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Abstract

IMPORTANCE In the US, more than 600 000 adults will experience an acute myocardial infarction
(AMI) each year, and up to 20% of the patients will be rehospitalized within 30 days. This study
highlights the need for consideration of calibration in these risk models.

OBJECTIVE To compare multiple machine learning risk prediction models using an electronic health
record (EHR)–derived data set standardized to a common data model.

DESIGN, SETTING, AND PARTICIPANTS This was a retrospective cohort study that developed risk
prediction models for 30-day readmission among all inpatients discharged from Vanderbilt
University Medical Center between January 1, 2007, and December 31, 2016, with a primary
diagnosis of AMI who were not transferred from another facility. The model was externally validated
at Dartmouth-Hitchcock Medical Center from April 2, 2011, to December 31, 2016. Data analysis
occurred between January 4, 2019, and November 15, 2020.

EXPOSURES Acute myocardial infarction that required hospital admission.

MAIN OUTCOMES AND MEASURES The main outcome was thirty-day hospital readmission. A total
of 141 candidate variables were considered from administrative codes, medication orders, and
laboratory tests. Multiple risk prediction models were developed using parametric models (elastic
net, least absolute shrinkage and selection operator, and ridge regression) and nonparametric
models (random forest and gradient boosting). The models were assessed using holdout data with
area under the receiver operating characteristic curve (AUROC), percentage of calibration, and
calibration curve belts.

RESULTS The final Vanderbilt University Medical Center cohort included 6163 unique patients,
among whom the mean (SD) age was 67 (13) years, 4137 were male (67.1%), 1019 (16.5%) were Black
or other race, and 933 (15.1%) were rehospitalized within 30 days. The final Dartmouth-Hitchcock
Medical Center cohort included 4024 unique patients, with mean (SD) age of 68 (12) years; 2584
(64.2%) were male, 412 (10.2%) were rehospitalized within 30 days, and most of the cohort were
non-Hispanic and White. The final test set AUROC performance was between 0.686 to 0.695 for the
parametric models and 0.686 to 0.704 for the nonparametric models. In the validation cohort,
AUROC performance was between 0.558 to 0.655 for parametric models and 0.606 to 0.608 for
nonparametric models.

CONCLUSIONS AND RELEVANCE In this study, 5 machine learning models were developed and
externally validated to predict 30-day readmission AMI hospitalization. These models can be
deployed within an EHR using routinely collected data.
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Key Points
Question Can machine learning

deployed in electronic health records be

used to improve readmission risk

estimation for patients following acute

myocardial infarction?

Findings In this cohort study examining

externally validated machine learning

risk models for 30-day readmission of

10 187 patients following hospitalization

for acute myocardial infarction, good

discrimination performance was noted

at the development site, but the best

discrimination did not result in the best

calibration. External validation yielded

significant declines in discrimination and

calibration.

Meaning The findings of this study

highlight that robust calibration

assessments are a necessary

complement to discrimination when

machine learning models are used to

predict post–acute myocardial infarction

readmission; challenges with data

availability across sites, even in the

presence of a common data model, limit

external validation performance.
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Introduction

Coronary heart disease leads to approximately 14% of deaths in the US; an acute myocardial infarction
(AMI) occurs every 34 seconds and an AMI-related death occurs every 84 seconds.1 Approximately
635 000 individuals within the US have their first AMI each year, and almost half experience a recurrent
AMI the same year.1 One in 5 patients with AMI is rehospitalized within 30 days of discharge.1-3

The 2010 Patient Protection and Affordable Care Act identified hospital readmission as a target
for revising fee-for-service hospital reimbursement and reducing health care spending.4 Unplanned
readmissions account for 17% of Medicare hospital reimbursement, costing approximately $17.4
billion annually.5 Approximately 20% of Medicare beneficiaries who experience an AMI are
re-hospitalized within 30 days after discharge.6 Although quality improvement initiatives and
financial incentives have led to a decline in 30-day readmissions, emergency department visits and
observation stays after index admission have increased.7-9 The success of readmission reduction
programs is therefore uncertain, highlighting the need to identify patients who may benefit from
additional health care resources to reduce the risk of readmission.

