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BH-FDR 

  The Benjamini-Hochberg false discovery rate  

BCAC 

Breast Cancer Association Consortium  

iCOGS  

The Collaborative Oncological Gene-environment Study 

GWAS 

Genome-wide association study 

pQTL 

 Protein quantitative trait loci 

Estrogen receptor-positive/-negative 

 ER+/- 

CRP  

C-reactive protein  

IGF1 

Insulin-like growth factor 1  

ISLR2 

Leucine-rich repeat protein 2 

IR  

Insulin receptor 

MET  

Hepatocyte growth factor receptor 

NOTCH1 

Neurogenic locus notch homolog protein 1  
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VEGFR2 

Vascular endothelial growth factor receptor 2 

B3GNT2 

Beta-1,3-N-Acetylglucosaminyltransferase 2 

RSPO3 

R-spondin 3 

VCAM1 

Vascular cell adhesion protein 1 
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Novelty and Impact 

The study identified 56 circulating proteins, for which their genetically predicted levels were 

associated with breast cancer risk. These proteins are involved in estrogen receptor signaling, 

insulin resistance, and other important biological processes, and may serve as candidate 

biomarkers for further investigations. 
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Abstract 

A small number of circulating proteins have been reported to be associated with breast cancer 

risk, with inconsistent results. Herein, we attempted to identify novel protein biomarkers for 

breast cancer via the integration of genomics and proteomics data. In the Breast Cancer 
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Association Consortium (BCAC), with 122,977 cases and 105,974 controls of European 

descendants, we evaluated the associations of the genetically predicted concentrations of >1,400 

circulating proteins with breast cancer risk. We used data from a large-scale protein quantitative 

trait loci (pQTL) analysis as our study instrument. Summary statistics for these pQTL variants 

related to breast cancer risk were obtained from the BCAC and used to estimate odds ratios (OR) 

for each protein using the inverse-variance weighted method. We identified 56 proteins 

significantly associated with breast cancer risk by instrumental analysis (false discovery rate < 

0.05). Of these, the concentrations of 32 were influenced by variants close to a breast cancer 

susceptibility locus (ABO, 9q34.2). Many of these proteins, such as insulin receptor, insulin-like 

growth factor receptor 1 and other membrane receptors (OR: 0.82 to 1.18, P values: 6.96×10-4 to 

3.28×10-8), are linked to insulin resistance and estrogen receptor signaling pathways. Proteins 

identified at other loci include those involved in biological processes such as alcohol and lipid 

metabolism, proteolysis, apoptosis, immune regulation, and cell motility and proliferation. 

Consistent associations were observed for 22 proteins in the UK Biobank data (P < 0.05). The 

study identifies potential novel biomarkers for breast cancer, but further investigation is needed 

to replicate our findings.   

 

 

Introduction  
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 Breast cancer is the most common malignancy diagnosed among women in many 

countries 1. Established risk factors for breast cancer include certain menstrual and reproductive 

factors, postmenopausal obesity, the use of hormone replacement therapy, family history of the 

disease, and the carrying of high-penetrance mutations 2, 3. Circulating protein biomarkers have 

an important utility in cancer screening and risk assessment 4. Several circulating protein 

biomarkers of breast cancer risk have been reported in observational studies. Some examples of 

these are C-reactive proteins (CRP), insulin-like growth factor 1 (IGF1), and leptin 5-8. However, 

conventional observational studies may be influenced by reverse causation, confounding, 

selection biases, or small sample sizes. Therefore, results from previous studies have been 

inconsistent.  

 There is compelling evidence that the concentration of many circulating proteins may be 

determined by genetic variants 9, 10. A twin study measured 342 proteins in plasma and estimated 

that the mean heritability was ~14% 11. Since genetic alleles are randomly distributed during 

gamete formation, the variations in protein concentration determined by genetic variants should 

not be affected by environmental exposures or lifestyle factors. Therefore, the use of genetic 

variants as instruments to investigate circulating proteins in relation to cancer risk can reduce 

confounding effects, selection biases, and circumvent reverse causation, all of which are 

frequently encountered in epidemiological studies 12. Importantly, the genetically determined 

protein concentrations represent a long-term exposure since birth. Recently, Sun et al. identified 

1,927 genome-wide significant protein quantitative trait loci (pQTL) in individuals of European 
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ancestry 10. Herein, we have utilized these pQTL variants as instruments to evaluate the 

genetically predicted concentration of each of the 1,469 proteins in relation to breast cancer risk 

in the Breast Cancer Association Consortium (BCAC). The identified associations were further 

assessed using UK Biobank data.  

  

Material and Methods  

 An inverse-variance weighted method 13 was used to evaluate the associations of 

predicted circulating protein concentrations with breast cancer risk using summary statistics data 

from two sources. The first was beta coefficients of the associations between genetic variants and 

circulating protein concentrations. These were obtained from a recent genome-wide association 

study (GWAS) to identify protein quantitative trait loci (pQTL) that evaluated 2,994 circulating 

proteins in 3,301 healthy subjects of European descent 10. The proteins were quantified using 

SOMAscan platform. A total of 1,927 associations were identified for 1,478 circulating proteins 

with a P < 1.5×10-11. The second source of summary statistics for each of these pQTL variants 

came from the GWAS of breast cancer risk in the BCAC studies that comprised three datasets: 

11 individual breast cancer GWAS combined (14,910 cases and 17,588 controls), the 

Collaborative Oncological Gene-environment Study (iCOGS) (46,785 cases and 42,892 

controls), and the OncoArray study (61,282 cases and 45,494 controls) 14-16. Summary statistics 

of iCOGS and OncoArray can be accessed through the BCAC website 
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(http://bcac.ccge.medschl.cam.ac.uk/bcacdata/). All participating studies of the BCAC were 

approved by their corresponding ethics review boards and all subjects provided informed 

consent. Our analyses were limited to the women of European ancestry included in the BCAC. 

