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Abstract

Modular forms are powerful number theoretic objects, having attracted much

study and attention for the last 200 years. In the modern area, one of their

primary points of interest is their role in the Langlands program. The work

of Deligne (see [Del71]) and Serre (see [S+87]) provided a connection between

modular forms and Galois representations. An integral piece of this connec-

tion is the theta operator, which allows tight manipulation of the modular

forms and Galois representations.

There is a larger picture, in which modular forms are merely a special instance

of objects known as Siegel modular forms. In this thesis, we describe gen-

eralisations of the above concepts and theories to the Siegel case. We first

demonstrate some generalisations of the theta operator, and subsequently

describe the connection between Siegel modular forms and Galois represen-

tations. Finally we give a description of the effect of the theta operator on

the Galois representations which are conjecturally arising from these Siegel

modular forms.
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Preface

This thesis expects no more background than could be reasonably acquired

through some introductory material on algebraic geometry, Galois theory

and representation theory. There are several sections to cover background

and necessary definitions to give the reader a sufficient understanding of the

context of the work.

• Chapter 1 (Introduction) describes the problem we considered.

• Chapter 2 provides preliminaries for the theory of modular forms.

• Chapter 3 generalises this to Siegel modular forms

• Chapter 4 discusses some representation theory of algebraic groups.

This is largely done to set up the language required for chapters 7 and

8.

• Chapter 5 defines the Hecke operators and describes the structure of

the Hecke algebra.

• Chapter 6 defines the Theta operator on modular forms, as well as

some generalisations for Siegel modular forms. Commutation relations

with the Hecke operator are described here.

• Chapter 7 demonstrates the connection between Galois representations

and modular forms, and the role the theta operator plays in this.

• Chapter 8 is focused on the Satake isomorphism, which links a Hecke

algebra to a representation ring. From this we define the Satake pa-

rameters attached to a modular form.

• Chapter 9 is the culmination of the above in providing a connection

between Galois representations and Siegel modular forms. We further

demonstrate how the generalisations of the theta operator interact with

this connection.
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Chapter 1

Introduction

We begin by considering the set of algebraic numbers Q. This is a grand and

mysterious object in mathematics, puzzling number theorists for centuries.

Its structure is fascinating and much has been done in an attempt to study it.

Galois theory leads us to consider the automorphism group Gal(Q/Q), also

known as the absolute Galois group of Q. Then, to understand this group,

representation theory leads us to consider group homomorphisms of the form

ρ : Gal(Q/Q) → GL(V ). These are known as Galois representations, and

connect to many other objects in mathematics. In particular, they are closely

related to modular forms. This thesis will be devoted to the use of modular

forms to understand Galois representations.

Modular forms are one of the most powerful objects in modern number the-

ory. Originally viewed as objects which were both analytic and highly arith-

metic, modern advances in the theory have given them a place in algebra

and geometry. Perhaps the most remarkable property is their position in

the Langlands program, the far-reaching suite of conjectures relating objects

from various areas of mathematics. Part of this is the connection to the

aforementioned Galois representations. Specifically, fix a prime p and we

will consider modular forms and Galois representations in the circumstance

where the coefficients are taken (mod p). Now, given a modular eigenform
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f , Deligne in [Del71] proved that there exists a Galois representation ρf with

properties inherited from f .

The truly powerful nature of this correspondence is that it goes both ways.

From this point on we will make things slightly more precise by fixing a prime

p. Originally conjectured by Serre, see [S+87], we have the following.

Theorem 1.1 (Serre’s Conjecture). Let ρ : Gal(Q/Q) → GL2(Fp) be a

semisimple, odd Galois representation. Then there exists a modular form f

such that ρf ∼= ρ.

This is now known, proved by Khare and Wintenberger, see [KW10]. So

we can fully exploit the theory of modular forms in our goal to understand,

fundamentally, Q. Some of the critical features of modular forms that affect

this correspondence are the Hecke eigenvalues a` and the weight k. One of

the primary tools for manipulating these is the theta operator θ on modular

forms. Then, one has the following remarkable and useful theorem.

Theorem 1.2.

ρθf = χ⊗ ρf , (1.1)

where χ is the Cyclotomic character (mod p).

This forms an important part of the proof of Serre’s conjecture.

The unfortunate thing to notice is that we are fairly limited in the represen-

tations we can produce in this way. For example, they always take image in

GL2, which is due to modular forms being automorphic objects related to the

algebraic group GL2. They are generalised by objects called Siegel modular

forms, which are attached to the algebraic group GSp2g, which for g = 1 is

precisely GL2. In this case, the correspondence is conjectural, sending a Siegel

modular eigenform f to a homomorphism ρf : Gal(Q/Q) → GSpin2g+1(Fp),
since GSpin2g+1 is the dual group of GSp2g. The construction uses the Satake

parameters attached to a form f via the Satake isomorphism.

Now, how can we generalise the theta operator? It turns out that there are

multiple generalisations, any of which can be fruitfully studied:
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• Boecherer-Nagaoka have defined an operator in [BN07], which we de-

note θBN : Mk →Mk+p+1, using Rankin-Cohen brackets.

• Flander-Ghitza have defined an operator in [Fla13], which we denote

θFG : Mκ →Mκ⊗Sym2⊗ detp−1 , using algebraic geometry.

• In the case g = 2, Yamauchi uses algebraic geometry in [Yam14] to

define analogues of both operators above.

We look at the effect of some of the operators above on Galois representations,

and attain the following result.

Theorem 1.3. Let λ be a dominant coweight of GSp2g.

Let η be the symplectic similitude character of GSp2g and η∨ the correspond-

ing cocharacter of GSpin2g+1.

(1) Let f ∈ Mκ(Γ;Fp) be a degree g, weight κ, level N Siegel eigenform.

Then

ρθFGf = (η∨ ◦ χ)⊗ ρf , (1.2)

where χ is the cyclotomic character (mod p).

(2) Let f ∈ Mk(Γ;Fp) be a degree g, weight k, level N Siegel eigenform.

Then

ρθBNf = (η∨ ◦ χ)g ⊗ ρf , (1.3)

with χ as above.

There are other results from other authors on the theta operators above.

• There are results studying theta cycles for θBN in [CCR11], [DR10],

and [RR14].

• Yamauchi in [Yam14] has generalised some weight in Serre’s conjecture-

type results to g = 2, looking at the algebro-geometric theta operators

mentioned above.
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Chapter 2

Modular Forms

Modular forms are examples of automorphic forms. Modularity refers to

special transformation rules coming from the action of so called “modular

groups”. For modular forms, we are interested in functions on the upper-half

plane G1 = {z ∈ C| Im(z) > 0} with action coming from the group SL2(Z).

(For the reasoning behind this nonstandard notation, see chapter 3.)

Specifically, we will consider the action

γz =
az + b

cz + d
, (2.1)

where z ∈ G1 and γ =

(
a b

c d

)
∈ SL2(Z). We also have the following factor

of automorphy for the above action:

jγ(z) = cz + d, (2.2)

with γ and z as above.

2.1 Modular Forms of Level 1

We are now in a position to give the basic definition of our craft.
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Definition 2.1 (Modular Form). A modular form of weight k and level 1 is

a holomorphic function f : G1 → C such that

f(γz) = jkγ (z)f(z), (2.3)

and f is holomorphic at infinity.

Note that choosing γ =

(
1 1

0 1

)
we see that a modular form is Z-periodic,

and thus has a Fourier expansion

f(q) =
∞∑

n=−∞

a(n)qn, where q = e2πiz. (2.4)

The words holomorphic at infinity mean that a(n) = 0 for all n < 0.

Remark 2.2. One may wonder from whence equation (2.3) arises. One way

is to think of a modular form as a differential form, rather than a function.

Given f , a modular form of weight k, one can show

f(γz)(d(γz))k/2 = f(z)(dz)k/2. (2.5)

We will return to this idea in section 2.4.

We also introduce some special types of modular forms:

Definition 2.3 (Cusp Form). A cusp form is a modular form which vanishes

at ∞, i.e. a(0) = 0.

Remark 2.4. For a fixed weight k, the set Mk(SL2(Z)) of modular forms of

weight k is a C-vector space, and the set Sk(SL2(Z)) of cusp forms of weight

k is a subspace. Further

M∗(SL2(Z)) =
⊕
k∈Z

Mk(SL2(Z)) (2.6)

is a graded C-algebra and

S∗(SL2(Z)) =
⊕
k∈Z

Sk(SL2(Z)) (2.7)

is an ideal.
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We now turn to some examples of modular forms.

Example 2.5. • Consider the Eisenstein series of weight k

Gk(z) =
∑

m,n∈Z2\{(0,0)}

1

(mz + n)k
. (2.8)

This is a modular form of weight k as long as k ≥ 4 is even. It has

Fourier expansion

Gk(q) = 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

σk−1(n)qn

)
, (2.9)

where Bk is the kth Bernoulli number, and σk−1 is the divisor function.

It is often convenient to rescale it to

Ek(q) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn. (2.10)

• Consider the modular discriminant

∆(z) =
1

1728

(
E4(z)3 − E6(z)2

)
. (2.11)

This is a cusp form of weight 12. It has Fourier expansion

∆(q) = q
∞∏
j=1

(1− qn)24 =
∞∑
n=1

τ(n)qn, (2.12)

where τ(n) is the Ramanujan tau function.

As it turns out, we can build all modular forms of level 1 from these examples:

Theorem 2.6.

M∗(SL2(Z)) = C[E4, E6] and S∗(SL2(Z)) = ∆ · C[E4, E6]. (2.13)

Proof. See [DS05], §3.5, Theorem 3.5.2.
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2.2 Modular forms of level N

Let N ∈ Z. Consider the reduction (mod N) map

SL2(Z) −→ SL2(Z/NZ). (2.14)

Then we define the principal congruence subgroup of SL2(Z),

Γ(N) = ker (SL2(Z) −→ SL2(Z/NZ)) (2.15)

=

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣
(
a b

c d

)
≡

(
1 0

0 1

)
(mod N)

}
.

More generally:

Definition 2.7 (Congruence Subgroup). Let N ∈ Z. A congruence subgroup

of level N of SL2(Z) is a subgroup Γ ⊆ SL2(Z) such that Γ(N) ⊆ Γ.

Example 2.8. Besides the principal congruence subgroup, the most impor-

tant congruence subgroups of SL2(Z) are

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣
(
a b

c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣
(
a b

c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
. (2.16)

Note that Γ(N) ⊆ Γ1(N) ⊆ Γ0(N). To apply these to modular forms, we

introduce the weight k slash operator 1

(f |kγ)(z) = jγ(z)−kf(γz) (2.17)

for γ ∈ SL2(Z). We are now in a position to define modular forms with what

is known as a level structure as follows:

Definition 2.9 (Modular form of level N). Let N ∈ Z and let Γ be a

congruence subgroup of level N . A modular form of level N and weight k is

a holomorphic function f : G1 → C such that

f(γz) = jkγ (z)f(z), for γ ∈ Γ (2.18)

and (f |kγ)(z) is holomorphic at infinity for all γ ∈ SL2(Z).

1There is a more general action that we don’t need here, see chapter 5, definition 5.1
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Remark 2.10. Note that (f |kγ)(z) = f(z) if γ ∈ Γ.

Further, despite the above definition referring universally to level N forms,

these are in fact distinct spaces for different choices of group Γ. There are

good reasons to choose to work with any of the groups described above, and

when we wish to discuss specific spaces, we will make clear our choice of

group Γ.

There are some subtleties to this definition. First of all, the matrix T =(
1 1

0 1

)
is not generally an element of Γ. Specifically with the cases above,

T ∈ Γ0(N),Γ1(N), but T /∈ Γ(N). So when we don’t have the matrix T

in our group Γ, then f is not Z-periodic and doesn’t have an expansion in

terms of q. However, the matrix

(
1 N

0 1

)
∈ Γ, and thus f will have a Fourier

expansion in the variable q1/N as

f(q) =
∞∑

n=−∞

a(n)qn/N . (2.19)

Holomorphicity at infinity is the same, a(n) = 0 for all n < 0, we now just

add that it must hold for certain other series expansions, since in general

f |kγ 6= f .

Remark 2.11. The spaces of modular forms for a group Γ are denoted Mk(Γ).

We also have cusp forms in the same way as above, with the spaces denoted

Sk(Γ). Further, the above inclusions of groups is reversed for spaces of mod-

ular forms, that is

Mk(Γ0(N)) ⊆Mk(Γ1(N)) ⊆Mk(Γ(N)). (2.20)

Note that Γ0(N)/Γ1(N) ∼= (Z/NZ)×. Thus, given an element γ ∈ Γ0(N)

and a form f ∈Mk(Γ1(N)) we can compute f |γ. By the above quotient, this

can be expressed as action by an element d ∈ (Z/NZ)×, which is called the

diamond operator and written 〈d〉f .

Definition 2.12 (Modular form of type (N, ε)). Let ε : (Z/NZ)× → C× be

a character. A modular form of type (N, ε) is a form f ∈ Mk(Γ1(N)) such

15



that 〈d〉f = ε(d)f . The space of modular forms of type (N, ε) is denoted

Mk(Γ1(N), ε).

Proposition 2.13. We have decompositions

Mk(Γ1(N)) =
⊕

ε:(Z/NZ)×→C×
Mk(Γ1(N), ε)

Sk(Γ1(N)) =
⊕

ε:(Z/NZ)×→C×
Sk(Γ1(N), ε),

where the sums run over all characters of (Z/NZ)×.

Proof. See Lemma 4.3.1 in [Miy06].

Remark 2.14. One of the summands above corresponds to the trivial charac-

ter, i.e. forms in that summand satisfy 〈d〉f = f . This means that they

are fixed not just under Γ1(N), but under all of Γ0(N). Thus we have

Mk(Γ1(N), triv) = Mk(Γ0(N)).

Results on modular forms of level N often rely heavily on the group Γ1(N)

and a choice of character ε. To pass to a result on Γ0(N), one can use

the same result, but merely consider the character to be trivial. Passing to

a result on Γ(N) (often referred to as full level structure) is more subtle,

since Mk(Γ(N)) is a larger space. For that, we have the following group

homomorphism,

Γ1(N2) −→ Γ(N)(
a b

c d

)
7−→

(
a bN

c/N d

)
.

(2.21)

This allows us to compare forms for Γ and Γ1, though the actual level N may

change.

2.3 Modular forms (mod p)

One often writes Mk(Γ) above as Mk(Γ;C), and the definition we have pro-

vided above is often referred to as the definition “over C”. One way to
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generalise this is to consider the rings in which the Fourier coefficients reside.

For each k, we have the q-expansion map,

Qk : Mk(Γ;C) −→ C[[q]]

f 7−→ f(q).
(2.22)

With this, we now define the following:

Definition 2.15 (Modular forms over R). Let R ⊆ C be a subring of C.