Risk prediction models are important to promote efficient resource allocation for high-risk
patients and readmission prevention.4,5,10 There is increasing opportunity to embed predictive
models into electronic health records (EHRs) to support automated readmission prediction for use
by clinical teams, yet challenges persist.11-13 Portability of predictive models between different EHRs
is often limited10-12 owing to systematic differences in the patient case-mix between institutions,
differences in EHR data storage methods,14 and changes in clinical and data practices within a health
care system over time.15 Strategies to address portability include a systematic approach to data
management (eg, common data models and exchange formats) and model maintenance.16,17

Current models developed for 30-day readmission after AMI focus on risk factors derived from
claims data or restricted patient populations, which limit performance and deployment.18 Many
studies have had limited discrimination in predicting 30-day readmissions using either Medicare
claims (C statistic, 0.63) or state registries with only structured data (C statistic, 0.64-0.67).18-22

Machine learning models can address some of these limitations by accounting for variable
interactions and nonlinearity; however, there is limited transparency of model outputs.23 However,
the ability to incorporate such models into EHRs, offload manual calculation burdens, and carefully
select methods that are understandable have increased clinical usability.24,25

In this study, we sought to improve 30-day readmission risk prediction among hospitalized
patients with AMI by analyzing a broad set of data collected from EHRs standardized within a
common data model and comparing a robust set of machine learning methods.

Methods

We conducted this study at Vanderbilt University Medical Center (VUMC), a large, tertiary care
academic hospital system in Nashville, Tennessee, with a catchment area that includes a 9-state
surrounding region. Dartmouth-Hitchcock Medical Center (DHMC), a tertiary care facility serving
New Hampshire along with 3 neighboring states, was used as the external validation site. The initial
inclusion cohort comprised all 10 731 patients hospitalized with primary International Classification of
Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) or International Statistical Classification of
Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) diagnosis codes of AMI between January 1,
2007, and December 31, 2016, and an aligned cohort of hospitalized patients discharged between
April 2, 2011, and December 31, 2016, at DHMC. Data analysis was performed between January 4,
2019, and November 15, 2020.

We then excluded all patient hospitalizations that were not the index AMI hospitalization
(VUMC, 4241 and DHMC, 2617) to ensure 1 hospitalization per patient, and excluded patients who
died before discharge (VUMC, 327 and DHMC, 244). The final cohort was 6163 VUMC and 4024
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DHMC unique patients. To supplement ascertainment of 30-day readmissions following
hospitalization, the cohorts were linked to Medicare Provider Analysis and Review inpatient claims.26

All data were collected within the VUMC EHR, StarPanel27,28 and DHMC local EHR aggregated
to a clinical data warehouse. Source EHR data were transformed at each institution into the
Observational Medical Outcome Partnership (OMOP) Common Data Model. At VUMC, this was done
by VICTR and supported by institutional and National Institutes of Health Clinical and Translational
Science Award funding. At DHMC, this was done by the research team. The OMOP supports
normalization of data variables encoded using different terminologies and data structures and is well
known for its usefulness for clinical data.17,29 All structured data fields in this study were extracted
from each site’s OMOP instance.

We followed the Transparent Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) reporting guideline for cohort studies.30 This study was approved
by the VUMC and Dartmouth College institutional review boards under expedited review with a waiver
of informed consent. Informed consent was waived because the work could not feasibly be done with
direct informed consent, and the study represented minimal risk to the participants as determined
by the institutional review boards.