Details of the genotyping protocols in the BCAC have been published elsewhere 15-17 (iCOGS: 

http://ccge.medschl.cam.ac.uk/research/consortia/icogs/). Samples included in the OncoArray, 

iCOGS, and nine of the individual GWAS datasets were imputed by IMPUTE version 2, using 

the 1000 Genomes Project (October 2014 version 3 release) dataset as the reference panel 16, 18. 

Two of the individual GWAS, BPC3 and EBCG were imputed separately using MACH and 

Minimac 19, 20.  

 Approximately 25% of the instruments were constructed using multiple genetic variants. 

When multiple variants were associated with a single protein, only those with linkage 

disequilibrium (LD) < 0.1 were retained for downstream analyses. The F-statistic was used to 

measure the strength of the instruments, with 10 being a commonly used threshold 21. It was 

calculated following the formula R2*(n-1-k)/(1-R2)/k, where R2 is percentage of variance 

explained by used SNPs; n is the sample size of BCAC data (=228,951); and k is the number of 

SNPs used in the instrument. Thanks to the large sample size of the BCAC, all of the instruments 

have an F-statistic of > 1,000. The beta coefficient of the association between genetically 

predicted concentrations of a given protein and breast cancer risk was estimated using ∑ 𝛽𝑖,𝐺𝑋𝑖 ∗

𝛽𝑖,𝐺𝑌 ∗ 𝜎𝑖,𝐺𝑌−2 /(∑ 𝛽𝑖,𝐺𝑋2
𝑖 ∗ 𝜎𝑖,𝐺𝑌−2 ) and its standard error calculated as 1/(∑ 𝛽𝑖,𝐺𝑋2

𝑖 ∗ 𝜎𝑖,𝐺𝑌−2 )0.5, where 

βi,GX is the beta coefficient of the association between i th SNP and the protein of interest from 
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the above-mentioned pQTL study 10. GY represents the association between i th SNP and breast 

cancer risk in the BCAC meta-analysis [overall, estrogen receptor-positive (ER+), or ER-

negative (ER-)]; thus, βi,GY and σi,GY are the corresponding beta coefficient and standard error for 

SNPi, respectively. Odds ratio (OR) was expressed as the exponential of beta coefficients. The 

Benjamini-Hochberg false discovery rate (FDR) of < 0.05 was used as the significance level for 

a two-sided test. The ingenuity pathway analysis was employed to visualize the potential 

interplay of genes and proteins.  

 We downloaded genetic association summary statistics for each identified risk-associated 

protein from http://www.phpc.cam.ac.uk/ceu/proteins (EGAS00001002555). We abstracted 

pQTL variants associated at the level of 5×10-8 (LD R2 < 0.1) to construct new instruments, then 

performed sensitivity analyses.  

 Summary statistics derived from the associations between genetic variants and breast 

cancer risk using the UK Biobank samples were obtained to replicate the associations revealed in 

the BCAC 22. The imputation was completed by combining the Haplotype Reference Consortium 

and the UK10K haplotype resource as the reference panel. Genome-wide association analyses 

for over 2,000 phenotypes were conducted using data from ~337,000 unrelated individuals of 

British ancestry included in the UK Biobank (http://www.nealelab.is/uk-biobank). The statistics 

for the associations of SNPs with breast cancer risk were used for our validation study. A highly 

correlated proxy SNP (R2 > 0.9) was identified and used to construct the genetic instrument if the 

original SNP was not available (e.g. if insertions/deletions or variants failed in the quality control 
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assessment). Since the majority of the 2,000 phenotypes were in continuous form, a linear 

regression model was employed for all phenotypes, including binary outcomes. We obtained 

summary statistics data derived from the analysis conducted for histologically-confirmed 

incident breast cancers (ICD-10: C50, N = 5,510) and prevalent breast cancers reported by 

participants at the baseline interview (N =7,480). We also abstracted pQTL variants from other 

two genome-wide pQTL studies 9, 23 (P < 5×10-8, LD R2 < 0.1) to construct new instruments for 

the risk-associated proteins. Both studies were conducted in the populations of European descent 

and the same SOMAscan platform was used to measure blood proteins. Genome-wide 

association analysis was performed to identify significant pQTL variants for circulating proteins 

in the two studies. The aforementioned inverse-variance weighted method was applied to 

validate our primary findings. The potential pleiotropic effects of our genetic instruments were 

investigated via Phenoscanner 24. The lead pQTL variants for the identified proteins were 

queried.      

 

Results 

 We constructed genetic instruments for 1,469 out of the 1,478 proteins, using one to six 

genetic variants that were associated with the circulating concentration of each protein. Of the 

375 proteins whose concentrations could be predicted using multiple variants, 27 showed 

associations with overall breast cancer risk, after accounting for multiple comparisons (FDR < 
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0.05, Table 1). Of them, the concentrations of 10 proteins were positively associated with breast 

cancer risk (ORs ranging from 1.03 to 1.08 per unit of increase; P values ranging from 1.41×10-3 

to 1.19×10-7), while the other 17 were inversely associated with the risk (ORs ranging from 0.90 

to 0.98; P values ranging from 1.56×10-3 to 5.20×10-8). The most noticeable association was 

observed for the immunoglobulin superfamily, particularly the leucine-rich repeat protein 2 

(ISLR2), of which the genetically predicted concentration was inversely associated with breast 

cancer risk (OR: 0.93, P = 5.20× 10-8). Analyses using single-variant instruments identified an 

additional 29 proteins at 11 loci, with their predicted circulating concentrations associated with 

overall breast cancer risk after accounting for multiple comparisons (FDR < 0.05, Table 2). The 

effect sizes of these associations were comparable and consistent in direction across the three 

independent datasets included in the BCAC for all associated proteins (supplementary Table S1).  