The set of modular forms of weight k over R is

Mk(Γ;R) := Q−1
k (R[[q]]). (2.23)

With this we can choose R = Z and get the set of modular forms with integral

coefficients. Now we can construct modular forms with coefficients in any

Z-algebra B by

Mk(Γ;B) := B ⊗Z Mk(Γ;Z). (2.24)

Specifically, we can choose B = Fp or B = Fp and this gives the theory of

modular forms (mod p). The reason to choose the algebraic closure will be

discussed in chapter 5.

At this stage, we’d like to note that the q-series Ep−1(q) (mod p) = 1.

Definition 2.16 (Hasse Invariant). The Hasse Invariant is the form A =

Ep−1 ∈M∗(Γ;Fp).

This turns out to be on of the more remarkable features of the theory of

(mod p) modular forms. In particular, it will play a role in chapter 6.

2.4 Algebraic Geometry

This section primarily follows [Kat73]. We will not revise basic scheme-

theoretic definitions, but invite the reader to consider [Har77] for the back-

ground material.

17



One may wonder at the motivation behind the study of these modular forms

we have defined. In fact, they relate in a very deep way to many powerful and

interesting number-theoretic objects. One major area of interest in number

theory is the study of elliptic curves. These may be familiar in the guise below

(see Example 2.21), but we will begin by viewing them more generally.

Definition 2.17 (Elliptic Curve). An elliptic curve over a scheme S is a

proper smooth morphism p : E → S such that the geometric fibres are

connected curves of genus 1, and a section e : S → E.

These objects are endowed with much more structure than is immediately

apparent from the definition. In fact, they form a commutative group scheme

over the base S (see [KM85] Theorem 2.1.2). We will now explore the struc-

ture that is useful to the definition of modular forms.

Remark 2.18. Let Ω1
E/S be the sheaf of differential 1-forms on E relative to

S. We can push this forward to a sheaf on S via p. We thus define the

(invertible) sheaf ωE/S = p∗(Ω
1
E/S).

For simplicity, we will consider the case for which the scheme S is in fact

Spec(R) for a ring R. In this context, we will often write E/R to refer to the

elliptic curve E/ Spec(R) in the notation above. We can now define modular

forms of level 1, as follows.

Definition 2.19 (Modular Form). An modular form of weight k and level

1 is a function which associates to each pair (E/R, ω), where ω is a global

section of the sheaf ωE/R on Spec(R), an element f(E/R, ω) ∈ R such that

(1) If E ′/R ∼= E/R, then f(E/R, ω) = f(E ′/R, ω′).

(2) If λ ∈ R× (the multiplicative group of R), then

f(E/R, λω) = λ−kf(E/R, ω) (2.25)

(3) If g : R→ R′ is a morphism of rings, then

f(ER′/R
′, ωR′) = g(f(E/R, ω)). (2.26)

18



Remark 2.20. (1) If we only consider rings defined over a fixed ring R0 (i.e.

only R0-algebras), then the set of weight k modular forms for all such

rings R is the R0-module of weight k level 1 modular forms over R0.

(2) Compared to the modular forms we defined in definition 2.1, the forms

defined here are not necessarily holomorphic at infinity. To ensure that,

as above, we have to introduce a notion of a series expansion of a form.

We can do this abstractly by considering an elliptic curve over the R0-

algebra R = Z((q))⊗Z R0. To get the expansion above, we consider the

Tate curve, Tate(q), with its canonical differential form ωcan. Given a

modular form f , evaluating f(Tate(q), ωcan) gives us a Laurent series in

R = Z((q)) ⊗Z R0 with finitely many terms of negative index. We can

now say that the form is holomorphic at infinity if f(Tate(q), ωcan) ∈
Z[[q]]⊗Z R0.

We have now recovered a definition of modular forms similar to the one above.

This point of view is a powerful one, and allows useful results to be produced

using algebro-geometric techniques, rather than analysis. However, there are

certain pieces of the original definition that we have not yet reproduced here.

Let us attempt to recover the original definition in full.

Example 2.21. Let R0 = C. So S = Spec(R0) = {pt}, i.e. a single point.

Thus an elliptic curve E/S (or E/C) is a smooth projective curve of genus

1, with a distinguished point O (this is determined by the section). In fact,

we can give it a precise equation as a projective variety in P2(C) with

E ∼= {[X : Y : Z] ∈ P2(C) | Y 2Z = X3 + aXZ2 + bZ3}, (2.27)

where a, b ∈ C such that the discriminant ∆(a, b) = −16(4a3 + 27b2) is

nonzero. Further, this holds over any field K with characteristic char(K) 6=
2, 3, see [Sil09] Proposition III.3.1.

Returning to the case over C, we have yet another description of elliptic

curves as complex tori. This can be seen by their abelian group structure

making them examples of abelian varieties ; the dimension 1 examples arise
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as quotients of the complex plane C by a rank 2 Z-lattice, denoted Λ, see

[Sil09] Corollary IV.5.1.1. So, for an elliptic curve E/C, the set of C-points

E(C) ∼= C/Λ, where Λ = Zω1 ⊕ Zω2 with ω1, ω2 ∈ C such that ω1/ω2 6∈ R.

By appropriate transformations, one can in fact find an isomorphic curve

C/Λ where Λ = Zz ⊕ Z1, where z ∈ G1. Thus we can index elliptic curves

over C by elements z ∈ G1. So when are two curves E1 and E2 defined as

tori isomorphic? Precisely when there exists an invertible (over Z) change of

basis between the lattices Λ1 and Λ2. Thinking of an element αz + β ∈ Λ

as a column vector

(
αz

β

)
, these changes of bases are given by elements of

SL2(Z).

So, considering our new definition of modular forms of weight k, we see that

they are differential k-forms on isomorphism classes of elliptic curves. Over

C, these isomorphism classes are in bijection with elements of SL2(Z)\G1,

and thus we recover our original definition.

One final note on this topic is to introduce the notion of a modular form of

level N in this way. In the world of elliptic curves, this arises from a level

N structure on a curve E. For the remainder of this section, we will assume

that N is invertible in our base scheme, i.e. that S is a scheme over Z[1/N ].

Now we introduce the set of N -torsion points on E,

E[N ] = {P ∈ E | N · P = O}. (2.28)

This is a group scheme, and we have E[N ](C) ∼= (Z/NZ)2. There are many

choices of level N structure on E, which we will categorise as follows:

S0: A cyclic subgroup C ⊆ E of order N ,

S1: A point Q ∈ E of order N ,

S: Two points P,Q ∈ E of order N which generate E[N ].
Remark 2.22. An alternate description of S is to say that we have a choice

of isomorphism αN : E[N ](C)
∼−→ (Z/NZ)2.

When we consider an elliptic curve along with a level N structure, we now

ask that our morphisms preserve the level N structure (and thus we will in

20



general have more isomorphism classes). So a modular form of level N is as

above, but rather than taking an elliptic curve E/R we take a pair either

(E/R,C), (E/R,Q), (E/R, αN) depending on the type of level N structure.

We require as above that the modular form only depend on the isomorphism

class of curve with level N structure. We will write

Y0(N ;R) =

{
Isomorphism classes of elliptic curves over R

with level structure S0(N)

}

Y1(N ;R) =

{
Isomorphism classes of elliptic curves over R

with level structure S1(N)

}

Y (N ;R) =

{
Isomorphism classes of elliptic curves over R

with level structure S(N)

}

Finally, to align this fully with the original theory, we have the following

theorem.

Theorem 2.23. Let N ∈ N. Let Γ0(N),Γ1(N),Γ(N) be as in equations

(2.15), (2.16). We have bijections

(1) Y0(N ;C)
∼−−→ Γ0(N)\G1

(2) Y1(N ;C)
∼−−→ Γ1(N)\G1

(3) Y (N ;C)
∼−−→ Γ(N)\G1

Proof. See [DS05], Theorem 1.5.1.

This now aligns our original theory fully with this algebro-geometric theory.

Note that while we have demonstrated how the groups Γ and the space

G1 arise for forms over C, this does not explain why this was our starting

point for forms (mod p). In fact, this is due to the fact that if we begin

with elliptic curves over C, we can restrict our actual points to lie over

subrings, in particular Z[1/N ]. From this point we can tensor over Z[1/N ]

with various rings (as above, our interest lies with Fp and Fp) to retrieve the

theory we had initially. However, our original definition of modular forms
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in this section allowed you to choose any ring R, and to see that this aligns

with this tensoring over Z[1/N ] idea we have the following.

Theorem 2.24 ([Kat73], Theorem 1.7.1). Let N ≥ 3, and then let k ≥ 2

or k = 1 and N ≤ 11. Let B be a Z[1/N ]-algebra. Then we have an

isomorphism

B ⊗Mk(Γ(N);Z[1/N ])
∼−−→Mk(Γ(N);B). (2.29)

We would now like to provide one final modification to this point of view. We

have chosen to think of modular forms as functions which take as input both

an elliptic curve E/R and a differential form ω and output an element in R.

Instead, compared to definition 2.19, we can say that a modular form takes

as input an elliptic curve E/R and gives f(E/R) = f(E/R, ω) · ωk ∈ ωE/R.

Now, we have assembled these elliptic curves into a space Y (N ;R) (note that

one can use other level structures, but for brevity we will stick to S(N)),

and the powerful notion is that there exists an elliptic curve E defined over

Y (N ;R). This is known as the universal elliptic curve, E/Y (N ;R). Then

we can define the sheaf ωE/Y (N ;R) = p∗(Ω
1
E/Y (N ;R)). We can now think of

modular forms as sections of the sheaf ωE/Y (N ;R), and in fact since they are

defined for all elliptic curves, this is in fact a global section. This space of

global sections is denoted H0(Y (N ;R), ω⊗k), where we take the kth tensor

power to get weight k forms. So we are currently motivated to say that this

is our space of modular forms of weight k and level N . However, recall that

at this stage the definition does not include the “holomorphic at infinity”

requirement. Above we resolved this via evaluation at the Tate curve. There

is a slightly neater way, which comes from noting that the space Y (N ;R) is

not compact. The compactification of this space is denoted X(N ;R), and the

sheaf ωE/Y (N ;R) can be extended to ω = ωE/X(N ;R). This leads us to define

Mk(Γ(N);R) = H0(X(N ;R), ω⊗k). (2.30)
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Chapter 3

Siegel Modular Forms

Modular forms have proven to be an extremely powerful tool in various areas

of number theory. Many of the problems which they handle have generalisa-

tions to higher dimensions, or simply more variables. For example, modular

forms are connected to elliptic curves, whereas in general one may consider

abelian varieties. That is, projective algebraic varieties which have the struc-

ture of an abelian group on their points.

3.1 Siegel Modular Forms

Here we have the Siegel upper half plane

Gg = {z ∈Mg(C) | z> = z,=(z) is positive-definite } (3.1)

and the symplectic group

Sp2g(Z) = {γ ∈ GL2g(Z) | γ>Jγ = J}, where J =

(
0 I

−I 0

)
(3.2)

=

{
γ =

(
A B

C D

) ∣∣∣∣∣ A,B,C,D ∈ GLg(Z),

AB> = BA>, CD> = DC>, AD> −BC> = I

}
.
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The first observation that one should make is that if one chooses g = 1,

we have G1 (our usual upper half plane) and Sp2(Z) ∼= SL2(Z). As for the

action, we have

γ · z = (Az +B)(Cz +D)−1 where γ =

(
A B

C D

)
, (3.3)

which again reduces to the usual action in the case g = 1. The fact that

Cz +D is invertible follows from z having positive-definite imaginary part.

This is the corresponding domain and group action from which we will define

our modular forms. The weight is an algebraic representation

κ : GLg(C) −→ GLm(C), (3.4)

The factor of automorphy is

jγ(z) = Cz +D, (3.5)

with γ and z as above. We now can turn to the full definition.

Definition 3.1 (Siegel Modular Form). A Siegel modular form of weight κ

and level 1 is a holomorphic function f : Gg → Cm such that

f(γ · z) = κ(jγ(z))f(z), for γ ∈ Sp2g(Z). (3.6)

Remark 3.2. (1) As a function on Gg, a Siegel modular form can be inter-

preted as a function of g(g + 1)/2 complex variables.

(2) If κ = κ1 ⊕ κ2, then Mκ = Mκ1 ⊕ Mκ2 , so it is sufficient to consider

irreducible representations.

(3) It is not necessary to explicitly ask that Siegel modular forms be “holo-

morphic at infinity” for g > 1 due to the Koecher principle, see [vdG06]

Theorem 4.4.

Let us now consider the weights that arise for low degrees g.

• If g = 1, then G1 is the upper half plane and the irreducible represen-

tations of GL1(C) = C× are of the form z 7→ zk. Thus we recover the

usual modular forms.
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• If g = 2, we consider the standard representation std, which is the usual

matrix action of GL2(C) on C2. Then all irreducible representations of

GL2(C) are of the form Symj(std) ⊗ det(std)k. So one can represent

weights for g = 2 as a pair (j, k), which some references do.

• In general, the irreducible representations of GLg(C) are in bijection

with tuples of integers (λ1, . . . , λg), where λi ≥ λi+1.

However, we always have the representation det(std)k, and we can consider

Siegel modular forms with that weight. These are known as scalar-valued

Siegel modular forms.

As with modular forms, for a fixed weight these form a vector space. We

write

Mκ(Sp2g(Z)) = { Siegel modular forms of weight κ }, (3.7)

and we set Mk(Sp2g(Z)) = Mdet(std)k(Sp2g(Z)).

As with modular forms, we can extend past level 1 to general level N by the

introduction of congruence subgroups. Here, we will focus on just one such

group, Γg(N), which is

Γg(N) = ker(Sp2g(Z) −→ Sp2g(Z/NZ))

=

{(
A B

C D

)
∈ Sp2g(Z)

∣∣∣∣∣
(
A B

C D

)
≡

(
I 0

0 I
(mod N)

)}
.

We will often simply refer to Siegel modular forms for some general finite

index subgroup Γg ⊆ Sp2g(Z) when we do not wish to be precise.

3.2 Fourier Expansion

We begin with the level 1 case.

In the case of modular forms, we acted by a particular matrix to show that
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the form is periodic and thus has a Fourier expansion. Consider the matrix

γ =

(
I S

0 I

)
, (3.8)

where S is a g × g symmetric matrix with integer entries. Computing the

modularity condition above with this γ gives us

f(z + S) = f(z). (3.9)

Recall that z is itself a symmetric matrix in g(g + 1)/2 complex variables,

and thus suitable choices of S give us that f is periodic in its variables. Let

z = (zij) and then write qij = e2πizij . From this, we get the Fourier expansion

as

f(q11, . . . , qgg) =
∑

n11,...,ngg∈Z

a(n11, . . . , ngg)q
n11
11 . . . qngggg . (3.10)

We will not generally make use of this notation, as there is a more concise and

helpful way of packaging these expansions. Here we will make the notation

q = (qij).