Candidate Predictors
Main effect predictors and definitions are listed in eTable 1 in the Supplement, and these included 4
demographic variables, 9 medication orders, 86 administration variables, 9 composite score
variables, and 33 laboratory tests. Variables were defined using ICD-9-CM, ICD-10-CM, Current
Procedural Terminology, and Healthcare Common Procedure Coding System codes, and translated
to SNOMED-CT using the Unified Medical Language System crosswalk, where the crosswalks existed,
to query the OMOP tables. To more fairly compare the parametric methods, which cannot
automatically evaluate interaction terms and nonlinear variable representations in the way that the
nonparametric methods can, we evaluated first-order interaction terms using forward and backward
step logistic regression, with α = .10 as a threshold for retention of the interaction term variable. A
full list of variable candidate predictors is available in eTable 8 in the Supplement. All candidate
predictors generated at VUMC were replicated at DHMC.

Outcome
The main outcome of interest was 30-day hospital readmission. Using the Centers for Medicare &
Medicaid Services definition, readmission was defined to be a subsequent stay in the hospital for
observation or an acute inpatient stay within 30 days from the index AMI discharge, and excluding
rehabilitation admissions, nursing home admissions, or scheduled admissions for surgeries or
procedures. The dates and causes for readmission were derived from each hospital’s administrative
databases, including the admitting hospital’s state and surrounding state inpatient data sets, and
Medicare claims, ensuring complete ascertainment of 30-day readmissions. Outcome derivation was
the same at VUMC and DHMC.

Missing Values
The final analytic file contained 37 variables with missing values at VUMC and 30 at DHMC. We ad-
dressed these issues through a combination of assumptions and imputation techniques. Imputation,
when data are missing at random and isolated to the predictor variables, is necessary, and multiple impu-
tation provides robust results.31 Except for laboratory test data, clinical information was assumed to be
negative or not present when null in the EHR data. For laboratory variables, SAS, version 9.4 (SAS Insti-
tute Inc) was used to create 20 imputed data sets using Markov-chain Monte Carlo methods, assuming
all imputed variables have a multivariate normal distribution.32 Missing data were derived by drawing
from a conditional multivariate normal distribution. With sufficiently large samples, this method often
leads to reliable estimates, even if the assumption of normality is not fully met.32
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The final files at VUMC and DHMC contained a total of 241 variables, including 141 main effects,
99 second-order terms, and 1 outcome. Each site contained 20 imputed data files, with 123 260
observations at VUMC and 80 480 observations at DHMC. Having 20 data files allows for enough
uncertainty about the missing values to be confident about the variables’ influence on outcome. The
final analytic data files were imported into R, version 3.6.0 (R Foundation) for machine learning
development and execution.

Statistical Analysis
Model Development
Five machine learning models were developed and included both parametric models (elastic net
[EN], least absolute shrinkage and selection operator [LASSO], and ridge regression [RR]) and
nonparametric models (random forest [RF] and gradient boosting [GB]). Final models were selected
from the best-performing models in each method by evaluating both the default hyperparameter
settings for each model method in R, as well as a grid search on the key hyperparameter features of
each nonparametric model, using the caret package in R with 5-fold cross validation to determine
hyperparameters. The trainControl algorithm in the caret package builds a grid of possible
parameters to optimize the hyperparameters for use in the final model. All numbers listed initially
with each hyperparameter are the default values.

Hyperparameters for the parametric models included α and λ. The α hyperparameters are, by defini-
tion, fixed to 1 for LASSO and 0 for RR. Following a grid search using the caret package, α was set to 0.55
for EN. Each parametric model was assessed using both λ minimum and 1 SE from λ minimum.

Hyperparameters for RF were the number of drawn candidate variables in each split (11.87), the
sample size of observations (n), whether observations are drawn with replacement (true), node size
(1), number of trees (500), and splitting rule (Gini impurity, P value, random).33 A grid search resulted
in changing the number of trees to 1000 and the number of drawn candidate variables in each split
to 7; default values were retained for the remaining hyperparameters.