 A recently reported breast cancer susceptibility locus, 9q34.2 (ABO) 16, showed strong 

pleiotropy with 32 risk-associated proteins. All of the instruments for these 32 protein 

biomarkers were constructed using genetic variants located at 9q34.2, alone or in combination 

with variants in other chromosomes. For instance, both genetically predicted concentrations of 

IGF1 receptors and insulin receptors were associated with a reduced risk of breast cancer 

(IGF1R: OR = 0.82, IR: OR =0.93, P = 3.28×10-8 for both proteins). Of the 32 proteins, 20 are 

membrane receptors and 11 are linked to the estrogen receptor via the ingenuity pathway 

analysis (supplementary Figure S1). The majority of the risk-associated proteins showed 

consistent associations for ER positive (+) and ER negative (-) breast cancer (supplementary 
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Table S2). The association for seven of the proteins was stronger in risk of ER- than of ER+ 

breast cancer (Phet < 0.05 from heterogeneity tests, Table 3). 

 In the sensitivity analysis, we constructed new instruments using independent pQTL 

variants, with P < 5×10-8 for the 56 identified proteins (see Methods). The associations were not 

materially changed (Supplementary Table S3). Furthermore, we provided another source of 

validation via new instruments (see Methods). The associations of 27 proteins were replicated at 

P < 0.05 (Table 4). The pleiotropic effects of lead pQTL variants for the 56 proteins are 

presented in supplementary Table S4 (P < 5×10-8).  

We evaluated 55 of the 56 predicted protein biomarkers with breast cancer risk in the UK 

Biobank data (data for Fas ligand via rs371314787 were not available and no proxy could be 

identified within 500 Kb). Consistent associations were observed for 22 proteins with either 

histologically-confirmed or self-reported breast cancer risk (Table 5, P < 0.05). We also 

observed nominally consistent associations for an additional four proteins (Table 5, P < 0.1).  
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Discussion 

 The use of genetic variants as instrumental variables to assess the exposure-outcome 

relationship could help reduce confounding and selection bias, and eliminate biases due to 

reverse causation 12. Using data from a large-scale consortium (the BCAC), we identified 56 

circulating protein biomarkers associated with overall breast cancer risk, after adjusting for 

multiple comparisons. Of these, 22 associations were nominally replicated using data from the 

UK Biobank, providing assurance of the validity of our findings. Although the causality cannot 

be determined for the identified proteins, our study provides substantial new information about 

protein biomarker candidates for breast cancer risk.   

 A recently reported breast cancer susceptibility locus, 9q34.2 16, was related to more than 

half of the identified protein risk biomarkers. This region is known for its wide spectrum of 

pleiotropy on its concentrations of metabolites 25, lipids 26, and proteins 9, 10, as well as its risk of 

coronary artery disease 27 and pancreatic cancer 28. The biological mechanisms underlying this 

pleiotropy remain obscure. The ingenuity pathway analysis revealed a network of multiple 

membrane proteins regulated by genetic variants in 9q34.2, such as insulin-like growth factor 1 

receptor (IGF1R), insulin receptor (IR), hepatocyte growth factor receptor (MET), neurogenic 

locus notch homolog protein 1 (NOTCH1), and vascular endothelial growth factor receptor 2 

(VEGFR2). All of these are linked to estrogen receptor signaling (Supplementary Figure S1) and 

insulin resistance 29-32. It is possible that the genetic variants in 9q34.2 may affect the 

concentration of these receptors, subsequently leading to impaired insulin sensitivity and/or 
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abnormal estrogen signaling. Of note, the biological activities triggered by the contacts between 

ligands and these receptors are not limited to insulin resistance. Some examples are: 1) 

insulin/IGF1 has a mitogenic effect on cell proliferation and growth through its binding to 

IR/IGF1R 33; 2) hepatocyte growth factor (HGF) and MET are important players in mammary 

gland development 34; 3) the notch signaling pathway is widely involved in diverse 

developmental and homeostatic processes 35; 4) VEGF/VEGFR2 interaction is responsible for 

developmental and pathological angiogenesis 36. Thus, the down-regulation of these receptors 

may trigger carcinogenic effects through elongated interactions with their ligands. However, the 

causality between specific proteins and breast cancer risk cannot be established due to the strong 

pleiotropy observed in this and several other loci. Nevertheless, these proteins can serve as 

candidate biomarkers for future studies. 

 We also identified associations for several other proteins that play important roles in 

various biological processes. For instance, we found that higher genetically predicted 

concentrations of copine 1and Fas ligand were associated with a reduced risk of overall breast 

cancer. Copine 1 belongs to calcium-dependent membrane-binding proteins. It has been shown 

that the interaction between copine 1 and p65 could repress the transcription of NF-κB, which is 

essential for cancer initiation and progression 37. Fas and Fas ligand’s role in apoptosis and 

immune homeostasis have long been acknowledged. By engaging Fas ligand with Fas in the 

cancer cell membrane, CD8+ cytotoxic lymphocytes can activate caspase 8 and initiate the 

apoptotic death of cancer cells 38. Thus, our analyses support the hypothesis that down-regulated 
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copine 1 and Fas ligands may contribute to breast cancer risk. Another example is beta-1,3-N-

Acetylglucosaminyltransferase 2 (B3GNT2), which is the main polylactosamine synthase 39. Its 

important role in glycan formation (glycosylation) and its well-known link to aberrant 

glycosylation and carcinogenesis 40 support the hypothesis that the B3GNT2 protein may have a 

carcinogenic effect. The positive association we observed for genetically predicted B3GNT2 

concentrations and breast cancer risk is consistent with a previous report that B3GNT2 

expression was up-regulated in malignant breast tissues compared to that of normal tissues from 

healthy women 40. 