Let n be a g× g symmetric matrix. We say n is half-integral if aij ∈ 1
2
Z and

aii ∈ Z. Then we have

Tr(nz) =

g∑
i=1

niizii + 2
∑

1≤i<j≤g

nijzij, (3.11)

so one can see that the choice of n being half-integral is to make up for the

repetition of certain entries due to the symmetry of the matrices. Thus, we

can express the earlier Fourier expansion as

f(q) =
∑
n

a(n)qn, (3.12)

where qn = e2πiTr(nz).

As for general level N , we need to modify the above in an analogous way

that we do for g = 1. Here, the matrix available to us is of the form

γ =

(
I NS

0 I

)
, (3.13)
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with S as above. So, we have N -periodicity and we obtain a Fourier expan-

sion of the form

f(q) =
∑
n

a(n)qn
N , (3.14)

where qn
N = e

1
N

2πiTr(nz) and a(n) ∈ Cm.

3.3 The Φ Operator and Cusp Forms

Definition 3.3 (The Siegel Φ Operator). We define an operator Φ on Mκ(Γ
g)

by

(Φf)(z′) = lim
t→∞

f

(
z′ 0

0 it

)
, with z′ ∈ Gg−1, t ∈ R. (3.15)

Or, one can view this as

(Φf)(q′) =
∑
n′

a

(
n′ 0

0 0

)
(q′)n

′
, (3.16)

where (q′)n
′
= e2πiTr(n′z′).

In fact, the image of Φf in Cm gives you a subspace Cm−1 ⊆ Cm that is

invariant under

(
γ′ 0

0 1

)
∈ GLg(C) for γ′ ∈ GLg−1(C). Thus we arrive at a

representation κ′ : GLg−1(C)→ GLm−1(C). Thus the Siegel operator defines

a map

Φ : Mκ(Γ
g) −→Mκ′(Γ

g−1). (3.17)

The primary use of this definition is the following.

Definition 3.4 (Cusp Form). A Siegel modular form f ∈ Mκ(Γ
g) is a cusp

form if Φf = 0.

One can readily check that for g = 1 the Φ operator simply maps to the

Fourier coefficient af (0), and thus this definition gives the usual idea of a

cusp form when g = 1.
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3.4 Siegel modular forms (mod p), from char-

acteristic zero

As with modular forms, we have so far been focused on the spaces Mκ(Γ
g;C).

Here we have a q-expansion map,

Qκ : Mκ(Γ
g;C) −→ Cm[[q]]

f 7−→ f(q).
(3.18)

Now, we define:

Definition 3.5 (Siegel modular forms over R). Let R ⊆ C be a subring of

C. The set of Siegel modular forms of weight κ over R is

Mκ(Γ
g;R) := Q−1

κ (Rm[[q]]). (3.19)

As before, if B is a Z-module then set

Mκ(Γ
g;B) := B ⊗Mκ(Γ

g;Z). (3.20)

Then to get Siegel modular forms (mod p) we pick B = Fp or Fp. We will

later see a notion of Siegel modular forms arising from algebraic geometry,

which will give us an more intrinsic notion of forms (mod p). Compared

to that, we will say that the above definition gives us Siegel modular forms

(mod p) which are reduced from characteristic 0.

Again here, we desire a notion of a Hasse invariant, i.e. the reduction of

a scalar-valued Siegel modular form f ∈ Mp−1(Γg;Z(p)) such that f(q) ≡ 1

(mod p). Note here that we are considering Z(p), so we are allowing fractions

so long as their denominators are coprime to p. The existence of this form is

in general conjectural, however, we have the following.

Theorem 3.6 ([BN07], Corollary 1). There exists a form f ∈Mp−1(Γg;Z(p))

such that f(q) ≡ 1 (mod p) as long as any of the following hold:

• p ≥ g + 3

• p ≡ 1 (mod 4)
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• p ≥ g/2 + 3 and p is a regular prime.

Note that although we are working with Z(p) rather than Z, we still have Fp
and Fp as modules so we can still reduce (mod p) as desired.

3.5 Algebraic Geometry

We now wish to perform an analogous geometric construction to the one

in chapter 2. In section 2.4, we saw that modular forms arise as global

sections of the compactified moduli space of elliptic curves. These are the 1-

dimensional case of objects called abelian varieties, or more generally abelian

schemes. These are defined as follows.

Definition 3.7 (Abelian Scheme). Let S be a scheme. A g-dimensional

abelian scheme A over S is a group scheme, which is a smooth proper mor-

phism p : A → S with section e : S → A such that the geometric fibres are

connected of dimension g.

As usual if we simply wish to take the definition over some ring R, take

S = Spec(R). Note that the case g = 1 corresponds precisely to the elliptic

curves defined earlier. For general g we require further structure to capture

the desired theory and properties.

Definition 3.8 ((Principal) Polarization). Let A be an abelian scheme, with

dual A∨ = Pic0(A/S). A polarization is an S-homomorphism λ : A → A∨

such that if s is a geometric point of S then λs : As → A∨s is of the form

λs(a) = t∗aLs ⊗ L−1
s for some ample invertible sheaf Ls on As. A principal

polarization is a polarization which is also an isomorphism.

Then, a principally polarized abelian variety is a pair (A, λ) where λ is a

principal polarization of A. These are the objects with which we will concern

ourselves.

We will now introduce levels, and as earlier in this chapter, we will only con-

sider the so-called full level structure, which corresponds to the group Γg(N),
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above. Let S be a scheme over Z[1/N ], i.e. N is invertible in S, and let A be

an abelian scheme over S. A level N structure on (A, λ) is an isomorphism

α : A[N ] → (Z/NZ)2g under which the Weil pairing1 corresponds to the

standard symplectic pairing on (Z/NZ)2g. If we now consider isomorphism

classes of these tuples (A, λ, α), we can assemble these into a scheme Ag,N .

Just as for elliptic curves, we have here a universal abelian scheme Y/Ag,N
on which we will consider the sheaf of relative differentials, known as the

Hodge bundle E = e∗(ΩY/Ag,N ).

For modular forms, we took the sheaf of differentials ω to a tensor power

to find general weights. For the sheaf E on Ag,N , we take an algebraic

representation κ : GLg → GLm and twist the sheaf of differentials E by κ,

which results in the sheaf Eκ. For details on this, see [Ghi03], §3.1. At

this point for modular forms we introduced a compactification X, however if

g > 1 this is not necessary due to the Koecher principle.

Finally, we come to the following expression for the space of weight κ Siegel

modular forms:

Mκ(Γ
g(N)) = H0(Ag,N ,Eκ). (3.21)

That is, Siegel modular forms of weight κ are global sections of the sheaf Eκ
over the moduli space Ag,N .

This gives an intrinsic notion of Siegel modular forms (mod p) where you

could pick, a scheme over Fp. To relate this to the previous construction, we

have the following result.

Theorem 3.9 ([Str13], Theorem 1.3). Let κ be the representation given by

the tuple (k1, . . . , kg). Let N > 12, and either

• p > g(g + 1)/2), or

• kg > g + 1 and
∑

i(ki − kg) < p− g(g + 1)/2.

Then any Siegel modular form (mod p) of weight κ and level N exists as the

reduction of a form in characteristic 0.

1which arises from a pairing between A and A∨, which for us are isomorphic
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Chapter 4

Representation Theory of GSp

and GSpin

4.1 Definitions and Setup

We have seen now modular forms attached to SL2 and Siegel modular forms

attached to Sp2g. In fact, there is a more general group action on modular

forms, coming from GL2 and GSp2g, respectively. Note that we will gener-

ally discuss properties of GSp2g only, since GSp2 = GL2. We would like to

understand some of the properties of these groups in a wider context so we

can obtain some interesting results on modular forms. Specifically, we would

like to understand the following objects:

• The local Hecke algebra H(GSp2g(Q`),GSp2g(Z`))

• The dual group ˆGSp2g = GSp2g+1

To get these properties, we need the view of GSp2g as a group scheme over

Z so we can define it over the various rings Q` and Z` above.

Much of the interesting data attached to modular forms can be extracted by

examining these groups. Mainly our interest will be an analysis of the Hecke
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algebra of Hecke operators. These act on modular forms via the group action

coming from GSp2g. It is helpful to restrict to the data at various primes

`, which corresponds to considering the groups GSp2g(Q`) and GSp2g(Z`).
Given that we are predominantly interested in modular forms (mod p), it

transpires that we will consider the above for ` 6= p.

We will now explore these groups before leading into a more detailed discus-

sion of Hecke operators in chapter 5.

First, we will define the primary of group of interest for an arbitrary ring R.

Definition 4.1. The reductive group scheme GSp2g over Z is the linear group

such that for all rings R the set of R-points is given by

GSp2g(R) = {γ ∈ GL2g(R) | γ>Jγ = η(γ)J},

where η(γ) ∈ R× and J =

(
0 I

−I 0

)
. (4.1)

Remark 4.2. One should think that GSp is to Sp as GL is to SL. That is,

we have allowed this symplectic similitude factor η that was equal to 1 for

γ ∈ Sp2g(R) to now in general just be a unit. In fact, for γ ∈ GSp2g(R) we

have that det(γ) = η(γ)g.

So we are studying here examples of reductive group schemes. We will not

go into the full details of their definitions and properties here, but necessary

set up can be found in [Con14].

4.2 Root Datum

Given the group scheme G = GSp2g, we fix the split torus

T =

{
t = t(u1, . . . , ug+1)

= diag(u1, . . . , ug;ug+1u
−1
1 , . . . , ug+1u

−1
g )

∣∣∣∣∣ u1, . . . , ug+1 ∈ Gm

}
,
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where Gm is the multiplicative group. From this, we can compute the char-

acter lattice and cocharacter lattice, which are

X(T ) = HomGrpSchm(T,Gm) X∨(T ) = HomGrpSchm(Gm, T ). (4.2)

So, for our case of GSp2g we have

X(T ) = Ze1 ⊕ . . .⊕ Zeg+1
∼= Zg+1

X∨(T ) = Zf1 ⊕ . . .⊕ Zfg+1
∼= Zg+1,

where

ei : t(u1, . . . , ug+1) 7−→ ui, for i ∈ {1, . . . , g + 1},

fi : u 7−→ t(1, . . . , 1, u, 1, . . . , 1), for i ∈ {1, . . . , g + 1},

where u is in the ith position above. So we can express

fi(u) =

diag(1, . . . , 1, u, 1, . . . , 1; 1, . . . , 1, u−1, 1, . . . , 1), if 1 ≤ i ≤ g,

diag(1, . . . , 1 : u, . . . , u), if i = g + 1.

Note that we write X and X∨ additively, while in fact they are multiplicative

groups. So, for example, if λ, µ ∈ X, then (λ+ µ)(x) = λ(x)µ(x) for x ∈ T .

Remark 4.3. Characters and cocharacters of the torus are often called weights

and coweights, respectively. There are deep connections between group schemes

and Lie algebras, and the representation theory makes use of this connection.

Thus the weights here correspond closely to the weights in the Lie algebra.

These also have a pairing

〈, 〉 : X ×X∨ −→ HomGrpSchm(Gm,Gm)
∼−−→ Z

(α, λ) 7−→

(
α ◦ λ : Gm → Gm

x 7→ xn

)
7−→ 〈α, λ〉 = n,

(4.3)

so in particular 〈ei, fj〉 = δij.

At this point, we will introduce two special sets of characters and cocharac-

ters, called the roots and coroots. These are both of deep significance and
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give a great deal of information regarding the representation theory of group

schemes. We will not provide the definitions for these in a general setting,

merely give them here explicity as certain combinatorial objects.

In this case, the roots have Z-basis ∆ = {α1, . . . , αg} and the coroots have

Z-basis ∆∨ = {α∨1 , . . . , α∨g } where

α1 = e1 − e2 α∨1 = f1 − f2

α2 = e2 − e3 α∨2 = f2 − f3

...
...

αg−1 = eg−1 − eg α∨g−1 = fg−1 − fg
αg = 2eg − eg+1 α∨g = fg.

We can use these to define some useful objects for us. Firstly, the set of

dominant weights and dominant coweights by

{λ ∈ X | 〈α, λ〉 ≥ 0, for all λ ∈ ∆∨} ⊆ X

{λ ∈ X∨ | 〈α, λ〉 ≥ 0, for all α ∈ ∆} ⊆ X∨

Secondly, orderings on X and X∨ by

λ ≥ µ if λ− µ =
∑

ciαi (in X)

λ ≥ µ if λ− µ =
∑

ciα
∨
i (in X∨) (4.4)

for ci ∈ Z≥0.

Remark 4.4. One important observation we will make now for ` ∈ Z a prime

is that

η(α∨i (`)) =

η(fi(`)fi+1(`)−1), if 1 ≤ i ≤ g − 1

η(fg(`)), if i = g

= 1,

where 1 ≤ i ≤ g and η is as in (4.1). Or, using the notation of the pairing,

we can say 〈η, α∨i 〉 = 0.

This in fact implies a slightly stronger statement as we will see in section 4.5.
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So, attached to the group scheme GSp2g, we have a tuple (X,X∨,∆,∆∨),

called the root datum of the group. From this data, one can attach the dual

group, ˆGSp2g, which is the group scheme with root datum (X∨, X,∆∨,∆).

In fact, we have that ˆGSp2g = GSpin2g+1. For our purposes, this is the only

feature of GSpin2g+1 of interest to us. Any structure we require will occur

purely from the fact that it is dual to GSp2g. A more direct construction of

GSpin2g+1 coming from Clifford algebras can be found in [Con14], appendix

C.4.

Now, to see some of the use for all these definitions, we have the following

remarkable result.

Theorem 4.5. Let λ be a dominant weight of GSp2g. Then there exists an

irreducible representation GSp2g(Z)→ GL(Zdλ).

Proof. The above is originally attributed to Chevalley, and the fact that it

is over Z allows us to extend scalars (i.e. tensor by Z-algebras) to our rings

of choice. This is particularly valuable for us, since our primary interest will

be representations (mod p). See [Jan07], II, Corollary 2.7.

Corollary 4.6. Let λ be a dominant coweight of GSp2g. Then there exists

an irreducible representation GSpin2g+1(Z)→ GL(Zdλ).

Proof. By duality, a dominant coweight of GSp2g is a dominant weight of

GSpin2g+1. Then apply the theorem above.

Now we will begin to get into the main topics of interest.

4.3 The Hecke Algebra

The reason we have explored these concepts above is the information they

give us for the Hecke algebra. We will now introduce this object formally,

but its significance will not be clear until chapter 5.
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The Hecke algebra is generated by elements known as double cosets, which

we will now introduce.

Definition 4.7 (Double Coset). Let G be a group and K ⊆ G a subgroup.

Let g ∈ G, then we have the double coset

KgK = {k1gk2 | k1, k2 ∈ K}. (4.5)

The set of all double cosets of K in G is denoted K\G/K.

Remark 4.8. Given a double coset KgK in G, one can decompose it into

left (or right) cosets by simply decomposing G and intersecting the resulting

cosets with KgK, i.e. if G =
⋃
i∈I Kgi, then KgK =

⋃
j∈Jg(KgK ∩ Kgj),

where Jg = {j ∈ I | KgK ∩Kgj 6= ∅}.