Hyperparameters for GB were the number of trees (100), interaction depth/maximum node per
tree (4), minimum number of samples in tree terminal nodes (10), the fraction of training
observations randomly selected for the subsequent tree (0.5), the train fraction (1), and learning rate
(0.01). The grid search optimized the number of trees to 7, interaction depth/maximum node per
tree (1), and shrinkage parameter (0.537).34

Before deploying each machine learning model, the final analytic data file was randomly split
into two-thirds training set and one-third testing set in each of the 20 imputed data sets. Parametric
models were developed in R, using the glmnet and caret packages.35 Nonparametric models used
RandomForest and gbm libraries.34,36

Model Assessment and Scoring
Each model was trained using 10-fold cross validation on the full training set with 5 repeats. Model
performance was determined using the full holdout test set. The area under the receiver operating
characteristic curve (AUROC), 95% CIs, and SE were calculated from the test set for each imputed
data set (1-20) for each model. The AUROC, SE, and 95% CIs were pooled across all imputed files
using Rubin indexes to generate a single metric for each distinct machine learning model. Various
thresholds for predicted probabilities were investigated. Calibration was assessed using calibration
curve belts and percentage of calibration (proportion of predictions in which the calibration belt
crossed the observed/expected 1 line) for each model on the training and testing data sets.37 We
report these calibration results for model comparisons. The pooled Brier score was then assessed,
which is a global metric that combines discrimination and calibration performance.38 The best-
performing model was defined as the model with the most observations falling within the
calibration band.39

After deployment of each model, scoring was performed using the DHMC data. The models
were scored on the full DHMC data set, using models with default and optimized hyperparameters.
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Model discrimination was assessed with pooled AUROCs and calibration was evaluated with
calibration curve belts and percentage of calibration, following the methods described with the
Model Assessment section.

Results

Among 6163 patients at VUMC, 933 (15.1%) were readmitted within 30 days, 2026 (32.9%) were female,
4137 (67.1%) were male, 1019 (16.5%) were Black or other race, and most were Hispanic. Mean (SD) age
was 67 (13) years. Among 4024 patients at DHMC, 412 (10.2%) were readmitted within 30 days, 1440
(35.8%) were female, 2584 (64.2%) were male, and most were non-Hispanic and White. Mean (SD) age
was 68 (12) years. Low cell thresholds limited specific release of race and ethnicity data. Table 1 and
eTable 2 in the Supplement present additional patient characteristics at the sites. The list of demographic
and clinical variables derived from the OMOP-transformed variables can be found in eTable 1 in the
Supplement and a full variable list is provided in eTable 8 in the Supplement.

The final features of the parametric (EN, LASSO, RR) models are shown as pooled coefficients in
eTable 3, eTable 4, and eTable 5 in the Supplement, respectively. Although parameters cannot be directly
represented in the same way for the nonparametric models (RF and GB), we included the commonly
reported features from the pooled RF and GB models (eTable 6 and eTable 7 in the Supplement).

For the parametric models EN, LASSO, and RR, the testing sets’ AUROC level was between
0.686 and 0.695, and for the nonparametric models, the testing sets’ AUROC level was from 0.686
for RF to 0.704 for GB (Table 2). The best-performing EN, LASSO, RR, and GB models occurred with
default hyperparameters, and the best-performing RF models occurred with optimized
hyperparameters. Among the external validation cohort, the best-performing parametric and
nonparametric models occurred with optimized hyperparameters. The AUROC for parametric
models was between 0.558 to 0.655 and, for the nonparametric models, the AUROC was between
0.606 and 0.608 (Table 2).

For calibration assessments on VUMC testing data, the best-performing model was LASSO,
which had the highest percentage of calibrated observations (31.64%), followed closely by EN
(30.24%), with both using default hyperparameters (Figure 1). The model with the highest
percentage of calibration among the external validation cohort was LASSO (17.0%) using optimized
hyperparameters. Figure 2 illustrates the calibration curves for the best-performing LASSO models
within both cohorts. Additional calibration curves for the other 4 models can be found in eFigure 1
and eFigure 2 in the Supplement. For VUMC, multiple thresholds were tested for sensitivity,
specificity, positive predictive value, negative predictive value, and the F1 score for the best-
performing LASSO model (Table 3). Predictors that were repeatedly among the strongest in the
models were discharge location, age, hospital score, hemoglobin level, and troponin level.