 The interpretation of some of our findings is less straightforward. For example, we 

identified an inverse correlation for a genetically predicted R-spondin 3 (RSPO3) concentration 

with breast cancer risk. R-spondins are critical regulators in the canonical Wnt/β-catenin 

pathway, and they have been shown to be activators of this pathway 41. It would be expected that 

excessive R-spondins may be positively related to breast cancer development, as the over-

activation of Wnt signaling is generally considered to be mechanistically related to cancer 

initiation 42. Similarly, we observed an inverse relationship between genetically predicted 

vascular cell adhesion protein 1 (VCAM1) concentrations and breast cancer risk, which deserves 

further investigation. VCAM1 has been widely studied for its role in promoting tumor 

angiogenesis, progression, and metastasis 43, but less for its effect on tumorigenesis. Thus, some 

of the associations observed in the present study should be interpreted cautiously, despite their 

statistical significance.     
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 We evaluated multiple circulating protein biomarkers reported by previous 

epidemiological studies using genetic instruments. The results were not entirely consistent with 

previous findings. For example, we observed only a nominal association between genetically 

predicted CRP concentrations and overall breast cancer risk (OR: 1.04, P = 0.048), and the 

association was trivial after adjusting for multiple comparisons. This contradicts a recent meta-

analysis suggesting that an elevated circulating concentration of CRP may be associated with an 

increased breast cancer risk 5, 44. Of note, this association varied greatly between retrospective 

case-control studies and prospective cohort/nested case-control studies. Similarly, no association 

was observed for the genetically predicted concentrations of IGF1 and HGF, which is in contrast 

with the findings for measured proteins in previous studies 7, 38, 45. These inconsistencies could be 

due to the inaccurate or confounded estimates of associations commonly encountered in 

traditional observational epidemiological studies. It is also possible that genetic instruments we 

used in this study are not adequate for the analysis.  

 Our study is unprecedented in its power to discover novel circulating protein biomarkers 

for breast cancer risk. Our findings also provide novel evidence revealing mechanistic networks 

underlying breast carcinogenesis. The identified proteins could serve as candidates in future 

investigations. Another great strength of this study is that we were able to validate a large 

number of our identified associations using an independent dataset from the UK Biobank. That 

we were able to replicate associations with breast cancer for 22 out of 55 proteins from an 

independent dataset cannot be explained by chance alone (binomial P = 5×10-10 when assuming 
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5% of the associations could be replicated). We recognize that the number of breast cancer cases 

was relatively small in the UK Biobank and the SNP-breast cancer associations were derived 

from a linear regression model instead of a logistic regression model. The association estimates 

and 95% CIs might be biased; Thus, the design of replication stage was not ideal. We also 

recognize that the strong genetic pleiotropy, particularly at 9q34.2, prevents us from making 

causal inferences. Some of the associations may be largely attributable to the correlation between 

protein concentrations. In addition, our analysis depends on the number of proteins measured and 

the number of pQTLs identified in the GWAS of circulating protein concentrations. A more 

comprehensive analysis could be conducted when data becomes available for proteins that have 

not been evaluated in the current study. The explained variation in protein concentrations is also 

expected to improve with the identification of additional pQTLs. Lastly, all of the pQTLs 

involved in the current analysis were identified in the blood. Whether these pQTLs were 

consistent in breast tissues remains unknown. However, we found that the coding genes of nearly 

all the proteins analyzed in the current study are expressed in the breast tissues from the 

Genotype-Tissue Expression project (data not shown).  

 The Strong pleiotropy of pQTL variants has limited our ability to infer causal roles of the 

identified proteins in breast cancer development. However, some pleiotropy may reveal potential 

intermediate phenotypes involved in the causal pathways for breast cancer. For example, 

rs2489623 (RSPO3) and rs7041 (JAG1) were associated with both central obesity and circulating 

25-OH vitamin D concentrations 46-48, respectively. Another example is that pQTLs at 3p21.31 
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associated with multiple proteins (ADH1B, CRYBB2, DOCK9, STOM, TMPRSS11D, and 

TNS2) were also linked to age at menarche, which is an established risk factor for breast cancer. 

Additionally, solid evidence has linked the 9q34.2 (ABO) locus to invasive ovarian cancer risk 

49. Thus, proteins associated with variants in 9q34.2 could be potential biomarkers for both 

malignancies.  

Although sensitivity analysis and extra replication were conducted, our findings should 

be interpreted with caution. To establish causality and understand the underlying mechanisms for 

the identified proteins in breast cancer etiology, assays at cell levels such as cell viability and 

colony formation assays, and whole-transcriptome profiling are potential next steps to depict the 

impact on breast cancer cell growth and gene-gene interplay networks, after knocking down the 

encoding genes.  

In summary, using genetic instruments, we identified 56 proteins with their genetically 

predicted circulating levels associated with breast cancer risk in this study. Future investigations 

are needed to replicate our findings, particularly for the proteins that failed to reach statistical 

significance in the UK Biobank dataset. Understanding and establishing causality for the 

identified proteins are important next steps.  

 

 

This article is protected by copyright. All rights reserved.



21 
 

 

 

 

 

 

 

 

 

 

 

 

  

This article is protected by copyright. All rights reserved.



22 
 

Acknowledgement 

The current affiliation for JB is College of Life Sciences, Fujian Agriculture and Forestry 

University, Fuzhou 350002, Fujian, China.  

 

 

 

 

 

 

 

 

 

 

 

 

This article is protected by copyright. All rights reserved.