These decompositions can in general be infinite, so we will want the following

Definition 4.9 (Hecke Pair). A Hecke pair is a pair (G,K) with G a group

and K ⊆ G a subgroup such that every double coset KgK, where g ∈ G, is

a finite union of right cosets.

We can give these double cosets the structure of an algebra with formal

summation, as follows

Definition 4.10 (Hecke Algebra). Let (G,K) be a Hecke pair. The Hecke

algebra of (G,K) is the algebra H(G,K) = Z[K\G/K], with product

KgK ·KhK =
∑

i∈Jg ,j∈Jh

Kgihj, (4.6)

for KgK =
∑

i∈Jg Kgi, KhK =
∑

j∈Jh Khj.

We now make a choice as to the groups G and K in which we are interested.

Lemma 4.11. Let G be a reductive group scheme over Z. Let F be a local

field with ring of integers OF. Then (G(F), G(OF)) is a Hecke pair.

Proof. See Proposition 6.1 in [Lan01].

Remark 4.12. 1. Note that our group of interest, GSp2g, with field Q` and

ring of integers Z`, satisfies the required conditions.
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2. Since we have chosen F to be a local field, the resulting Hecke algebra

would often be referred to as a local Hecke algebra. We will see in

chapter 5 how this corresponds to a piece of a global Hecke algebra at

a particular prime `.

One application of the above definitions is the ability to precisely formulate

a basis for a Hecke algebra, as follows.

Proposition 4.13. Let ` be a prime. Let G = GSp2g(Q`) and K = GSp2g(Z`)
with the torus T as above giving us the set of dominant coweights in X∨.

G =
∐
λ∈X∨

λ dominant

Kλ(`)K (4.7)

Further, the double cosets Tλ(`) = Kλ(`)K give a Z-basis for H.

Proof. This is the Cartan decomposition. See, for example, Proposition 2.6

in [Gro98b].

4.4 The case of GL2

We now provide an example, the case of the usual elliptic modular forms.

Example 4.14. Let g = 1, so GSp2g = GSp2
∼= GL2.

We have the torus of diagonal matrices,

T =

{(
u1 0

0 u2u
−1
1

)}
.

The above representatives are chosen to align with our earlier choices for

GSp2g, though in this specific case they are not the most natural options.

Now we have

e1 :

(
u1 0

0 u2u
−1
1

)
7−→ u1, f1 : u 7−→

(
u 0

0 u−1

)
,

e2 :

(
u1 0

0 u2u
−1
1

)
7−→ u2, f2 : u 7−→

(
1 0

0 u

)
,
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and thus

X(T ) =

{(
u1 0

0 u2u
−1
1

)
7−→ ua1u

b
2

}
= Ze1 ⊕ Ze2

∼= Z2,

X∨(T ) =

{
u 7−→

(
ua 0

0 ub−a

)}
= Zf1 ⊕ Zf2

∼= Z2,

with pairing the usual dot product on Z2, i.e. still just 〈ei, fj〉 = δij.

The root basis is ∆ = {α = e1− e2}, with coroot basis ∆∨ = {α∨ = f1−f2}.
Note now that X = X∨ and ∆ = ∆∨, and thus

(X,X∨,∆,∆∨) = (X∨, X,∆∨,∆), (4.8)

and thus GL2 is its own dual group, i.e. ĜL2 = GL2. Now the set of dominant

coweights is

{λ = af1 + bf2 ∈ X∨ | 〈α, λ〉 ≥ 0, for all α ∈ Φ+}

= {λ = af1 + bf2 ∈ X∨ | 〈e1 − e2, af1 + bf2〉 ≥ 0}

= {λ = af1 + bf2 ∈ X∨ | a− b ≥ 0}

= {λ = af1 + bf2 ∈ X∨ | a ≥ b}.

Thus our Hecke algebra can be expressed as

HGL2 = Z- span{GL2(Z`)λ(`) GL2(Z`) | λ dominant}

= Z- span

{
GL2(Z`)

(
`a 0

0 `b−a

)
GL2(Z`)

∣∣∣∣∣ a ≥ b

}
The above Hecke algebra corresponds to the Hecke Operators on elliptic

modular forms.

4.5 Some Useful Facts

Proposition 4.15. If β∨ is a coroot of GSp2g, then

η (β∨(`)) = 1, (4.9)

i.e. 〈η, β∨〉 = 0.
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Proof. We’ve seen that the statement holds for the choice of simple coroots

{α∨1 , . . . , α∨g } from remark 4.4. These coroots form a basis for the set of

coroots. Thus

β∨ =

g∑
i=1

ciα
∨
i (4.10)

where ci ∈ Z for 1 ≤ i ≤ g. Recalling that this addition actually represents

multiplication on the images of the coroots, we have

β∨(`) =

g∏
i=1

(α∨i (`))
ci . (4.11)

Thus

η (β∨(`)) = η

(
g∏
i=1

(α∨i (`))
ci

)

=

g∏
i=1

η (α∨i (`))
ci =

g∏
i=1

1ci = 1.

Thus for any coroot β∨ of GSp2g, we have η(β∨(`)) = 1, as required.

Corollary 4.16. If λ, µ ∈ X∨ are coweights of GSp2g such that λ ≥ µ, then

η(λ(`)) = η(µ(`)), or 〈η, λ〉 = 〈η, µ〉.

Proof. If λ ≥ µ, then by the definition of the ordering we have

λ− µ =

g∑
i=1

ciα
∨
i , (4.12)

for α∨i ∈ ∆∨ and ci ∈ Z≥0. However by the above, we have η (α∨i (`)) = 1.

Thus

η(λ(`))η(µ(`))−1 = η

(
g∏
i=1

α∨i (`)ci

)
= 1,

so we have that η(λ(`)) = η(µ(`)), as required.

Remark 4.17. This corollary may seem independent of the prior result, since

we had established that the determinant of α∨i (`) is 1 already. The result
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above makes this corollary independent on the choice of simple coroots in

remark 4.4. Further, note that it holds equally for λ ≥ µ and µ ≥ λ. The

requirement is that λ and µ differ only by coroots.

Another thing to note is that therefore any power of η is trivial on coroots.

In particular, det = ηg, and thus det is also fixed when λ ≥ µ or µ ≥ λ.
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Chapter 5

Hecke Operators and Hecke

Algebras

5.1 Double Coset Action

Siegel modular forms have a standard action from the group Sp2g(Z). The

Hecke operators arise from an action of

GSp+
2g(Q) = {γ ∈ GSp2g(Q) | det(γ) > 0}. (5.1)

The reason we choose the subgroup of positive determinant matrices is that

we wish to preserve the action on Gg, i.e. for γ ∈ GSp+
2g(Q) and z ∈ Gg,

γz = (Az +B)(Cz +D)−1, (5.2)

where γ =

(
A B

C D

)
. The resulting image is only within the upper-half space

if det γ > 0. Using this, we now have the following

Definition 5.1 (Slash Operator). The weight κ slash operator is

· |κγ : Mκ(Sp2g(Z)) −→ Mκ(Sp2g(Z))

f 7−→ f |κγ,
(5.3)

41



where

(f |κγ)(z) = η(γ)
∑
λi−g(g+1)/2κ(Cz +D)−1f(γz), (5.4)

for κ the irreducible representation with highest weight (λ1 ≥ . . . ≥ λg).

Remark 5.2. Note that if γ ∈ Sp2g(Z), then

(f |κγ)(z) = η(γ)
∑
λi−g(g+1)/2κ(Cz +D)−1f(γz)

= 1
∑
λi−g(g+1)/2κ(Cz +D)−1κ(Cz +D)f(z)

= f(z),

so Sp2g(Z) fixes Mκ(Sp2g) pointwise under the slash operator.

In section 4.3 we defined a Hecke algebra of double cosets. We will now apply

this to the specific case of the groups acting on Siegel modular forms.

Proposition 5.3. The pair (GSp+
2g(Q), Sp2g(Z)) is a Hecke pair.

Proof. See [And86], §3.3 Lemma 3.3.1.

We can now introduce an action of double cosets on modular forms. For an

element γ ∈ GSp+
2g(Q), we will say that

(f |κ Sp2g(Z)γ Sp2g(Z))(z) =
∑
j∈Jγ

(f |κγj)(z), (5.5)

where Jγ is as in remark 4.8.

Proposition 5.4. Let f ∈Mκ(Sp2g(Z)) and γ ∈ GSp2g(Q)+. Then

f |κ Sp2g(Z)γ Sp2g(Z) ∈Mκ(Sp2g(Z)). (5.6)

Proof. See [vdG06], page 31.

Definition 5.5 (Hecke Operator). Let γ ∈ GSp+
2g(Q). The Hecke operator

Tγ is the map

Tγ : Mκ(Sp2g(Z)) −→ Mκ(Sp2g(Z))

f 7−→ f |κ Sp2g(Z)γ Sp2g(Z)
(5.7)
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Remark 5.6. We will often interchange between the double coset and the

function that acts upon modular forms.

Further, note that though the above definition refers to a specific γ, in the

Hecke algebra one can take sums and product of such operators and as a

result have Hecke operators T which do not correspond to a specific matrix

γ. The action of such operators is simply the sum and product of the actions

of the individual Tγ’s.

Definition 5.7 (Hecke Eigenform/Eigensystem). Let f ∈ Mκ(Sp2g(Z);B)

be a Siegel modular form. We say f is an eigenform if it is an eigenvector

for all the Hecke operators simultaneously, i.e. if T is a Hecke operator, then

there exists Ψf (T ) ∈ B such that

Tf = Ψf (T )f. (5.8)

When the eigenvalues are contained in B, the function

Ψf : H −→ B

T 7−→ Ψf (T )
(5.9)

is called the Hecke eigensystem of the eigenform f .

For calculation purposes, it is useful to have a concrrete description of the

action of Hecke operators on Fourier expansions. We recall the case g = 1

below, and refer to [And86], §4.2 for the general case.

Example 5.8. Consider

∆m = {γ ∈ GSp+
2g(Q) | det(γ) = m}. (5.10)

Then we define the Hecke operator Tm by

Tm =
∑
γ∈∆m

Tγ, (5.11)

i.e. the sum of all operators corresponding to matrices of a fixed determi-

nant m. We can compute the action of the Hecke operators Tm on Fourier
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expansions. Consider the case g = 1, and take f(q) =
∑
a(n)qn. Then we

have

(Tmf)(q) =
∞∑
n=0

 ∑
d| gcd(m,n)

dk−1a(mn/d2)

 qn. (5.12)

Now, consider an eigenform f(q) =
∑
a(n)qn for g = 1. If a(1) = 1, then

we say f is a normalised eigenform. Then, if one has the Hecke operator Tn

acting on f a normalised eigenform, we have

Tnf = a(n)f. (5.13)

That is, the eigenvalue of Tn is precisely the nth Fourier coefficient. Now, if

one thinks back to sections 2.3 and 3.4 we saw that we ocassionally want coef-

ficients in Fp. We can now understand this as necessary when the coefficients

may occur as eigenvalues of these Hecke operators.

Remark 5.9. One thing to note is that many results about modular forms

are stated in terms of their Fourier coefficients. However, in many cases

one should imagine that these coefficients in truth are referring to Hecke

eigenvalues. The reason to think this is that when one, say, attempts to

generalise a result to the Siegel case, one may look for a parallel result in the

Fourier coefficients, when really one should have been considering the Hecke

eigenvalues.

Remark 5.10. We have chosen to look at the above for Siegel modular forms

attached to Sp2g(Z), that is, level 1 forms. In general, the above theory can

be restated for any level N .

5.2 Hecke Algebra Structure

Here we’d like to make explicit some statements about the coset representa-

tives for our Hecke algebras. This will make clear a connection between the

various local Hecke algebras and the global algebra containing all the Hecke

operators defined above.
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Proposition 5.11 (Elementary Divisors). Let γ ∈ GSp+
2g(Q). The double

coset Sp2g(Z)γ Sp2g(Z) has a unique representative of the form

diag(d1, . . . , dg, e1, . . . , eg), (5.14)

where di, ej > 0, di|di+1, ei+1|ei, diei = η(γ).

Proof. This turns out to be equivalent to the Cartan decomposition, which

we stated for Q` in Proposition 4.13. If one makes the statement for Q and

Z, as we have done here, the Cartan decomposition still holds.

A precise proof can be found in [And86], Lemma 3.3.6.

Remark 5.12. (1) We get the same structure with γ ∈ GSp2g(Q) and the

double coset GSp2g(Z)γGSp2g(Z).

(2) Note that given a matrix of the form above, we can write it as a product

of diagonal matrices each of whose non-zero entries are powers of a single

fixed prime. This gives a decomposition

H(GSp+
2g(Q), Sp2g(Z)) =

⊗
` prime

H`(GSp+
2g(Q), Sp2g(Z)), (5.15)

where H` is called the local Hecke algebra at the prime `.

This local Hecke algebra is very useful, because it informs the structure of the

algebra (since one is often able to prove desired results on the local pieces)

and yet is simpler to work with, as one need only worry about a single prime

at a time.

Remark 5.13. Specifically, when we refer to an eigenform, as above, we will

often think of an eigenform at the prime `. So we have an eigensystem for

each prime `, i.e. Ψf,` : H` → B.

As it turns out, these local algebras are also Hecke algebras in their own

right, as the following lemma demonstrates

Lemma 5.14. Let γ ∈ GSp2g(Q`). The double coset GSp2g(Z`)γGSp2g(Z`)
has a unique representative of the form

diag(`k1 , . . . , `kg , `k
′
1 , . . . , `k

′
g), (5.16)
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where ki, k
′
j ∈ Z, ki ≤ ki+1, k′i+1 ≤ k′i, `

ki+k
′
i = η`(γ).

Proof. As above, this is equivalent to the Cartan decomposition. In this case,

our choice of groups aligns precisely with what we stated in Proposition 4.13.

A proof can be constructed from a minor alteration of the above, i.e. Lemma

3.3.6 in [And86]. The entries arise as gcds of entries in any other choice

of representative. The point here is that since we are working with `-adic

numbers, all such gcds will be a power of `.

Corollary 5.15. The local algebra above is the same as the Hecke algebra

coming from `-adic numbers, i.e.

H`(GSp+
2g(Q), Sp2g(Z)) ∼= H(GSp2g(Q`),GSp2g(Z`)). (5.17)

Proof. We produced the local Hecke algebra by decomposing the matrix rep-

resentatives in Proposition 5.11 into pieces that are products of a single

power. So, consider a matrix

diag(d1, . . . , dg, e1, . . . , eg), (5.18)

where di, ej ∈ Z>0, di|di+1, ei+1|ei, diei = η(γ). Let ki and k′i be maximal

such that `ki |di and `k
′
i |ei, for all i ∈ {1, . . . , g}. Then ki ≤ ki+1 and k′i ≤ k′i+1.