Discussion

In this study, we developed EHR-derived machine learning risk prediction models that performed
better than previously published models in the derivation site while retaining good
calibration.22,40-42 Moreover, we externally validated the machine learning risk models at an
independent site, highlighting challenges in retaining adequate calibration at nonderivation sites. We
chose LASSO as the model with the best fit owing to several factors, because the AUROCs were not
statistically significantly different, and we primarily targeted calibration plots’ proximity to the
diagonal fit line. Among the options, our selection of LASSO as the optimal model may seem
counterintuitive because it did not offer the highest AUROC, but it appears to represent a balanced
prioritization between discrimination and calibration performance. Our hope is that robust
calibration assessment becomes the norm for risk model development.39 Discrimination metrics
among the external validation cohort were poor for LASSO and RR models; however, EN, RF, and GB
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models experienced less discrimination decline. However, calibration was very poor for RR, RF, and
GB models, which suggests overfitting to the derivation data.

Previous studies have highlighted the need for ongoing surveillance and updating of these
models during their use, as there are systematic data collection differences between sites and clinical
practice drift over time.15,43 Although external validation is an important metric for risk models, this
study highlights that even when developed using a common data model to align data definitions and,
in the same time period, a model derivation, portability to other sites can be compromised. It is likely
that almost all models will require adaptation to local environments and continued updating over
time to achieve clinical utility and safety.

Table 1. Characteristics for 6194 Patients Hospitalized at Vanderbilt University Medical Center With
a Primary Diagnosis of AMI Cohort

Characteristic

No. (%)

Readmission (n = 933) Nonreadmission (n = 5230)
Sex

Male 592 (63.5) 3545 (67.8)

Female 341 (36.5) 1685 (32.2)

Race

White 781 (83.7) 4363 (83.4)

Black 101 (10.8) 491 (9.4)

Other 51 (5.5) 376 (7.2)

Comorbidities

Arrhythmia 196 (21.0) 665 (12.7)

Anemia 159 (17.0) 429 (8.2)

Hypertension 357 (38.3) 1579 (30.2)

COPD 42 (4.5) 150 (2.9)

CKD 148 (15.9) 353 (6.7)

Tobacco use 58 (6.2) 246 (4.7)

Depression 64 (6.9) 217 (4.1)

CAD 96 (10.3) 527 (10.1)

CHF 197 (21.1) 598 (11.4)

Dementia 24 (2.6) 101 (1.9)

Cardiac arrest 53 (5.7) 269 (5.1)

STEMI 450 (48.2) 2651 (50.7)

During hospitalization

Heart failure 496 (53.2) 1870 (35.8)

Ischemia 159 (17.0) 600 (11.5)

History

AMI 224 (24.0) 1122 (21.5)

Peripheral vascular disease 198 (21.2) 647 (12.4)

Angina 142 (15.2) 574 (11.0)

Unstable angina 228 (24.4) 1042 (19.9)

Hypertension 476 (51.0) 2240 (42.8)

Depression 120 (12.9) 535 (10.2)

Discharge location

Home 729 (78.1) 4670 (89.3)

Health facility 204 (21.9) 560 (10.7)

Continuous scores, mean (SD)

Age, y 67.78 (13.05) 63.22 (12.99)

LACE scorea 5.71 (2.36) 4.67 (2.00)

GRACE scoreb 141.06 (33.3) 129.55 (33.19)

HOSPITAL scorec 3.41 (1.64) 2.63 (1.58)

Charlson Deyo score 1.19 (1.86) 0.75 (1.86)

Length of stay, d 7.47 (5.64) 5.67 (5.06)