23 
 

 

 

References 

 1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 
2012. CA Cancer J Clin 2015;65: 87-108. 
 2. Colditz GA, Bohlke K. Priorities for the primary prevention of breast cancer. CA Cancer J Clin 
2014;64: 186-94. 
 3. Howell A, Anderson AS, Clarke RB, Duffy SW, Evans DG, Garcia-Closas M, Gescher AJ, 
Key TJ, Saxton JM, Harvie MN. Risk determination and prevention of breast cancer. Breast Cancer Res 
2014;16: 446. 
 4. Borrebaeck CA. Precision diagnostics: moving towards protein biomarker signatures of clinical 
utility in cancer. Nat Rev Cancer 2017;17: 199-204. 
 5. Chan DS, Bandera EV, Greenwood DC, Norat T. Circulating C-Reactive Protein and Breast 
Cancer Risk-Systematic Literature Review and Meta-analysis of Prospective Cohort Studies. Cancer 
Epidemiol Biomarkers Prev 2015;24: 1439-49. 
 6. Schernhammer ES, Holly JM, Pollak MN, Hankinson SE. Circulating levels of insulin-like 
growth factors, their binding proteins, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 
2005;14: 699-704. 
 7. Endogenous H, Breast Cancer Collaborative G, Key TJ, Appleby PN, Reeves GK, Roddam 
AW. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled 
individual data analysis of 17 prospective studies. Lancet Oncol 2010;11: 530-42. 
 8. Ollberding NJ, Kim Y, Shvetsov YB, Wilkens LR, Franke AA, Cooney RV, Maskarinec G, 
Hernandez BY, Henderson BE, Le Marchand L, Kolonel LN, Goodman MT. Prediagnostic leptin, 
adiponectin, C-reactive protein, and the risk of postmenopausal breast cancer. Cancer Prev Res (Phila) 
2013;6: 188-95. 
 9. Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, Sarwath H, Thareja G, 
Wahl A, DeLisle RK, Gold L, Pezer M, et al. Connecting genetic risk to disease end points through the 
human blood plasma proteome. Nat Commun 2017;8: 14357. 
 10. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, 
Paige E, Surendran P, Oliver-Williams C, Kamat MA, et al. Genomic atlas of the human plasma 
proteome. Nature 2018;558: 73-9. 
 11. Liu Y, Buil A, Collins BC, Gillet LC, Blum LC, Cheng LY, Vitek O, Mouritsen J, Lachance 
G, Spector TD, Dermitzakis ET, Aebersold R. Quantitative variability of 342 plasma proteins in a human 
twin population. Molecular systems biology 2015;11: 786. 
 12. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for 
Mendelian randomization. Stat Methods Med Res 2017;26: 2333-55. 
 13. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple 
genetic variants using summarized data. Genet Epidemiol 2013;37: 658-65. 

This article is protected by copyright. All rights reserved.



24 
 

 14. Amos CI, Dennis J, Wang Z, Byun J, Schumacher FR, Gayther SA, Casey G, Hunter DJ, 
Sellers TA, Gruber SB, Dunning AM, Michailidou K, et al. The OncoArray Consortium: A Network for 
Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiol Biomarkers Prev 
2017;26: 126-35. 
 15. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, Schmidt MK, 
Chang-Claude J, Bojesen SE, Bolla MK, Wang Q, Dicks E, et al. Large-scale genotyping identifies 41 
new loci associated with breast cancer risk. Nat Genet 2013;45: 353-61, 61e1-2. 
 16. Michailidou K, Lindstrom S, Dennis J, Beesley J, Hui S, Kar S, Lemacon A, Soucy P, Glubb 
D, Rostamianfar A, Bolla MK, Wang Q, et al. Association analysis identifies 65 new breast cancer risk 
loci. Nature 2017. 
 17. Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, Maranian MJ, Bolla 
MK, Wang Q, Shah M, Perkins BJ, Czene K, et al. Genome-wide association analysis of more than 
120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet 2015;47: 373-80. 
 18. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for 
the next generation of genome-wide association studies. PLoS Genet 2009;5: e1000529. 
 19. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to 
estimate haplotypes and unobserved genotypes. Genet Epidemiol 2010;34: 816-34. 
 20. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype 
imputation in genome-wide association studies through pre-phasing. Nat Genet 2012;44: 955-9. 
 21. Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak instruments in 
Mendelian randomization studies. International journal of epidemiology 2011;40: 755-64. 
 22. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, 
Delaneau O, O'Connell J, Cortes A, Welsh S, et al. Genome-wide genetic data on ~500,000 UK Biobank 
participants. bioRxiv 2017. 
 23. Emilsson V, Ilkov M, Lamb JR, Finkel N, Gudmundsson EF, Pitts R, Hoover H, 
Gudmundsdottir V, Horman SR, Aspelund T, Shu L, Trifonov V, et al. Co-regulatory networks of human 
serum proteins link genetics to disease. Science 2018;361: 769-73. 
 24. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, Paul DS, Freitag D, 
Burgess S, Danesh J, Young R, Butterworth AS. PhenoScanner: a database of human genotype-phenotype 
associations. Bioinformatics 2016;32: 3207-9. 
 25. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, Arnold M, Erte I, 
Forgetta V, Yang TP, Walter K, Menni C, et al. An atlas of genetic influences on human blood 
metabolites. Nat Genet 2014;46: 543-50. 
 26. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, 
Buchkovich ML, Mora S, Beckmann JS, Bragg-Gresham JL, et al. Discovery and refinement of loci 
associated with lipid levels. Nat Genet 2013;45: 1274-83. 
 27. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, Zeng L, Ntalla I, Lai 
FY, Hopewell JC, Giannakopoulou O, Jiang T, et al. Association analyses based on false discovery rate 
implicate new loci for coronary artery disease. Nat Genet 2017;49: 1385-91. 
 28. Wolpin BM, Rizzato C, Kraft P, Kooperberg C, Petersen GM, Wang Z, Arslan AA, Beane-
Freeman L, Bracci PM, Buring J, Canzian F, Duell EJ, et al. Genome-wide association study identifies 
multiple susceptibility loci for pancreatic cancer. Nat Genet 2014;46: 994-1000. 
 29. Clemmons DR. The relative roles of growth hormone and IGF-1 in controlling insulin 
sensitivity. J Clin Invest 2004;113: 25-7. 