So the representative for the local algebra is

diag(`k1 , . . . , `kg , pk
′
1 , . . . , pk

′
g), (5.19)

where ki, k
′
j ∈ Z, ki ≤ ki+1, k′i+1 ≤ k′i, p

ki+k
′
i = η`(γ). Thus the algebras have

the same coset representatives, and thus the double cosets are in bijection,

which leads to the isomorphism, as desired.
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Chapter 6

Theta Operators

We have just looked at a family of operators on modular forms called the

Hecke operators. To that, we will add an additional theory of operators

known as theta operators. These are differential operators, one of which is a

classical object of study on modular forms. We will present some generalisa-

tions to the case of Siegel modular forms.

6.1 Modular Forms (i.e. g = 1)

6.1.1 Level 1

We begin with the level 1 case, where we can exploit the structure of the

algebra of modular forms to prove some basic results. This method was

discussed by Serre in [Ser73].

Definition 6.1 (Theta Operator on Power Series). Let R be a commutative

ring, and R[[q]] be the ring of formal power series. The theta operator is

θ : R[[q]] −→ R[[q]]

f =
∑
anq

n 7−→ q d
dq
f =

∑
nanq

n.
(6.1)
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We know that modular forms have Fourier expansions, and can view opera-

tors on those expansions. However, not all power series arise from modular

forms, and thus one should not expect that any function on series will result

in a function on modular forms.

First, recall the Eisenstein series Ek defined in example 2.5, which is a non-

cusp form of weight k. We have the following (we will work over C for level

1 so we can make use of the first definition of modular forms).

Lemma 6.2. (1) Let f ∈ Mk(SL2(Z);C). Then θf − k
12
E2 · f is a modular

form of weight k + 2.

(2) The ring C[E2, E4, E6] is closed under the action of θ.

Proof. (1) Over C, one can write θ = 1
2πi

d
dz

. Since f is a modular form, we

have f(−1/z) = zkf(z). However, E2 is not a modular form, and instead

satisfies E2(−1/z) = z2E2(z) + 12z
2πi

. Now we compute

d

dz
(f(−1/z)) =

d

dz
(zkf(z))

1

z2
f ′(−1/z) = kzk−1f(z) + zkf ′(z)

f ′(−1/z) = kzk+1f(z) + zk+2f(z),

and thus(
θf − k

12
E2f

)
(−1/z)

=
1

2πi
f ′(−1/z)− k

12
E2(−1/z)f(−1/z)

=
1

2πi

(
kzk+1f(z) + zk+2f ′(z)

)
− k

12

(
z2E2(z) +

12z

2πi

)
zkf(z)

= zk+2

(
1

2πi
f ′(z)− k

12
E2(z)f(z)

)
,

as required.

(2) For this we have Ramanujan’s formulae

θE2 = (E2
2 − E4)/12 θE4 = (E2E4 − E6)/3
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θE6 = (E2E6 − E2
4)/2

which can be confirmed explicitly on Fourier expansions.

Corollary 6.3. Let ∂ be the derivation of Mk(SL2(Z);C) defined by ∂E4 =

−4E6 and ∂E6 = −6E2
4 . If f is a modular form of weight k, then ∂f is a

modular form of weight k + 2 and

12θf = kE2f + ∂f. (6.2)

Above we were looking at forms over C, and since we require the series E2

here, the theta operator does not give an operator on modular forms. We will

now consider forms (mod p), i.e. f ∈ Mk(SL2(Z);Fp) (or Fp, which is often

our preference). Recall that here we have the Hasse invariant A = Ep−1

which has Fourier expansion A(q) = 1. Proofs of the following facts are

straightforward, and can be found in [Ser73].

Lemma 6.4. (1) E2(q) ≡ Ep+1(q) (mod p). Let B = Ep+1.

(2) We have ∂A = B and ∂B = −E4A.

Corollary 6.5. Viewed as polynomials in the generators E4 and E6, the

forms A and B are relatively prime. Further, A has no repeated factors.

Note that we can now write

12θf = kBf + A∂f. (6.3)

Given all the above, we now can state the following.

Theorem 6.6. Let f ∈Mk(SL2(Z);Fp). Then θf ∈ Sk+p+1(SL2(Z);Fp).

That is, if one takes a modular form and simply computes the θ map on its

power series, the resulting power series is indeed a modular form (mod p).

6.1.2 Level N

When we pass to general level N , we no longer have an explicit set of gen-

erators we can exploit in the same way, so the methods of Serre do not ap-
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ply. There are two alternate methods available, one using the Rankin-Cohen

bracket and the other using algebraic geometry.

Rankin-Cohen Bracket

This exposition can be found in [Zag08], §5. Again, we begin with an operator

on power series.

Theorem 6.7. Let Γ ⊆ SL2(Z) be a congruence subgroup. Let f ∈Mk1(Γ;C), g ∈
Mk2(Γ;C), with Fourier expansions f(q) and g(q), respectively. Then the se-

ries

[f(q), g(q)] = k1f(q) · q d
dq
g(q)− k2g(q) · q d

dq
f(q) (6.4)

is in fact the Fourier expansion [f, g](q) of a modular form [f, g] ∈Mk1+k2+2(Γ;C).

Proof. Compute the modularity of k1f · ddzg − k2 · ddzfg and recall the con-

nection between d
dz

and q d
dq

.

This leads us to the following definition.

Definition 6.8 (Rankin-Cohen Bracket). Let Γ ⊆ SL2(Z) be a congruence

subgroup. Let f ∈ Mk1(Γ;C), g ∈ Mk2(Γ;C), with Fourier expansions f(q)

and g(q), respectively. The first Rankin-Cohen bracket of f and g is [f, g] ∈
Mk1+k2+2(Γ;C) such that [f, g](q) = [f(q), g(q)].

There are in fact n-th Rankin-Cohen brackets, but we do not require them

here.

Remark 6.9. Note that the bracket preserves the ring of coefficients of f and

g. For example, if they both have coefficients in Z, then so will [f, g].

From this we can define a theta operator as follows.

Theorem 6.10. Let p ≥ 5 be a prime, k ≥ 2, and Γ ⊆ SL2(Z) be a congru-

ence subgroup. There exists a derivation

θ : Mk(Γ;Fp) −→ Sk+p+1(Γ;Fp) (6.5)
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whose effect on Fourier expansions is

(θf)(q) = q
d

dq
f(q), i.e. θ

(∑
anq

n
)

=
∑

nanq
n. (6.6)

Proof. Let f ∈ Mk(Γ;Fp) and, by [Kat73] Theorem 1.7.1, fix a lift F ∈
Mk(Γ;C) such that F (q) ≡ f(q) (mod p). Define

θf = [f, A] ∈Mk+p+1(Γ;Fp), (6.7)

where A ∈ Mp−1(Γ;Fp) is the Hasse invariant and [f, A] is the reduction

(mod p) of [f, A]. As for the Fourier expansions,

(θf)(q) = [f, A](q) = kf(q) · 0− (p− 1)A(q) · q d
dq
f(q) = q

d

dq
f(q). (6.8)

Algebraic Geometry

This particular setup is due to Katz in [Kat77], and one should look there for

full details and results. We will present a brief overview of the main points

and the primary theorem, with the congruence subgroup chosen to be Γ1(N).

In chapter 2 we saw that the space of modular forms of weight k for Γ1(N)

can be viewed as H0(Y1(N), ω⊗k). That is, global sections of the line bundle

ω⊗k of relative differential forms on Y1(N), which can be constructed from a

universal elliptic curve Euniv over the scheme Y1(N). As we are considering

differential forms, we are motivated to look at the relative de Rham coho-

mology, H1
dR(Euniv/Y1(N)). On this we have the Gauss-Manin connection

∇ : H1
dR(Euniv/Y1(N))→ Ω1

Y1(N)/Fp ⊗OY1(N)
H1

dR(Euniv/Y1(N)), (6.9)

and from this we can build the composite map

θ̃ : ω⊗k ↪→ SymkH1
dR(Euniv/Y1(N)h)

Symk∇−−−−→ Ω1
Y1(N)h/Fp ⊗OY1(N)h

SymkH1
dR(Euniv/Y1(N))

� ω⊗(k+2).
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The notation Y1(N)h indicates that we have picked a maximal open subset

that ensures we have a decomposition of Ω1
Y1(N)h/Fp⊗OY1(N)h

H1
dR(Euniv/Y1(N)).

This gives us the final projection. Moving now to modular forms, we define

the theta operator by

Definition 6.11 (Theta operator). The theta operator is defined by

θ : H0(Y1(N)h, ω⊗k) −→ H0(Y1(N), ω⊗(k+p+1))

f 7−→ A · θ̃(f).
(6.10)

Theorem 6.12. Let f ∈ Mk(Γ;Fp) have Fourier expansion f(q) =
∑
anq

n.

Then we have

(θf)(q) = q
d

dq
f(q) =

∑
nanq

n. (6.11)

Proof. See the theorem in [Kat77].

6.2 Commutation with Hecke Operator

One of the powerful applications of the theta operator is the commutation

relation it shares with the Hecke operator.

Theorem 6.13. Let m ∈ Z>0. Then Tm ◦ θ = mθ ◦Tm, where Tm on the left

is an operator on Mk+p+1(Γ;Fp) and on the right on Mk(Γ;Fp).

Proof. Recalling the formula in Example 5.8, we compute

(θ ◦ Tmf)(q) =
∞∑
n=0

n

 ∑
d| gcd(m,n)

dk−1a(mn/d2)

 qn

(Tm ◦ θf)(q) =
∞∑
n=0

 ∑
d| gcd(m,n)

d(k+p+1)−1mn/d2a(mn/d2)

 qn

= m
∞∑
n=0

n

 ∑
d| gcd(m,n)

dk−1dp−1a(mn/d2)

 qn
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= m
∞∑
n=0

n

 ∑
d| gcd(m,n)

dk−1a(mn/d2)

 qn,

since we have dp−1 ∼= 1 (mod p) by Fermat’s Little Theorem. Thus

Tm ◦ θ = mθ ◦ Tm, (6.12)

as required.

Remark 6.14. As we saw in chapter 5, the Hecke action is defined by the

slash operator for individual double cosets. So an alternate method of proof

is to show the commutation relation with a single matrix.

Corollary 6.15. Let Γ be a congruence subgroup of level N . Let ` - N be

a prime. Let f ∈ Mk(Γ;Fp) be an eigenform for the Hecke algebra at `, H`

with eigensystem Ψf . If θf 6= 0,1 then θf is also an eigenform for H` with

eigensystem

Ψθf : H` 7−→ Fp
T` 7−→ `Ψf (T`).

(6.13)

So given an eigenform with a system of eigenvalues, the image under θ is also

an eigenform and it simply has the eigenvalues associated to T` multiplied

by ` for each ` - N .

6.3 Siegel Modular Forms

We have seen many views of the theta operator, as well as some interesting

properties. We will see in chapter 7 some of the direct applications of these

results and their power. When one passes to Siegel modular forms, there are

multiple ways to generalise the above theta operator. We will explore two

such constructions:

• One arising from a particular bracket of Siegel modular forms.

1The only Hecke eigenvectors in the kernel of θ are powers of the Hasse invariant A,

see Proposition 2 in [CG13]
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• Another arising from algebraic geometry, in an analogous way to Katz.

6.3.1 Boecherer-Nagaoka

This section follows [BN07]. An extension of this is developed in [BN13].

We are now working with degree g scalar-valued Siegel modular forms. Here,

we begin by considering R, S ∈ Mg×g, a pair of g × g matrices. From these,

consider

det(R + xS) =

g∑
i=0

Pi(R, S)xi. (6.14)

That is, take the determinant of the matrix R+xS, with x a formal variable.

This can be expanded as a polynomial in x, with coefficients being polyno-

mials Pi(R, S) in R and S. We now define a new polynomial, for k1, k2 such

that 2k1, 2k2 ≥ g, by

Q
(g)
k1,k2

(R, S) =

g∑
i=0

(−1)ii!(g − i)!
(

2k2 − i
g − i

)(
2k1 − g + i

i

)
Pi(R, S). (6.15)

The idea now is to substitute in certain matrices of differential operators to

build one large differential operator. Specifically, consider

∂q =


∂11

1
2
∂12 · · · 1

2
∂1g

1
2
∂21 ∂22 · · · ...
...

...
. . .

...
1
2
∂g1 · · · · · · ∂gg

 , (6.16)

where ∂ij = qij
∂
∂qij

. Such objects were studied by Eholzer and Ibukiyama2

in [EI98], and when the polynomials take the appropriate form the result is

indeed an operator on Siegel modular forms. Then we construct the operator

D
(g)
k1,k2

= Q
(g)
k1,k2

(∂q1 , ∂q2). (6.17)

This leads to the following

2Along with many others - there is a vast literature on Rankin-Cohen brackets.
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Theorem 6.16 ([BN07] Thm 3,[EI98] Thm 2.3). Let F ∈ Mk1(Γ;C), G ∈
Mk2(Γ;C) such that 2k1, 2k2 ≥ g. Let

[F,G] = D
(g)
k1,k2

(∂q1 , ∂q2)(FG)|q=q1=q2 . (6.18)

Then [F,G] ∈ Sk1+k2+2(Γ;C), i.e. [F,G] is a Siegel cusp form of weight

k1 + k2 + 2.

Definition 6.17 (Generalised Rankin-Cohen Bracket). Let F ∈Mk1(Γ;C), G ∈
Mk2(Γ;C) such that 2k1, 2k2 ≥ g. The first generalised Rankin-Cohen bracket

of F and G is [F,G] ∈ Sk1+k2+2(Γ;C) as defined in Theorem 6.16.

Remark 6.18. As in 6.8 we only consider the first bracket, although there are

many more.

Note that we can make this into an operator with input a single form F if

we fix a choice of G and construct the map

[·, G] : Mk1(Γ;C) −→ Sk1+k2+2(Γ;C)

F 7−→ [F,G].
(6.19)

We would now like to make a “nice” choice of G. In particular, we’d like

a form whose reduction (mod p) has Fourier expansion G(q) = 1. We saw

in Theorem 3.6 that such a form often exists (mod p), called the Hasse

invariant, and indeed it does arise from the reduction of some form over Z(p).

The difficulty is that the bracket is defined over C, but the desired form only

exists (mod p). So we will begin (mod p), choose a lift of the Hasse invariant

(denoted G), take the bracket and reduce (mod p) again.

Thanks to the choice of renormalisation, the bracket above preserves subrings

B ⊆ C, and so we can choose, say, B = Z(p). Thus when we take our lift, we

are assured that the resulting form can be reduced (mod p), as desired.

Theorem 6.19. Let g > 1, p > g(g + 1)/2 and k > g + 1. There is a linear

map

θBN : Mk(Γ;Fp) 7−→Mk+p+1(Γ;Fp) (6.20)

which is defined by the following commutative diagram:
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f θBNf

F
(−1)g

(g+1)!
[F,A]

(mod p) (mod p)lift

Further, if f(q) =
∑
a(n)qn

N then

(θBNf)(q) =
1

N g

∑
det(n)a(n)qn

N . (6.21)

Proof. The things to be proven above are that the form f can indeed be

lifted to characteristic 0, and the statement about the q-expansion. For the

first, one can simply require that you look at the subspace of Siegel modular

forms (mod p) which exist as the reduction of something in characteristic

0. However, if we want such a statement to be true of the entire space, we

restrict to k > g + 1, due to [Str13], Theorem 1.3.