Abbreviations: AMI, acute myocardial infarction; CAD,
coronary artery disease; CHF, congestive heart failure;
CKD, chronic kidney disease; COPD, chronic
obstructive pulmonary disease; STEMI, ST-elevation
myocardial infarction.
a LACE indicates length of stay, acuity of the

admission, comorbidity of the patient (measured
with the Charlson comorbidity index score), and
emergency department use (measured as the
number of visits in the 6 months before admission).
Possible score range is 1 to 19.

b GRACE indicates Global Registry of Acute Coronary
Events; possible score is 1 to 372 points.

c HOSPITAL indicates hemoglobin level at discharge,
discharge from an oncology service, sodium level at
discharge, procedure during the index admission,
index type of admission, number of admissions
during the past 12 months, and length of stay.
Possible score range is 0 to 13.
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Several publications have assessed all-cause readmissions after cardiovascular events,40,44,45

but few are specific to AMI41,46-49 and, to our knowledge, none of the AMI literature has compared
machine learning models derived from automated EHR-mapped risk factors. Dodson and
colleagues48 recently published SILVER-AMI, an ensemble model trained and tested in 3006
patients with AMI with a C statistic of 0.63 in the validation population. In a systematic review, Smith
et al41 identified 11 studies covering 16 different readmission models (median C statistic, 0.65; range,
0.53-0.79). Of these 16 models, half used validation in the form of a split cohort or bootstrapping,
and only 1 model was validated more broadly on a separate cohort. The C statistic in the study by
Meddings et al40 was 0.79, but the model derivation sample size was small (n = 833). In READMITS,
Nguyen et al46 studied 30-day readmission for 876 patients using backward-step parameter
selection and 5-fold cross validation; the resulting model discrimination was 0.75. Hebert and
colleagues45 developed an AMI-specific model initially reporting an AUROC value of 0.76. When
validated with a historical cohort for 2 years of retrospective data, however, the validation dropped
to 0.66. A test of an augmented Centers for Medicare & Medicaid Services model to predict events
after AMI from the TRACE-CORE cohort reported C statistics from 0.62 to 0.65 but was poorly
calibrated.45

Concurrent comparison of calibration with discrimination is necessary. Previous literature
establishes that discrimination is relatively stable and reliable during model development and
validation. However, calibration drifts quickly over time,50 and model calibration varies highly by
feature availability and sample size even in initial model derivation, within ranges that appear
insensitive to AUC performance.15 For this reason, it is hard to compare earlier developed models that
do not include calibration metrics.

We have extended earlier studies in this domain by comparing a variety of risk models and
candidate variable pools.41,46,47 The underlying assumptions differ among models and vary between

Table 2. Pooled AUROC for Train/Test on VUMC and Scored DHMC Machine Learning Models With
Pooled 95% CIs

Model name

VUMC

DHMC, validationTrain Test
Elastic net 0.732 (0.709-0.755) 0.695 (0.646-0.745) 0.655 (0.555-0.760)

LASSO 0.731 (0.708-0.755) 0.695 (0.645-0.744) 0.595 (0.452-0.738)

Ridge regression 0.735 (0.708-0.719) 0.686 (0.713-0.757) 0.558 (0.462-0.654)

Random forest 0.695 (0.671-0.719) 0.686 (0.632-0.741) 0.608 (0.569-0.648)

Gradient boosting 0.731 (0.710 0.753) 0.704 (0.650-0.759) 0.606 (0.540-0.671)

Abbreviations: AUROC, area under the receiver
operating characteristic curve; DHMC, Dartmouth-
Hitchcock Medical Center; LASSO, least absolute
shrinkage and selection operator; VUMC, Vanderbilt
University Medical Center.