This article is protected by copyright. All rights reserved.



25 
 

 30. Fafalios A, Ma J, Tan X, Stoops J, Luo J, Defrances MC, Zarnegar R. A hepatocyte growth 
factor receptor (Met)-insulin receptor hybrid governs hepatic glucose metabolism. Nat Med 2011;17: 
1577-84. 
 31. Pajvani UB, Shawber CJ, Samuel VT, Birkenfeld AL, Shulman GI, Kitajewski J, Accili D. 
Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat Med 
2011;17: 961-7. 
 32. Robciuc MR, Kivela R, Williams IM, de Boer JF, van Dijk TH, Elamaa H, Tigistu-Sahle F, 
Molotkov D, Leppanen VM, Kakela R, Eklund L, Wasserman DH, et al. VEGFB/VEGFR1-Induced 
Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications. Cell 
Metab 2016;23: 712-24. 
 33. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev 2005;26: 19-39. 
 34. Yant J, Buluwela L, Niranjan B, Gusterson B, Kamalati T. In vivo effects of hepatocyte 
growth factor/scatter factor on mouse mammary gland development. Exp Cell Res 1998;241: 476-81. 
 35. Bray SJ. Notch signalling in context. Nat Rev Mol Cell Biol 2016;17: 722-35. 
 36. Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) 
Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 
2011;2: 1097-105. 
 37. Ramsey CS, Yeung F, Stoddard PB, Li D, Creutz CE, Mayo MW. Copine-I represses NF-
kappaB transcription by endoproteolysis of p65. Oncogene 2008;27: 3516-26. 
 38. Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, Ceppi P. The role 
of CD95 and CD95 ligand in cancer. Cell Death Differ 2015;22: 549-59. 
 39. Togayachi A, Kozono Y, Kuno A, Ohkura T, Sato T, Hirabayashi J, Ikehara Y, Narimatsu H. 
Beta3GnT2 (B3GNT2), a major polylactosamine synthase: analysis of B3GNT2-deficient mice. Methods 
Enzymol 2010;479: 185-204. 
 40. Potapenko IO, Haakensen VD, Luders T, Helland A, Bukholm I, Sorlie T, Kristensen VN, 
Lingjaerde OC, Borresen-Dale AL. Glycan gene expression signatures in normal and malignant breast 
tissue; possible role in diagnosis and progression. Mol Oncol 2010;4: 98-118. 
 41. Jin YR, Yoon JK. The R-spondin family of proteins: emerging regulators of WNT signaling. 
Int J Biochem Cell Biol 2012;44: 2278-87. 
 42. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017;36: 1461-73. 
 43. Schlesinger M, Bendas G. Vascular cell adhesion molecule-1 (VCAM-1)--an increasing 
insight into its role in tumorigenicity and metastasis. Int J Cancer 2015;136: 2504-14. 
 44. Guo L, Liu S, Zhang S, Chen Q, Zhang M, Quan P, Lu J, Sun X. C-reactive protein and risk 
of breast cancer: A systematic review and meta-analysis. Sci Rep 2015;5: 10508. 
 45. Sheen-Chen SM, Liu YW, Eng HL, Chou FF. Serum levels of hepatocyte growth factor in 
patients with breast cancer. Cancer Epidemiol Biomarkers Prev 2005;14: 715-7. 
 46. Randall JC, Winkler TW, Kutalik Z, Berndt SI, Jackson AU, Monda KL, Kilpelainen TO, 
Esko T, Magi R, Li S, Workalemahu T, Feitosa MF, et al. Sex-stratified genome-wide association studies 
including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS 
Genet 2013;9: e1003500. 
 47. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streeten 
EA, Ohlsson C, Koller DL, Peltonen L, Cooper JD, et al. Common genetic determinants of vitamin D 
insufficiency: a genome-wide association study. Lancet 2010;376: 180-8. 

This article is protected by copyright. All rights reserved.



26 
 

 48. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, 
Ascherio A, Helzlsouer K, Jacobs KB, Li Q, Weinstein SJ, et al. Genome-wide association study of 
circulating vitamin D levels. Human molecular genetics 2010;19: 2739-45. 
 49. Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, Lawrenson K, McGuffog 
L, Healey S, Lee JM, Spindler TJ, Lin YG, et al. Identification of six new susceptibility loci for invasive 
epithelial ovarian cancer. Nat Genet 2015;47: 164-71. 

 

 

 

 

 

 

 

Figure legend 

Figure S1. Multiple identified proteins are relevant to estrogen receptor signaling 

The interplay of identified proteins were generated using the Ingenuity Pathway Analysis 

software. Several proteins associated with genetic variants in 9q34.2 (ABO) are linked to 

estrogen receptor signaling. 
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Tables 

Table 1. Associations between genetically predicted concentrations of circulating proteins 
and breast cancer risk using multi-variant instruments 
Protein Protein-associated SNPs  OR (95% CI) P value 

ISLR2 rs115478735, rs2959011, 
rs4055121 0.93 (0.90-0.95) 5.20×10-8 

C1GALT1C1 rs2519093, rs7787942 1.06 (1.04-1.09) 1.19×10-7 
ALPI rs550057, rs679574 0.90 (0.87-0.94) 8.61×10-7 
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FAM177A1 rs550057, rs679574 0.91 (0.87-0.94) 1.28×10-6 

SELP rs2519093, rs6136, 
rs74227709 0.96 (0.94-0.98) 1.69×10-5 

CPNE1 rs12481228, rs62143206 0.96 (0.95-0.98) 4.69×10-5 
RELT rs3741148, rs7952686 1.07 (1.03-1.10) 6.06×10-5 
CTSF rs11347749, rs1791679 1.08 (1.04-1.11) 8.68×10-5 