Now, this operator is some polynomial in the derivations ∂q1 and ∂q2 . How-

ever, we have chosen that our form G is a lift of the Hasse invariant, so

∂q2(F (q1)G(q2)) = F (q1)∂q2G(q2)

≡ F (q1)∂q2(1) = 0 (mod p).

Thus, any terms in the polynomial that have a factor of ∂q2 will reduce to

0 in the image. So, we have that the only term that contributes anything

(mod p) is P0(R, S) = det(R), i.e. det(∂q1). Thus the resulting effect on

q-expansions is

(θBNf)(q) =
(−1)g

(g + 1)!
g!

(
2p− 2

g

)
det(∂q)f(q). (6.22)

Which one can compute to be equal to the expression desired.

Now we wish to compute the commutation relation between θBN and the

Hecke operators. Our main tool for θBN is the action on Fourier expansions.
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Thus we would like a similar q-expansion expression for a general Hecke

operator, which is unfortunately generally ugly.

Recall that at a given prime `, Hecke operators are double cosets KMK,

where K = GSp2g(Z`). To get the action on modular forms, we decompose

KMK =
∐

iKMi and then act by each of the matrices Mi via the slash

operator. So we must see precisely how to decompose in this way for a given

matrix M .

Proposition 6.20. Let r ≥ 0 and let M ∈ GSp2g(Q`) such that η(M) = `r.

There exists a g-tuple b = (b1, . . . , bg) ∈ Zg with

r ≥ b1 ≥ . . . ≥ bg ≥ 0 (6.23)

such that

KMK = K

(
`r−b 0

0 `b

)
K, where K = GSp2g(Z`). (6.24)

Moreover, KMK can be decomposed into right cosets of the form

K

(
`r(D>)−1 B

0 D

)
. (6.25)

Proof. See [RS08], Proposition 2.10.

So we have the structure of the matrices appearing in the right coset de-

composition. We will now compute the commutation with matrices of that

form.

Lemma 6.21. If M =

(
A B

0 D

)
∈ GSp2g(Q`), then

(·|k+p+1M) ◦ θBN = η(M)gθBN ◦ (·|kM) = det(M)θBN ◦ (·|kM). (6.26)

Proof. Since M ∈ GSp2g(Q`), we have A = η(M)(D>)−1. We will compute

the commutation between the slash operator and the operator [·, G] in char-

acteristic zero, before reducing (mod p). Here, let F ∈Mk(Γ
g(N);Z[1/N ](p))
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with

F (q) =
∑
n

a(n)qn
N , where qn

N = e
2πi
N

Tr(nZ). (6.27)

We have

[F,G](q) =
1

N g

∑
n

det(n)a(n)qn
N + pB0(q), (6.28)

where G is a lift of the Hasse invariant, and B0(q) is a power series in q with

p-integral coefficients. Now as for the slash operator, we can compute the

action on the Fourier expansion as

(F |kM)(z) = η(M)kg−g(g+1)/2 det(D)−kF ((Az +B)D−1)

= η(M)kg−g(g+1)/2 det(D)−k
∑
n

a(n)c(n)e2πiTr(nη(M)(D>)−1zD−1)/N

= η(M)kg−g(g+1)/2 det(D)−k
∑
n

a(n)c(n)qn′

N ,

where n′ = η(M)D−1n(D>)−1 and c(n) = e2πiTr(nBD−1)/N . From this, note

that

det(n′) = η(M)g det(D)−2 det(n). (6.29)

From this we now compute that

([F,G]|k+p+1M)(q) =
1

N g
η(M)(k+p+1)g−g(g+1)/2 det(D)−(k+p+1)

×
∑
n

det(n)a(n)c(n)qn′

N + pB0(q)|kM

=
(
η(M)g det(D)−1

)p−1
η(M)g

× 1

N g
η(M)(k+1)g−g(g+1)/2 det(D)−(k+2)

×
∑
n

det(n)a(n)c(n)qn′

N + pB0(q)|kM

([F |kM,G])(q) =
1

N g
η(M)(k+1)g−g(g+1)/2 det(D)−(k+2)

×
∑
n

det(n)a(n)c(n)qn′

N + pB1(q).

When we reduce (mod p), note that the terms including B0 and B1 are

preceeded by p and thus reduce to zero. Further, the term with exponent
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p− 1 is congruent to 1 (mod p). Thus, reducing (mod p) gives us

(·|k+p+1M) ◦ θBN = η(M)gθBN ◦ (·|kM), (6.30)

as required.

Theorem 6.22. If M ∈ GSp2g(Q`) then

(KMK) ◦ θBN = det(M)θBN ◦ (KMK). (6.31)

Proof. By Proposition 6.20, we can decompose

KMK =
∐
i

KMi (6.32)

where the Mi are of the form used in Lemma 6.21 and det(M) = det(Mi).

The result now follows by Lemma 6.21.

6.3.2 Flander-Ghitza

Here we are making use of the algebro-geometric set up of Siegel modular

forms we saw in Section 3.5. This mirrors the approach of Katz for g = 1

which we discussed in section 6.1.2. Full details can be found in [Fla13], and

we direct the reader there for definitions and proofs. The space of Siegel

modular forms of weight κ can be expressed as

Mκ(Γ
g(N)) = H0(Y g(N),Eκ). (6.33)

As in section 6.1.2, we consider the relative de Rham cohomologyH1
dR(Ag,N/Y

g(N))

with its Gauss-Manin connection

∇Ag,N/Y g(N) : H1
dR(Ag,N/Y

g(N)) −→ H1
dR(Ag,N/Y

g(N))⊗ Ω1
Y g(N). (6.34)

Let λ be a highest weight vector for κ. There is a sheaf-theoretic Schur

functor arising from λ, and we consider (H1
dR)λ, the image of the de Rham

cohomology under λ. We have an induced connection

∇λ
Ag,N/Y g(N) : (H1

dR(Ag,N/Y
g(N)))λ −→ (H1

dR(Ag,N/Y
g(N)))λ ⊗ Ω1

Y g(N).

(6.35)
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We can now construct the theta operator θFG as a composite map

θFG : Eκ ↪→ (H1
dR)λ

∇λ−−−→ (H1
dR)λ ⊗ Ω1

id⊗κ−1⊗h−−−−−−→ (E⊕ E∨)λ ⊗ Sym2 E⊗ ω⊗(p−1)

−→ Eκ ⊗ ω(p−1) ⊗ Sym2 E.

One can see that this effects the weight by sending Mκ → Mκ⊗det(p−1)⊗ Sym2 .

As for the effect on Fourier expansions, we have the following.

Theorem 6.23. Let f ∈Mκ such that f(q) =
∑
a(n)qn. Then we have

(θFGf)(q) =
∑
n

(n⊗ a(n))qn. (6.36)

Proof. See [Fla13], Theorem 4.2.1.

The other main feature that we have explored above with the theta operators

is the commutation with the Hecke operators, in particular the operators T`.

Theorem 6.24. Let ` ∈ Z>0 be a prime. Then

T` ◦ θFG = `θFG ◦ T`. (6.37)

Proof. See [Fla13], Theorem 4.5.2.
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Chapter 7

Galois Representations and

Serre’s Conjecture

One of the main motivating factors in the theory of modular forms is their

connection to various interesting Number Theoretic objects. We have seen in

section 2.4 that modular forms are closely connected with elliptic curves. In

fact, this is part of a much larger picture known as the Langlands program.

Another object in this picture of associated objects are Galois representa-

tions. Here we will discuss the Galois group Gal(Q/Q) and its representa-

tions, and specifically the correspondence in the case of degree 1 modular

forms.

7.1 Infinite Galois Theory

As stated, our goals are to study the algebraic numbers Q, in particular via

the group Gal(Q/Q). There is some detail in the construction of this group,

since classical Galois theory focuses largely on finite extensions of a field K.

So to work with this group, we will first need to see how to pass from the

Galois groups of finite extensions to this infinite extension. We first require
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the following notion.

Definition 7.1 (Inverse/Projective System & Limit). Let (I,≤) be a par-

tially ordered set. Let (Ai)i∈I be a collection of groups such that if i ≤ j we

have a homomorphism fij : Aj → Ai such that

(1) fii is the identity on Ai, and

(2) fik = fij ◦ fjk for all i ≤ j ≤ k.

The pair A = ((Ai)i∈I , (fij)i≤j∈I) is called an inverse (or projective) system.

Given an inverse system, the inverse (or projective) limit is

lim←−
i∈I

A =

{
~a ∈

∏
i∈I

Ai

∣∣∣∣∣ ai = fij(aj) for all i ≤ j ∈ I

}
. (7.1)

The value of this for us is it allows us to pass from the family of Galois

groups attached to finite extensions of a base field K to a larger collec-

tion. The above limit means for us to take the product of all the finite

Galois groups, but the homomorphisms fij keep track of how related Ga-

lois groups interact. In particular, consider two Galois extensions L1/K and

L2/K such that L2/L1 is also a Galois extension. Then we have a natural

map φL2
L1

: Gal(L2/K) → Gal(L1/K) which is simply restriction of all the

automorphisms ω ∈ Gal(L2/K) to the domain L1. These are then also auto-

morphisms of L1, and thus we have an inverse system of groups. This leads

us to the following definition.

Definition 7.2 (Absolute Galois Group). Let K be a field. Let K be the

set of Galois extensions of K. The absolute Galois group of K is the group

GK = lim←−
L∈K

Gal(L/K). (7.2)

We would like to connect the absolute Galois group with the algebraic clo-

sure, however there are some minor technical obstacles. Consider the Galois

extensions of K as splitting fields of various polynomials f . So the effect of

the Galois groups of these extensions is to permute the roots of these poly-

nomials. However, the polynomials can in general have repeated roots, and
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the Galois group cannot distinguish these. We therefore are motivated to

introduce the following.

Definition 7.3 (Separable Polynomial/Extension). A polynomial is sepa-

rable if it has distinct roots. An extension L/K is separable if its minimal

polynomial is separable.

Further, we can introduce the following.

Definition 7.4 (Separably Closed). A field K is separably closed if for all

separable polynomials f over K, then if f(x) = 0 then x ∈ K.

We can construct a separable closure of a field K, similarly to how we can

construct an algebraic closure K, which we denote Ksep. This is the object

that the Galois group is able to determine, and in fact we have this result.

Proposition 7.5.

GK = Gal(Ksep/K). (7.3)

Proof. See [Mil03], Example 7.24.

We are primarily interested in the case K = Q, in which case we in fact have

Qsep = Q, and thus

GQ = Gal(Q/Q). (7.4)

We now have a definition of the group Gal(Q/Q). However, we still have very

little idea of its structure. One of the most powerful ways to study a group

is to study its representations, i.e. consider ways of having said group act on

a vector space. We now consider how one can construct such representations

and how they may be classified.

7.2 Galois representations

There are many available references for Galois representations, but we are

particularly interested in the connection with modular forms. Thus, partic-

ularly favourite references for the following are [Rib95] and [RS99].
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A representation of the group Gal(Q/Q) is a group homomorphism

ρ : Gal(Q/Q) −→ GL(V ). (7.5)

However, we can endow Gal(Q/Q) with additional structure, and thereby

restrict to particular representations of interest. Specifically, we can view

Gal(Q/Q) as a topological group. This topology arises from the definition as

the inverse limit of the finite Galois groups Gal(L/Q). Each of these finite

groups is endowed with the discrete topology. From this, and the inverse

limit construction, we arrive at a topology on Gal(Q/Q) called a profinite

topology. Groups arising as inverse limits of systems of finite groups are

called profinite groups. From this point on, we will be considering continuous

representations of Gal(Q/Q). That is, topological group homomorphisms,

where the topology on Gal(Q/Q) is the profinite topology discussed above

and the topology on GL(V ) comes from a topology on V .

We will now look at some special elements of Gal(Q/Q), which will later

be our main focus when considering these representations. To begin, let

K/Q be a Galois extension. Let OK be the ring of integers of K, i.e.

elements of K which are roots of monic polynomials with coefficients in

Z. In fact, the Galois group Gal(K/Q) fixes OK (not pointwise), so given

σ ∈ Gal(K/Q), x ∈ OK , we have that σ(x) ∈ OK . Further, since the Galois

action is via ring automorphisms, it induces an action on the ideals, and fur-

ther an action on the set of prime ideals containing a prime p. Any two prime

ideals p1 and p2 containing p are conjugate under the action of Gal(K/Q).

Definition 7.6 (Decomposition Group). Let p ∈ OK such that p ∈ p. The

decomposition group of p is the subgroup Dp ⊆ Gal(K/Q) consisting of σ

such that σ(p) = p.

Recall that the prime ideal associated to p in Z is simply pZ. However, in

OK we make a choice of p, since p can be contained in more than one prime

ideal. In fact, the ideal pOK = pe11 . . . penn for some prime ideals pi ∈ OK with

exponents ei ∈ Z>0.
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Definition 7.7 (Ramification). Let K/Q be an extension with ring of inte-

gers OK , and p ∈ Z. Then pOK = pe11 . . . penn , for pi prime ideals in OK and

ei ∈ Z>0.

(1) p is ramified in OK if there exists some i such that ei > 1.

(2) p is tamely ramified in OK if it is ramified and gcd(ei, p) = 1 for all

1 ≤ i ≤ n.

(3) p is split in OK if ei = 1 for all 1 ≤ i ≤ n.

(4) p is inert in OK if n = 1 and e1 = 1, i.e. pOK is a prime ideal of OK .

Remark 7.8. We are often only interested in whether or not the prime is

ramified, so scenarios (3) and (4) above are often collectively referred to as

unramified.

For a prime ideal p in OK , we denote Fp = OK/p. This can in fact be viewed

as an extension Fp/Fp.
Proposition 7.9. Let K/Q be an extension with ring of integers OK, and

p ∈ Z. Let p be a prime ideal in OK such that p ∈ p. The homomorphism

Dp −→ Gal(Fp/Fp) (7.6)

is surjective. We call the kernel the inertia group, Ip. Further, if p is un-

ramified in OK, then Ip = 1 (and thus the above map is an isomorphism).

Proof. See [Mil98], page 140.

So we can think of the decomposition group (which is a subgroup of Gal(K/Q))

in terms of the group Gal(Fp/Fp). In fact, all extensions of Fp are of the form

Fpn/Fp, and thus Gal(Fp/Fp) is just the cyclic group of order n. It is gener-

ated by the Frobenius automorphism

x 7−→ xp. (7.7)

So, if p is unramified in OK , we can consider the preimage of this automor-

phism under the map above, σp ∈ Dp. Since the p are all conjugate, we will
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simply express this element as σp, recalling that it is only defined by p up to

conjugation.