Figure 1. Percentage Calibrated for Train/Test on Vanderbilt University Medical Center (VUMC)
and Scored on Dartmouth-Hitchcock Medical Center (DHMC) Machine Learning Models
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parametric and nonparametric. This type of robust comparison has seen recent use in predictive
modeling but is not yet widely practiced.15

Limitations
There are several limitations to this study. There were data quality limitations at the external
validation site, such that candidate predictor variables that were available at VUMC could not be
populated at DHMC. This factor limited the number of available candidate predictors for the VUMC

Figure 2. Calibration Curve Belts Fitted From Fitted and Predicted Values for the Final Least Absolute Shrinkage and Selection Operator (LASSO) Model
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LASSO training (A) and test (B) sets for Vanderbilt University Medical Center (VUMC),
with models scored at Dartmouth-Hitchcock Medical Center (DHMC) (C). The diagonal
line represents an observed/expected (O/E) slope of 1.0. The shaded area is the area

within the CI of the fitted calibration curve for the O/E ratio across the range of predicted
probabilities.

Table 3. Performance Metrics (Thresholds 0.1-0.5) on the Testing Data for Final VUMC LASSO Model

Threshold Sensitivity Specificity PPV NPV F1
0.1 0.675 0.338 0.154 0.853 0.250

0.15 0.410 0.625 0.163 0.856 0.223

0.2 0.252 0.784 0.171 0.855 0.204

0.25 0.156 0.875 0.180 0.854 0.166

0.3 0.089 0.930 0.182 0.852 0.119

0.35 0.049 0.962 0.186 0.851 0.078

0.4 0.029 0.980 0.199 0.850 0.050

0.45 0.017 0.989 0.199 0.850 0.035

0.5 0.010 0.994 0.232 0.850 0.026

Abbreviations: LASSO, least absolute shrinkage and
selection operator; VUMC, Vanderbilt University
Medical Center.
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models, which affected their performance and thus the quality of available variables at DHMC,
thereby also affecting the model scoring performance. Despite the use of a common data model,
standardized variable definitions, and code sharing, nuances in local EHR mappings limited the
availability of data at the external validation site. Focus on methods to establish enhanced data
interoperability across sites may be warranted in future studies.

In addition, there are limitations to deploying this model in clinical practice. In the absence of
significant data quality differences across sites, the use of rigorous EHR-mapped variables using
OMOP Common Data Model can incorporate EHR-structured variables into an automated risk
prediction toolkit. Multiple imputation was used for missing variables, and this feature may be
unavailable in a real-time production environment; thus, an alternative strategy of simple imputation
might be needed. In addition, implementation of any model in clinical practice would require
surveillance and potential recalibration to the local environment.

Conclusions

In this study, we developed and externally validated an EHR-derived readmission risk prediction
model for use among patients hospitalized for AMI. We developed the models within a framework for
comparison of candidate modeling methods and selected the method that maintained a balance
between calibration and discrimination among the candidates. This model development framework
can assist in selecting a model for deployment within an EHR environment to support prioritization
of limited resources for reducing the likelihood of readmission among these patients.

ARTICLE INFORMATION
Accepted for Publication: December 9, 2020.

Published: January 29, 2021. doi:10.1001/jamanetworkopen.2020.35782

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Matheny ME
et al. JAMA Network Open.

Corresponding Author: Jeremiah R. Brown, PhD, Dartmouth-Hitchcock Medical Center, One Medical Center
Drive, Williamson Translational Research Building, Level 6, Lebanon, NH 03756 (jeremiah.r.brown@
dartmouth.edu).

Author Affiliations: Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville,
Tennessee (Matheny, Dorn, Denton); Deparment of Biostatistics, Vanderbilt University Medical Center, Nashville,
Tennessee (Matheny, Perkins); Division of General Internal Medicine, Vanderbilt University Medical Center,
Nashville, Tennessee (Matheny); Geriatric Research Education and Clinical Care Center, Tennessee Valley
Healthcare System VA, Nashville (Matheny, Perkins); Departments of Epidemiology and Biomedical Data Science,
Dartmouth Geisel School of Medicine, Hanover, New Hampshire (Ricket, Goodrich, Stabler, Higgins, MacKenzie,
Brown); Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City (Shah, Bray);
Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City (Bray, Gouripeddi,
Chapman); Centre for Clinical and Public Health Informatics, University of Melbourne, Melbourne, Victoria,
Australia (Chapman).

