetter [25] with the aim of determining the normal waves
that a vortex line can support. This work performed a similar
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Wavenumber k m

5(
)

FIG. 3. (Color online) Plots of the dispersion relation, given
by Eq. (85), for different particle number (N ) for a condensate
of 87Rb atoms, with trapping frequencies ωz = 2π × 11.8 Hz and
ω⊥ = 2π × 98.5 Hz, and vortex core radius rc = 0.13 μm. The
upper line in the plot corresponds to N = 5 × 105, the middle line
corresponds to N = 5 × 104, and lower line corresponds to N = 104.

matched asymptotic expansion to determine a relation for the
vortex line’s velocity.

During this derivation, an extra term appeared in the outer
equations that was related to the transformation into the local
coordinates of the vortex line, the specifics of which were not
explained in the paper. This gave an outer solution of

� = −e
κx
2 K0

⎛
⎝ρ

√
∇2

⊥Vtr

2g|�T F |2 + κ2

4

⎞
⎠ , (87)

which was approximated to be

� = ln

(
ec

√
2
ρ

√
1

R2
⊥

+ κ2

4

)
, (88)

for small ρ. This form is almost identical to that derived in this
paper, having effectively ignored the additional exponential in
their outer solution.

Then, to compare the outer and inner solutions, a pseudo
� was created for the inner phase solution. This pseudo �

was linked with the inner-solution phase S through the same
definition of � used in Sec. V, but ignored some terms, of
comparable order to those kept,

� ≈
[

1 + x

2

( |∇⊥Vtr |
g|�T F |2 + κ

)]
ln(Eρ) + MV0

h̄q
x. (89)

It is worth noting that the largest term of this inner � is x ln(ρ),
while the largest term of the outer � is ln(ρ). This indicates an
inconsistency in the expansion of the outer solution [the e

κx
2 in

Eq. (87) allowing the outer to also expand to x ln(ρ)].
Through matching these �s, the velocity condition found

was

V(r0) = − qh̄t̂ × ∇Vtr

2Mg|�T F |2 ln

(
|q|rc

√
1

R2
⊥

+ κ2

4

)

− qh̄κb̂
2M

ln

(
|q|rc

√
1

R2
⊥

+ κ2

4

)
+ 2

∇Vtr × �

∇2Vtr

. (90)

In deriving this, the effect of t̂ deviating from ẑ was not
considered, but later implemented through the t̂ × ∇Vtr term.
This procedure gives the same ∂zVtr structure seen in Eq. (82)
but also adds an additional artifact that if not balanced, will
create a line velocity in ẑ [specifically it would give Vz(r0) ∝
x0∂yVtr (r0) − y0∂xVtr (r0)]. However, in their derivation, it was
assumed that such motion in ẑ did not occur, and when the
derivation is repeated allowing the line at any point to deviate
slightly from ẑ, as done here, this condition is not found.

A comparison of Eqs. (90) and (82) shows that there
are distinct similarities and differences. The terms related
to the system’s rotation (�) are identical in both cases, the
curvature (κb̂) terms both multiply logarithms that also depend
on curvature, and there are terms relating the vortex line’s
structure and the trap gradient (∇Vtr ). However, the constants
around these terms are different, the logarithms vary in form
from term to term, and there are no terms with the ρ̂ ⊗ ρ̂

structure in Eq. (90). These ρ̂ ⊗ ρ̂ terms particularly are worth
a mention. They arise from the derivatives of ln(ρ) when
obtaining the gradient of the inner phase [Eq. (62)], and are
smaller than the logarithmic terms, being constant, giving an
essentially different structure up to logarithmic accuracy. This
is easily shown when considering the curvature term. The
curvature term of Eq. (82) has two components: the logarithm
term, being proportional to κ ln(1/κ), and the ρ̂ ⊗ ρ̂ term,
being proportional to κ; the latter obviously being the smaller
term.

Furthermore, note that though the solution presented in
this paper [Eq. (82)] still has an arbitrary constant yet to
be determined, the solution cannot turn into Eq. (90). The
arbitrary constant has components in x̂ and ŷ but not ẑ, as
there were no differential equations relating to the ẑ direction to
solve. So although the constant can depend on x0, y0, ∂xVtr (r0),
and ∂yVtr (r0), the constant is unable to apply the condition
required to rewrite it into the form of Svidzinsky and Fetter’s
results.

Hence because of these differences, Eqs. (90) and (82),
though able to give similar wave results within certain limits,
can differ significantly. For example, both equations replicate
the long-wavelength helical-wave dispersion relation, given by
Eq. (76), but when looking at helical waves in a condensate
with trapping in ρ (Vtr = Mω2

⊥ρ2/2), Eq. (90) gives a different
constant precession frequency (ω0) of

ω0 = − h̄

2μ
ln

(
R⊥
rc

)
, (91)

where μ is the chemical potential of the system.
The ω0 obtained in Eq. (85) is 50% larger than the ω0

obtained from Eq. (90) [Eq. (91)] under the same conditions.
This difference gives a larger deviation between Eq. (91) and
the ω0 found by Simula et al. in their numerical simulations
than found in this paper.

In a later review by Svidzinsky and Fetter [31], the
dynamics of a straight vortex in a disk-shaped condensate
was discussed. In this discussion, the describing equation for
such lines was shown to be similar to Eq. (90), when κ = 0
and t̂ = ẑ, with the difference between the results being a
factor of 3/2 multiplying the ln(R⊥/rc) term. This behavior
is therefore not accounted for within Eq. (90). However,
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Eq. (82) has such a 3/2 multiplying it’s ln(R⊥/rc) term and
so can describe the behavior in this limit (for κ = 0 and
t̂ = ẑ).

X. CONCLUSIONS AND FUTURE DIRECTIONS

Through this derivation, a robust relation for the motion
and shape of a vortex line in a BEC was determined [Eq. (82)].
This relation was found by determining the behavior of the
condensate near and far from the vortex core separately, and
ensuring that these two solutions matched in the overlapping
region.

This relation was shown to describe well the local vortex’s
behavior, and could be transformed into a set of differential

equations that describes the vortex’s overall structure and
motion [Eqs. (83) and (84)]. Using a simple calculation, these
equations reflected wave behavior seen numerically.

This paper only briefly explored the behavior of Eqs. (83)
and (84), and so further investigation needs to be performed,
looking at different vortex line structures and trapping geome-
tries. However, before this can be done, an analytic description
of how the trapping in z affects the line’s behavior is needed
to calibrate the final term in Eq. (82).
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