Let’s take this a step further. We can find an element of Gal(K/Q) which

arises from this Frobenius automorphism for some K/Q Galois, but our true

interest is in Gal(Q/Q). Let p be a prime ideal in OQ containing p. One

should think of this as a choice of p in OK for all finite extensions K/Q
such that inclusions are preserved. Again we have a decomposition group Dp

and a field Fp, which in this case is a choice of algebraic closure for Fp. In

this way we can consider the same surjective map Dp → Gal(Fp/Fp) and the

Frobenius automorphism (x 7→ xp). We can thus choose a preimage of this

in Dp ⊆ Gal(Q/Q).

Definition 7.10 (Frobenius Element). Let p ∈ Z be a prime. Let p be a

prime ideal in OQ containing p. The Frobenius element Frobp is the preimage

of (x 7→ xp) under the map

Dp −→ Gal(Fp/Fp). (7.8)

Proposition 7.11. The elements Frobp for each prime p generate the group

Gal(Q/Q) topologically, i.e. they generate a dense subgroup.

Remark 7.12. Really it is very poor to refer to this as the Frobenius element

Frobp, for two reasons.

(1) As discussed above, it is only defined up to conjugacy in Gal(Q/Q), but

this is no obstacle as long as we take it to be defined up to conjugacy.

(2) The inertia subgroup for this choice of p, Ip, is very large and thus we

cannot generally make a coherent choice of preimage of (x → xp). We

require a notion of unramified that can work for all choices of p in our

finite extensions simultaneously.

Definition 7.13 (Unramified Representation). Let

ρ : Gal(Q/Q) −→ GL(V ) (7.9)

be a representation. We say ρ is unramified at p if for all p containing p we

have that ρ(Ip) = 1.
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Remark 7.14. Recalling that all p are conjugate in Gal(Q/Q), we in fact only

need to ensure the above holds for one choice of p.

So if ρ is unramified at p, then the image of Frobp is well defined up to

conjugation. Further, since these topologically generate Gal(Q/Q), a given

representation ρ is uniquely determined by the images of Frobp for all p

such that ρ is unramified at p. Further, when referring to the decomposi-

tion/inertia group at any prime ideal p containing p, we will simply write Dp

or Ip, respectively.

Example 7.15 (Mod p Cyclotomic Character). Let µp be the group of pth

roots of unity. As elements of Q, these are permuted by Gal(Q/Q). Since µp

is the cyclic group of order p, any automorphism is a power map. Thus we

have an isomorphism

ϕ : GL(µp)
∼−−→ F×p

(ζ 7→ ζm) 7−→ m.
(7.10)

We can now define the mod p cyclotomic character as

χ : Gal(Q/Q) −→ F×p
σ 7−→ χ(σ),

(7.11)

where σ · ζ = ζχ(σ), for σ ∈ µp.

This has a number of interesting properties:

(1) χ is unramified at all primes ` 6= p.

(2) χ(Frob`) = `, for all primes ` 6= p.

7.3 Modular Forms and Serre’s Conjecture

Now we have the language of Galois representations, we wish to see how to

build them. This is where the theory of modular forms becomes strongly

interlinked. Specifically, given a modular form (for g = 1), one can construct

from it a Galois representation. This is a result of Deligne, as given below.
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Theorem 7.16 (Deligne). Let f ∈Mk(Γ1(N), ε;Fp) be a normalised eigenform

(mod p) such that f(q) =
∑
a(n)qn. There exists a semi-simple continuous

Galois representation

ρf : Gal(Q/Q) −→ GL2(Fp) (7.12)

which is unramified for all primes ` 6 |pN and such that

charpoly(ρf (Frob`)) = X2 − a(`)X + ε(`)`k−1 (7.13)

for all ` - pN .

Proof. See [G+90], Proposition 11.1.

Note that this result is highly dependent on the choice of congruence sub-

group Γ1(N) and character ε. However, we have seen that if one is considering

such things, picking ε to be the trivial character recovers the group Γ0(N), so

that appears as a subresult of the above. The group Γ(N) is more difficult,

since it is a subgroup of Γ1(N), and thus the space of modular forms attached

to it is larger and we cannot extend results to it in general. However, we

noted this already in chapter 2, specifically the homomorphism (2.21). This

injection allows us to view Γ1(N2) as a subgroup of Γ(N), and thus the above

holds for Γ(N), though the level changes to N2. Furthermore, the formula

for the characteristic polynomial is unaffected since the Fourier expansion is

unchanged.

So we now have the ability to construct certain representations of Gal(Q/Q)

from modular forms. While this is a powerful way of generating nice ex-

amples, it turns out there is a far more powerful relationship at work here.

That is, all Galois representations of the above type are isomorphic to one

constructed from a modular form. This was conjectured by Serre in [S+87],

and proved by Khare-Wintenberger (see [KW10]). First we will make clear

what we mean by “the above type”.

Definition 7.17 (Odd Representation). A Galois representation ρ : Gal(Q/Q)→
GL(V ) is odd if det(ρ(c)) = −1, where c is a complex conjugation.
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The point of this is that all representations arising from modular forms are

odd representations.

Theorem 7.18 (Serre’s Conjecture). Let ρ : Gal(Q/Q) → GL2(Fp) be an

irreducible, odd representation.

(1) There exist k, N , ε and a cusp form f ∈ Sk(Γ1(N), ε;Fp) which is an

eigenform, such that ρ ∼= ρf , where ρf is the Galois representation at-

tached to f by Theorem 7.16.

(2) There exists an cusp form f ∈ Skρ(Γ1(Nρ), ερ;Fp) which is an eigenform,

such that ρ ∼= ρf as above, where Nρ, kρ and ερ are given by explicit

formulas from ρ.

Statement (1) above is known as Serre’s weak conjecture, since it makes

no statement about the data of the eigenform. Statement (2), the strong

conjecture, by comparison gives precise formulas for Nρ, ερ and kρ, that is

the level, character and weight of the form that gives rise to that particular

representation.

7.4 Theta Operator

We explored the theta operator in some depth in chapter 6. In particular,

we gathered some data about its commutation with the Hecke operators

T`. The Hecke operators are of particular relevance here, since the Galois

representation ρf above is dependent on the values a(`), but since f is a

normalised eigenform, these are precisely the Hecke eigenvalues, i.e. Ψf (T`) =

a(`). The commutation we have proved leads to the following.

Theorem 7.19.

ρθf = χ⊗ ρf (7.14)

Proof. First note that if f is a a normalised eigenform with f(q) =
∑
a(n)qn,

then θf is a normalised eigenform with (θf)(q) =
∑
na(n)qn. Further, θf is
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of weight k+ p+ 1. So one can construct the Galois representation attached

to θf , and we have

charpoly(ρθf (Frob`)) = X2 − `a(`) + ε(`)`(k+p+1)−1 = X2 − `a(`) + ε(`)`k+p.

(7.15)

As for χ⊗ ρf , pick a basis for F2

p such that

ρf (Frob`) =

(
a b

c d

)
and thus (χ⊗ ρf )(Frob`) =

(
`a `b

`c `d

)
. (7.16)

So if charpoly(ρf (Frob`)) = X2 − a(`)X + ε(`)`k−1, then

charpoly((χ⊗ ρf )(Frob`)) = X2 − `a(`)X + `2ε(`)`k−1

= X2 − `a(`)X + ε(`)`k+1. (7.17)

However note that ε(`)`k+p ≡ ε(`)`k+1 (mod p), by Fermat’s Little theorem.

Thus since we have two irreducible Galois representations which have the

same characteristic polynomial for Frob` for all primes ` at which they are

unramified, they are isomorphic, as required.

This turns out to be an extremely powerful tool for studying Galois repre-

sentations attached to modular forms. In particular, we can combine it with

the following result.

Theorem 7.20 ([Edi92], Theorem 3.4). Let f ∈ Sk(Γ1(N), ε;Fp) be an eigen-

form. There exist integers 0 ≤ α ≤ p − 1, k′ ≤ p + 1 such that there exists

an eigenform g ∈ Sk′(Γ1(N), ε;Fp) such that

Ψf (T`) = Ψθαg(T`) (7.18)

for all primes ` 6= p.

That is, up to the application of a power of θ, all systems of (mod p) eigenval-

ues occur in weights ≤ p+1. This is a critical tool in many proofs concerning

modular forms and Galois representations. One extremely direct corollary is

the following.

70



Corollary 7.21. Let ρ be a Galois representation such that there exists f ∈
Sk(Γ1(N), ε;Fp) such that ρ ∼= ρf . Then there exists g ∈ Sk′(Γ1(N), ε;Fp)
with k′ ≤ p+ 1 such that

ρf ∼= χα ⊗ ρg (7.19)

for some 0 ≤ α ≤ p− 1.

7.5 Weight in Serre’s Conjecture

A major step in understanding Serre’s conjecture was the work done passing

from the weak conjecture to the strong conjecture. That is, given a repre-

sentation which one assumes is arising from a modular form f , is there a

form g with specified weight, level and character which also gives rise to this

representation?

The most difficult step is the determination of the weight kρ of the form

which we can be assured to give the representation ρ. A formula for kρ can

be found in [Edi92], Definition 4.3. The claim is then as follows.

Theorem 7.22 (See [Edi92], Theorem 4.5). Let ρ : Gal(Q/Q) → GL2(Fp)
be an irreducible, odd representation. Suppose there exists g ∈ Sk(N, ε;Fp)
where p - N such that ρ ∼= ρg. Then there exists an eigenform f ∈ Sk(ρ)(N, ε;Fp)
such that the f and g have the same eigenvalues for T` where ` 6= p, and thus

ρ ∼= ρf .1 Further, this is the minimal such weight of a cusp form that gives

rise to ρ.

Proof. The proof uses many tricks and congruences which become available

when one restricts to weights k ≤ p + 1. Fortunately, Theorem 7.20 tells us

that given any form f there exists a form g such that f = θαg and the weight

of g is ≤ p+ 1, so we can work with that.

Another remarkable way the theta operator plays a role here is via the the-

ory of theta cycles, which are displayed in [Edi92], Proposition 3.3. One can

1For a definition of k(ρ), see [Edi92], Definition 4.3.
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readily observe that θp = θ, so the sequence generated by recurring appli-

cations of θ is cyclical. The powerful notion is in fact that the intermediate

steps of the sequence follow very precise patterns, particularly if one focuses

on the weights of the forms in the sequence. Knowledge of these patterns

gives one precise information about what possible weights can arise, and this

is exploited in the proof of the above theorem.

For full details, see [Edi92], the proof of Theorem 4.5.
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Chapter 8

Satake Isomorphism

8.1 The Isomorphism

To set this up, we must turn our attentions back to the definitions and con-

cepts we discussed in chapter 4. One may notice there are certain features in

common between the group GSp2g and dual group GSpin2g+1 we defined. For

example, the dominant coweights index useful data for both groups. Specif-

ically, from Proposition 4.13 the Hecke algebra attached to GSp2g has basis

{Tλ(`)}, while from Corollary 4.6 each λ gives and irreducible representation

of GSpin2g+1.

So one can expect that these Hecke algebras have a rather direct connection

to the representation ring of the dual group. This is expressed in a map

called the Satake isomorphism. This is given by the following

Theorem 8.1 (Satake Isomorphism). Let F be a local field with ring of

integers OF, and uniformizing parameter π. Let q be the cardinality of the

residue field OF/πOF. Let R(Ĝ) be the representation ring of the dual group

of G. Then we have an isomorphism of rings

SZ : H(G(F), G(OF))⊗ Z[q1/2, q−1/2]
∼−−→ R(Ĝ)⊗ Z[q1/2, q−1/2]. (8.1)
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Proof. See [Gro98b] Proposition 3.6, or [Car79] Theorem 4.1.

Remark 8.2. Recall that our case of interest is G = GSp2g, F = Q` being

the local Hecke algebra at ` acting on the space of forms (mod p). So we are

interested in the map

Sp,` : H` ⊗ Fp −→ R(GSpin2g+1)⊗ Fp. (8.2)

Note that this remains an isomorphism since we only need to be able to invert

`, and this is possible in Fp because ` 6= p.

We have two choices of basis for the ring R(Ĝ), one being the characters χλ

indexed by λ ∈ X∨ dominant, the other being the images S(Tλ(`)), where

Tλ(`) is a basis for the Hecke algebra, also indexed by λ ∈ X∨ dominant. We

have the change of basis formulas

S(Tλ(`)) = `〈ρ,λ〉χλ +
∑
µ

bλ(µ)`〈ρ,µ〉χµ

χλ = `−〈ρ,λ〉

(
S(Tλ(`)) +

∑
µ

dλ(µ)S(Tµ(`))

)
,

with bλ(µ), dλ(µ) ∈ Fp. In fact, we have the following result about these

formulas.

Proposition 8.3. We have

S(Tλ(`)) = `〈ρ,λ〉χλ +
∑
µ<λ

bλ(µ)`〈ρ,µ〉χµ

χλ = `−〈ρ,λ〉

(
S(Tλ(`)) +

∑
µ<λ

dλ(µ)S(Tµ(`))

)
,

i.e. the sums are indexed by cocharacters which are less than λ via the order-

ing in equation (4.4).

Proof. See [Car79], pg 148 and Theorem 4.1.

Remark 8.4. The crucial feature is that the only differences between the

indexed cocharacters and λ are coroots, which will be useful for us in the

future.
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8.2 Satake Parameters

Lemma 8.5. There is a bijection{
Semisimple conjugacy

classes in Ĝ(Fp)

}
←→

{
Ring homomorphisms

R(Ĝ)⊗ Fp → Fp

}

s 7−→

(
ωs : R(Ĝ)⊗ Fp → Fp

χ 7→ χ(s).

)

Proof. For the same statement over C, see Theorem 8 in [Fre07]. We will

now give a brief description of how this correspondence works.

The first point of note is that any semisimple element is conjugate to an

element in a maximal torus, so we can view semisimple conjugacy classes as

elements of T̂ /W . From this point, one interesting way to see this correspon-

dence is to consider the functor Spec applied to the ring R(Ĝ) ⊗ Fp. Since

the right hand side is the set HomRing(R(Ĝ) ⊗ Fp,Fp), we have a bijection

to the set HomScheme(Spec(Fp), Spec(R(Ĝ) ⊗ Fp)). There is an isomorphism

R(Ĝ) ∼= R(T̂ )W , where W = N(T )/T , for instance see [Ser68], Theorem 4.

From this, we can deduce that Spec(R(Ĝ)) ∼= Spec(R(T̂ )W ) ∼= T̂ /W . So we

have a bijection

HomRing(R(Ĝ)⊗ Fp,Fp) −→ HomScheme(Spec(Fp), T̂ /W ⊗ Fp). (8.3)

However, a map of schemes Spec(k)→ X gives precisely the set of k-points in

X. Thus we have a bijection between the desired set of ring homomorphisms

and the set of Fp-points in T̂ /W , which is precisely the set of semisimple

conjugacy classes, as required.