TPST2 rs115478735, rs2283824, 
rs34436714 1.06 (1.03-1.10) 1.22×10-4 

VEGFR3/FLT4 rs10935473, rs2519093, 
rs34221241 0.97 (0.96-0.99) 1.56×10-4 

KIN rs149092047, rs62143198, 
rs7412 0.94 (0.91-0.97) 1.64×10-4 

QSOX2 rs10858248, rs149092047 1.03 (1.01-1.04) 1.67×10-4 
B3GNT2 rs2519093, rs67047091 1.05 (1.02-1.07) 2.29×10-4 

VEGFR2/KDR rs34231037, rs34336071, 
rs635634 0.96 (0.94-0.98) 2.54×10-4 

KLRF1 rs11708955, rs62143194 1.10 (1.05-1.16) 2.72×10-4 
MAN1A2 rs35505705, rs8176643 1.08 (1.04-1.13) 3.07×10-4 

TIE1 (soluble) rs10935473, rs2275180, 
rs8176743 0.97 (0.95-0.99) 3.32×10-4 

CAMK1 rs4525, rs61751507 0.98 (0.96-0.99) 3.53×10-4 
GOLM1 rs149092047, rs601338 1.04 (1.02-1.06) 4.11×10-4 
BCAM rs144579705, rs8176747 0.92 (0.88-0.96) 5.48×10-4 
AKR1A1 rs62143198, rs72688441 0.97 (0.96-0.99) 9.68×10-4 
THSD1 rs2519093, rs41292808 0.95 (0.92-0.98) 1.14×10-3 
PSD rs1303, rs429358 0.96 (0.94-0.99) 1.14×10-3 

SULF2 rs10424405, rs7614709, 
rs7971133 0.94 (0.91-0.98) 1.15×10-3 

PRDM1 rs13093385, rs2232613 1.03 (1.01-1.05) 1.41×10-3 

SEMA6A rs3733724, rs56278466, 
rs8176743 0.94 (0.91-0.98) 1.52×10-3 

JAG1 rs550057, rs7041 0.93 (0.90-0.97) 1.56×10-3 
 

 

Table 2. Associations between genetically predicted concentrations of circulating proteins and breast cancer risk 
using single-variant instruments 
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Protein-
associated 
SNPs 

Locus Protein ORs P values 

rs2519093a 9q34.2, ABO 

IGF1R (soluble), IR, MET, 
IL3RA, SELE (soluble), ENG, 
LIFR (soluble), FAM20B, 
ICAM2 (soluble),  CHST15 

0.82 to 1.18 1.39×10-6 to 
3.28×10-8 

rs3184504 12q24.12, SH2B3 VCAM1 0.85 4.09×10-7 

rs3197999 3p21.31, MST1 TMPRSS11D, DOCK9, TNS2, 
CRYBB2 1.06 to 1.16 2.51×10-5 

rs151288400 7q22.1, PILRB HTN1 1.09 4.62×10-5 
rs6770670a 3p21.31, BSN STOM, ADH1B 1.06 7.17×10-5 
rs371314787 3p21.31, APEH FASLG (soluble) 0.89 1.58×10-4 
rs2205895 1q24.2, SELP GAL 0.88 3.90×10-4 

rs1800594a 1q24.2, F5 SEC13, TFPI 0.88 to 1.08 1.46×10-3 to 
5.21×10-4 

rs8176693a 9q34.2, ABO CD36, NOTCH1, TLL1, CDH5 0.90 to 0.93 6.96×10-4 to 
6.41×10-4 

rs2489623 6q22.33, RSPO3  RSPO3 0.92 6.82×10-4 
rs1378892 15q21.2 SCG3 1.05 1.24×10-3 

rs148410779 9q31.3, 
LOC107987116 PTGR1 0.93 1.89×10-3 

a SNPs are in strong LD with other pQTL SNPs in CEU population. Only a representative SNP was presented.  
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Table 3. Associations between genetically predicted concentrations of circulating proteins 
and breast cancer risk differed by ER status: analysis using genetic instruments  
 Estrogen receptor +  Estrogen receptor  -  
Protein OR (95% CI) P  OR (95% CI) P Phet 
TMPRSS11D 1.06 (1.03-1.09) 1.41×10-4  1.13 (1.08-1.19) 4.00×10-7 0.026 
DOCK9 1.11 (1.05-1.17) 1.41×10-4  1.25 (1.14-1.36) 4.00×10-7 0.024 
TNS2 1.09 (1.04-1.13) 1.41×10-4  1.19 (1.11-1.27) 4.00×10-7 0.03 
CRYBB2 1.17 (1.08-1.27) 1.41×10-4  1.39 (1.22-1.58) 4.00×10-7 0.027 
STOM 1.06 (1.03-1.10) 6.11×10-4  1.14 (1.08-1.20) 1.50×10-6 0.022 
ADH1B 1.07 (1.03-1.11) 6.10×10-4  1.16 (1.09-1.23) 1.60×10-6 0.026 
PRDM1 1.03 (1.01-1.05) 0.013  1.08 (1.05-1.12) 6.20×10-6 0.014 
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Table 4. Validation of primary results with instruments constructed using pQTL variants from 
independent studies 
Protein Protein-associated SNPs  OR (95% CI) P value Consistent in direction 
SELP rs10800462, rs651007 0.94 (0.92-0.97) 1.89×10-4 Yes 
CPNE1 rs2425143 0.97 (0.95-0.98) 4.10×10-5 Yes 
RELT rs7119167 1.06 (1.02-1.10) 3.91×10-3 Yes 
VEGFR3/FLT4 rs10935480, rs651007 0.97 (0.96-0.99) 5.50×10-4 Yes 
VEGFR2/KDR rs34231037, rs651007 0.96 (0.94-0.99) 7.49×10-3 Yes 
TIE1 (soluble) rs10935480, rs8176749 0.97 (0.95-0.99) 6.57×10-4 Yes 
BCAM rs8176749 0.93 (0.89-0.97) 7.49×10-4 Yes 
AKR1A1 rs6662572 0.97 (0.93-1.01) 1.72×10-1 Yes 
JAG1 rs4588, rs651007 0.95 (0.92-0.98) 1.07×10-3 Yes 
IR rs651007 0.95 (0.93-0.97) 8.30×10-7 Yes 
MET rs35349146, rs651007 0.93 (0.90-0.96) 7.20×10-6 Yes 
SELE (soluble) rs651007 0.96 (0.95-0.98) 8.30×10-7 Yes 
ENG rs651007 0.93 (0.91-0.96) 8.30×10-7 Yes 
ICAM2 (soluble) rs651007 0.91 (0.88-0.95) 8.30×10-7 Yes 
CHST15 rs651007 0.90 (0.87-0.94) 8.30×10-7 Yes 
TFPI rs6027 0.97 (0.92-1.01) 1.76×10-1 No 
CD36 rs651007 0.93 (0.91-0.96) 8.30×10-7 Yes 
NOTCH1 rs8176749 0.92 (0.87-0.96) 7.49×10-4 Yes 
CDH5 rs8176749 0.97 (0.95-0.99) 7.49×10-4 Yes 
ALPI rs4942471 1.07 (0.99-1.15) 9.51×10-2 No 
B3GNT2 rs1800470, rs492488 1.04 (0.99-1.08) 1.05×10-1 Yes 
C1GALT1C1 rs579459 1.12 (1.07-1.17) 7.40×10-7 Yes 
CTSF rs607736 1.18 (1.10-1.27) 1.30×10-5 Yes 
FAM177A1 rs492488, rs799498 0.99 (0.96-1.01) 3.18×10-1 - 
GOLM1 rs492488, rs7854118 1.03 (1.00-1.06) 4.58×10-2 Yes 
ISLR2 rs579459, rs923118 0.94 (0.91-0.97) 1.42×10-4 Yes 
KIN rs579459, rs7412 0.95 (0.92-0.97) 1.90×10-4 Yes 
MAN1A2 rs1289863 0.95 (0.89-1.02) 1.41×10-1 No 
PRDM1 rs9852529 1.08 (1.04-1.13) 7.60×10-5 Yes 
QSOX2 rs12378344, rs492488 1.03 (1.01-1.05) 2.22×10-3 Yes 
RSPO3 rs3734626 0.94 (0.91-0.98) 1.51×10-3 Yes 
SCG3 rs1456297 1.05 (1.02-1.09) 1.08×10-3 Yes 
SEC13 rs62295996 0.99 (0.92-1.07) 8.45×10-1 - 
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SULF2 rs7485577 0.97 (0.91-1.03) 3.43×10-1 - 
THSD1 rs704 0.97 (0.92-1.02) 1.90×10-1 Yes 
TMPRSS11D rs9852529 1.09 (1.04-1.13) 7.60×10-5 Yes 
TPST2 rs9608491 1.00 (0.92-1.08) 9.10×10-1 - 
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Table 5. Protein biomarkers replicated using data from the UK Biobank: associations of genetically predicted 
concentrations of circulating proteins with breast cancer risk  

  Histologically 
confirmed breast cancer  Self-reported  

breast cancer 

Protein Protein-associated 
SNPs 

Association 
direction P values  Association 

direction P values 

B3GNT2 rs2519093, 
rs2231940 a + 0.003  + 0.007 

HTN1 rs1063945 a + 0.003  + 5.67×10-4 

CPNE1 rs62143206, 
rs12481228 - 0.007  - 0.044 

VCAM1 rs3184504 - 0.010  - 0.063 
RSPO3 rs2489623 - 0.014  - 0.240 
CHST15 rs550057 a - 0.015  - 0.006 

KIN rs7412, rs62143198, 
rs550057 a - 0.016  - 0.011 

JAG1 rs7041, rs550057 a - 0.017  - 0.068 
ALPI rs679574, rs550057 a - 0.025  - 0.068 
FAM177A1 rs679574, rs550057 a - 0.029  - 0.086 
IGFIR (soluble), MET, ICAM2 
(soluble), LIFR (soluble), 
ENG, FAM20B 

rs635634 a -/+ b 0.040  -/+ b 0.012 

IR rs507666 - 0.042  - 0.012 
MAN1A2  rs532436 a + 0.044  + 0.015 
SELE (soluble), IL3RA rs2519093 - 0.046  - 0.012 

C1GALT1C1 rs7787942, 
rs2519093 + 0.048  + 0.029 

GOLM1 rs601338, rs550057 a + 0.066  + 0.009 

AKR1A1 rs72688441, 
rs62143198 - 0.077  - 0.061 

VEGFR2/KDR rs34231037, 
rs635634 - 0.084  - 0.053 

QSOX2 rs550057, 
rs10858248 + 0.197  + 0.055 

ISLR2 rs4055121, 
rs2959011, rs532436 - 0.207  - 0.088 

a Proxy SNPs were used (R2 > 0.9 in the 1000 Genome Project CEU population) 
b Inverse associations (-) for  IGF1R, MET, ICAM2, LIFR, ENG; positive association (+) for FAM20B. 
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Reliable biomarkers for breast cancer are critically needed, but results from existing studies have been inconsistent. 
Here the authors combined genomics and proteomics expertise and identified 56 circulating proteins, for which 
genetically predicted levels were associated with breast cancer risk. These proteins are involved in relevant biological 
processes such as estrogen receptor signaling and insulin resistance and will serve as candidates for further 
evaluative investigations. 
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