Corollary 8.6. The Fp-valued characters of the Hecke algebra H` are indexed

by semi-simple conjugacy classes in Ĝ(Fp).

Proof. Given a character Ψ : H` ⊗ Fp → Fp, we can construct a character of

R(Ĝ)⊗ Fp by Ψ ◦ S−1
p,` , which is associated to a semisimple conjugacy class.
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Given a semisimple conjugacy class s, we associate a character ωs : R(Ĝ)⊗
Fp → Fp, and then can construct a character of H` ⊗ Fp by ωs ◦ Sp,`.

From this, we can come to the following concept.

Definition 8.7 (Satake Parameter). Given an Fp-valued character Ψ of H`,

the Satake Parameter of Ψ, often denoted sΨ, is the semisimple conjugacy

class in Ĝ given by corollary 8.6.

8.3 Modular Forms

We wish to use this theory for our area of interest, that is, Siegel modular

forms. The useful idea is that explored in chapter 5, that the Hecke operators

can be viewed as one large Hecke algebra, and this is precisely the Hecke

algebra we wish to consider here. As it transpires, given a Siegel modular

form and a choice of prime ` for our Hecke algebra H` we will be able to

associate to it a conjugacy class in GSpin2g+1(Fp) with the machinery above.

Proposition 8.8. Given an eigenform f for the Hecke algebra at `, H`, we

can construct a Satake parameter attached to it, denoted sf,` ∈ GSpin2g+1(Fp).

Proof. Consider an eigenform f such that Tf = Ψf (T )f , where Ψf (T ) ∈ Fp.
Let ` be a prime and let H` be the local Hecke algebra at `. Then

Ψf,` : H` −→ F×p
T 7−→ Ψf,`(T )

(8.4)

is a character of the local Hecke algebra at `, H`. We now construct a

character of the representation ring by ωf,` = Ψf,` ◦ S−1
p,` . As above, this

corresponds to a semisimple conjugacy class sf,` ∈ GSpin2g+1(Fp). We have

that

ωf,`(χ) =
(
Ψf,` ◦ S−1

p,`

)
(χ) = χ(sf,`). (8.5)
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Chapter 9

Galois Representations and

Theta Operators for Siegel

Modular Forms

We now come to the main goal of this thesis. That is, to address the issue

of extending some of the theory discussed in chapter 7 to the Siegel case.

Recall that there we explored the connection between modular forms and

Galois representations. There are many reasons one may wish to extend

this. Firstly, and most simplistically, if Siegel modular forms are to serve as

a good generalisation of modular forms, one should expect that all data as-

sociated to them should have some similar generalisation. Secondly, one may

have noticed that all representations arising in chapter 7 were 2-dimensional.

This is highly restrictive, and in general one would hope to have a theory

which could encompass the higher-dimensional representations. Since Siegel

modular forms are a higher dimensional generalisation of modular forms, this

is where we choose to look.

The ultimate goal would be to extend the theory of chapter 7 fully to the

case of Siegel modular forms of any degree g. That is, to precisely formulate

a method of producing a Galois representation from a Siegel modular form,
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and vice versa. We have focused our attention on a few key points.

(1) How do we associate a Galois representation to a Siegel modular form?

(2) What are some generalisations of the Theta Operator?

(3) How does the Theta action affect the Galois representation?

We will begin with an analysis of the degree 2 case. While not entirely

classical, this case is quite well developed, certainly significantly more so

than g > 2, as we will see below.

9.1 Degree 2

Here we are considering Siegel modular forms of degree 2. That is, modular

forms attached to the group GSp4.

This case has been approached in [T+91], [Lau97], and [Wei05]. Here one has

a result in a pleasingly similar format to Theorem 7.16. It can be expressed

in the following

Theorem 9.1. Let Γ ⊆ Sp4(Z) be a congruence subgroup of level N , and

let f ∈ Mk(Γ;Fp) be a Siegel modular eigenform for all T` such that ` - pN ,

with eigenvalues a(`), a(`2) ∈ Fp. Then there exists a unique semisimple

continuous representation

ρf : Gal(Q/Q) −→ GSp4(Fp) (9.1)

which is unramified outside pN and such that for all ` - pN , the characteristic

polynomial of the image of the Frobenius element Frob` is

charpoly ρf (Frob`) = X4 − a(`)X3 +
(
a(`)2 − a(`2)− `2k−4

)
X2

− `2k−3a(`)X + `4k−6.

Proof. This statement is a special case of a much larger and more powerful

result which was the culmination of the work across [T+91], [Lau97], and
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[Wei05]. In particular, the above is a consequence of Theorem 2 in [T+91],

Theorem 7.5 in [Lau97], and Theorem 1 in [Wei05].

The result stated here is for scalar-valued Siegel modular forms (mod p), but

the results that lead to it are in general for vector-valued forms in charac-

teristic zero. Scalar-valued forms are a special case of vector valued, so that

part can easily follow from a more general result. To get the result (mod p),

one takes the form f , lifts it to F in characteristic zero (See [Str13] for when

we can lift), computes the result for F , and then reduces the result (mod

p).

One observation of interest here is that we do not get just any 4-dimensional

representations from this procedure. The image of a representation arising

from a degree to Siegel modular form has image contained in GSp4(Fp). This

is intrinsically related to the fact that these forms are defined with respect

to the group GSp4, and we will see this more clearly when we pass to the

case of general g.

The existence of such a formula makes computation and proving results very

neat. For example, we can see features like the weight k appearing explicitly.

However, passing to g > 2 such formulas will not be available in general, as

we shall see.

9.2 Degree g

Beyond g = 2, the connection between modular forms and Galois represen-

tations descends into pure conjecture. We would like to see how to associate

a Galois representation to a modular form. To define the representation,

we have seen that it is sufficient to determine the image ρf (Frob`) for each

prime ` - pN . So we should be able to produce an image (up to conjugacy),

when provided with a prime ` and a Siegel modular form f . Here we con-

sider the isomorphism discussed in chapter 8. There we had proposition 8.8
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which associated to a Siegel modular form f (mod p) and a local Hecke al-

gebra H` (determined by a choice of prime `) a semisimple conjugacy class

in GSpin2g+1(Fp). This leads us to the following conjecture for general g.

Conjecture 9.2. Let Γ ⊆ Sp2g(Z) be a congruence subgroup of level N , and

let f ∈ Mκ(Γ;Fp) be a Siegel modular form of weight κ. Suppose that f is

a Hecke eigenform for each local Hecke algebra H` such that ` - pN . Then

there exists a representation

ρf : Gal(Q/Q) −→ GSpin2g+1(Fp)
Frob` 7−→ sf,`

(9.2)

which is unramified away from pN , where sf,` is the Satake parameter of f

at `.

Remark 9.3. In terms of calculation, we will regularly pass to representations

of GSpin2g+1, since that is the way one defines Satake parameters. Though

in the end our final result will not be dependent on a choice representation.

One may wonder that the above conjecture does not seem to capture the

known cases, in which the representation has image in GL2 and GSp4, re-

spectively. In fact, in the cases g = 1 and g = 2 we have that

GSpin5
∼= GSp4 GSpin3

∼= GSp2
∼= GL2 .

The above isomorphisms are known as “accidental isomorphisms”, and can

be interpreted as a peculiarity amongst root data for small g. This allows the

above conjecture to indeed align with the known cases for g = 1 and g = 2.

Some motivation for this definition can be found in the comparison to the case

of algebraic modular forms, studied by Gross in [Gro98a]. Further, one can

think of a general Langlands-type philosophy, which suggests an association

between automorphic objects on G and Galois representations into Ĝ. The

Satake isomorphism is a large part of this, tying these two groups together

very directly. Thus leading us to the conjecture above.

Example 9.4. Let us now consider the case g = 1 explicitly and see how

it compares to Theorem 7.16. In general, if one wanted to make comments
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regarding characteristic polynomials, this is difficult since GSpin is not gen-

erally a matrix group. In the cases g = 1, 2, we have by the above remark

that GSpin2g+1 is in fact a matrix group, and thus we can take V to be the

standard representation. However, there is reason to consider other represen-

tations, as these correspond to other interesting data attached to a modular

form. So even in the g = 1 and g = 2 cases, one may be interested in the full

generality of the result.

We will follow [Gro98b], from which get that the characteristic polynomial

of the Frobenius element is

charpoly(ρ(Frob`)) = det(X − s`|V ) =

g∑
k=0

(−1)k`k(k−1)/2 · αk ·Xg−k (9.3)

where αi is the eigenvalue of the element Tλi(`) = GSp2g(Z`)λi(`) GSp2g(Z`),
where

λi(`) =

(
`Ii

Ig−i

)
, (9.4)

with In being the n× n identity matrix.

For the case of GL2, we have H` = H(GL2(Q`),GL2(Z`)). Thus we have

charpoly(ρ(Frob`)) = det(X − s`|V ) = X2 − α1X + `α2, (9.5)

In the case i = 1, we have Tλ1(`) = T`, with eigenvalue α1 = λ(`). Now

consider the effect of the operator defined by i = 2, i.e.

Tλ2(`) = GL2(Z`)

(
` 0

0 `

)
GL2(Z`) = GL2(Z`)

(
` 0

0 `

)
(9.6)

Then

f

∣∣∣∣∣GL2(Z`)

(
` 0

0 `

)
GL2(Z`) = f

∣∣∣∣∣
(
` 0

0 `

)

= det

((
` 0

0 `

))k−1

(0z + `)−kf

(
`z + 0

0z + `

)
= `2k−2`−kf(`z/`) = `k−2f(z),
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which thus can be seen to have eigenvalue α2 = `k−2. Thus we have that

charpoly(ρ(Frob`)) = det(X − s`|V ) = X2 − α1X + qα2 = X2 − λ(`)X + ` · `k−2

= X2 − λ(`)X + `k−1,

which is precisely the formula defining ρ in the classical case.

9.3 Theta Operator and Cyclotomic Charac-

ter

In chapter 7, we saw that the theta operator on modular forms was related

to the cyclotomic character. This was a useful tool for many proofs relating

to Galois representations attached to modular forms.

We wish to relate the various theta operators on Siegel modular forms to

the cyclotomic character. Since the representation is defined in terms of

the Satake parameters, which are data attached to the Hecke eigenvalues, we

would like to understand the effect of the theta operator on these eigenvalues.

In chapter 6, we saw two theta operators on Siegel modular forms, θBN and

θFG. These both had commutation relations with the Hecke operators, which

lead to the following results on eigenvalues.

Theorem 9.5. Let f be a Hecke eigenform for H`. Let K = GSp2g(Z`).

(1) If θBNf 6= 0, then θBNf is a Hecke eigenform H`. Further, the eigen-

system of θBNf satisfies

ΨθBNf (Tλ(`)) = det(λ(`))Ψf (Tλ(`)), (9.7)

where λ is a dominant coweight.

(2) If θFGf 6= 0, then θFGf is a Hecke eigenform H`. Further, the eigensys-

tem of θFGf satisfies

ΨθFGf (Tλ(`)) = η(λ(`))Ψf (Tλ(`)), (9.8)

where λ is a dominant coweight.
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Proof. (1) This follows from Theorem 6.22.

(2) This follows from Theorem 6.24.

Remark 9.6. Going with our earlier notation, note that

det(λ(`)) = `〈det,λ〉

η(λ(`)) = `〈η,λ〉.

Further recall that det = ηg, so both the results above can be stated in terms

of powers of η. We can therefore focus on results on η, and results on det

will follow from repeatedly applying the below g times.

Now, how to relate this to our Galois representations? Well in fact, the

results we have gathered thus far around Satake parameters allow us to say

something more, which will then allow us to discuss the effects of θBN and

θFG. We now state a first result which depends on a choice of algebraic

representation ωλ.

Theorem 9.7. Let λ be a dominant coweight of GSp2g. Let ωλ : GSpin2g+1(Fp)→
GL(V ) be the representation with highest weight λ. Let f ∈ Mκ(Γ;Fp) be a

degree g, weight κ level N Siegel eigenform. Then

ωλ ◦ ρθFGf = χ〈η,λ〉 ⊗ (ωλ ◦ ρf ), (9.9)

where χ is the cyclotomic character (mod p).

Proof. Let ` - p be a prime. Then we have

(ωλ ◦ ρθFGf )(Frob`) = ωλ(sϑf,`)

=
(
ΨθFGf ◦ S−1

p,`

)
(ωλ)

=
(
ΨθFGf ◦ S−1

p,`

)(∑
µ≤λ

dλ(µ)Sp,`(Tµ(`))

)
(9.10)

=
∑
µ≤λ

dλ(µ)ΨθFGf (Tµ(`))
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=
∑
µ≤λ

dλ(µ)η(µ(`))Ψf,`(Tµ(`))

=
∑
µ≤λ

dλ(µ)η(λ(`))Ψf,`(Tµ(`)) (9.11)

= η(λ(`))
∑
µ≤λ

dλ(µ)Ψf,`(Tµ(`))

= `〈η,λ〉
∑
µ≤λ

dλ(µ)Ψf,`(Tµ(`))

= `〈η,λ〉ωλ(sf,`)

= `〈η,λ〉(ωλ ◦ ρf )(Frob`),

where (9.10) follows from Proposition 8.3 and (9.11) follows from Corollary

4.16. Thus the image of Frob` has been multiplied by `〈η,λ〉. Thus

ωλ ◦ ρθFGf = χ〈η,λ〉 ⊗ (ωλ ◦ ρf ), (9.12)

as required.

This leads to the main result.

Theorem 9.8. Let η∨ be the cocharacter of GSpin2g+1 corresponding to η by

duality. Let f and χ be as above. Then

ρθFGf = (η∨ ◦ χ)⊗ ρf . (9.13)

Proof. First note that for each ωλ corresponding to a dominant coweight λ

we have

ωλ ◦ ((η∨ ◦ χ)⊗ ρf ) = (ωλ ◦ η∨)(χ)⊗ (ωλ ◦ ρf )

= χ〈η,λ〉 ⊗ (ωλ ◦ ρf ).

Now, by the previous theorem, for each ωλ corresponding to a dominant

coweight λ we have

ωλ ◦ ρθFGf = χ〈η,λ〉 ⊗ (ωλ ◦ ρf ). (9.14)
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However, recalling Lemma 8.5, we know that the Satake parameters (that is,

the image of ρf and ρθFGf are defined by their images under the representa-

tions ωλ. Thus the above two equalities tell us

ωλ ◦ ρθFGf = ωλ ◦ ((η∨ ◦ χ)⊗ ρf ) (9.15)

and thus

ρθFGf = (η∨ ◦ χ)⊗ ρf , (9.16)

as required.

As for θBN , we can now say the following.

Corollary 9.9. Let η∨ and det∨ be the cocharacters of GSpin2g+1 correspond-

ing to η and det by duality. Let f and χ be as above. Then

ρθBNf = (η∨ ◦ χ)g ⊗ ρf = (det ∨ ◦ χ)⊗ ρf . (9.17)

Proof. Since det = ηg, simply apply theorem 9.8 g times.
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