Author Contributions: Dr Matheny had full access to the Vanderbilt University Medical Center data and Dr Brown
had full access to the Dartmouth-Hitchcock Medical Center data, and together they take responsibility for the
integrity of the data and the accuracy of the data analysis. Drs Matheny and Ricket served as co–first authors.

Concept and design: Matheny, Ricket, Bray, Gouripeddi, Chapman, Brown.

Acquisition, analysis, or interpretation of data: Matheny, Ricket, Goodrich, Shah, Stabler, Perkins, Dorn, Denton,
Bray, Higgins, Chapman, MacKenzie, Brown.

Drafting of the manuscript: Matheny, Ricket, Goodrich, Brown.

Critical revision of the manuscript for important intellectual content: Matheny, Shah, Stabler, Perkins, Dorn, Denton,
Bray, Gouripeddi, Higgins, Chapman, MacKenzie, Brown.

Statistical analysis: Matheny, Ricket, Goodrich, Stabler, Perkins, MacKenzie, Brown.

Obtained funding: Matheny, Chapman, Brown.

JAMA Network Open | Cardiology Electronic Health Record–Based Models for Readmission Risk After Myocardial Infarction

JAMA Network Open. 2021;4(1):e2035782. doi:10.1001/jamanetworkopen.2020.35782 (Reprinted) January 29, 2021 9/12

Downloaded From: https://jamanetwork.com/ on 07/19/2021

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.35782&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.35782
https://jamanetwork.com/pages/cc-by-license-permissions/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.35782
mailto:jeremiah.r.brown@dartmouth.edu
mailto:jeremiah.r.brown@dartmouth.edu


Administrative, technical, or material support: Ricket, Goodrich, Dorn, Denton, Bray, Gouripeddi, Higgins,
Chapman, Brown.

Supervision: Matheny, Shah, Chapman, MacKenzie, Brown.

Conflict of Interest Disclosures: Dr Matheny reported receiving grants from the National Institutes of Health
(NIH) National Heart, Lung, and Blood Institute (NHLBI) during the conduct of the study. Dr Shah reported
receiving grants from the NIH/NHLBI, personal fees from the American College of Cardiology, and other from
Women As One outside the submitted work. Dr Stabler reported receiving grants from the NIH during the conduct
of the study. Dr Dorn reported receiving grants from the NIH during the conduct of the study. Dr Bray reported
receiving grants from the NIH during the conduct of the study. Dr Chapman reported receiving grants from NIH
during the conduct of the study, personal fees from IBM consultancy, and nonfinancial support from the Health
Fidelity scientific board outside the submitted work. No other disclosures were reported.

Funding/Support: This study was supported by NHLBI grant R01HL130828 (principal investigators: Drs Matheny,
Chapman, and Brown). Dr Shah is supported in part by grant K08HL136850 from the NHLBI.

Role of the Funder/Sponsor: The NHLBI had no role in the design and conduct of the study; collection,
management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and
decision to submit the manuscript for publication.

Additional Contributions: Sharon Davis, PhD (Department of Biomedical Informatics, Vanderbilt University
Medical Center), allowed the analytic team to reuse some of her statistical programming for use in this study that
was developed for another publication.15

REFERENCES
1. Mozaffarian D, Benjamin EJ, Go AS, et al; American Heart Association Statistics Committee and Stroke Statistics
Subcommittee. Heart disease and stroke statistics—2015 update: a report from the American Heart Association.
Circulation. 2015;131(4):e29-e322. doi:10.1161/CIR.0000000000000152

2. Medicare Payment Advisory Commission. Report to the Congress: Medicare and the health care delivery
system. Published June 2013. Accessed December 18, 2020. http://medpac.gov/docs/default-source/reports/jun13_
entirereport.pdf

3. Benjamin EJ, Muntner P, Alonso A, et al; American Heart Association Council on Epidemiology and Prevention
Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2019 update:
a report from the American Heart Association. Circulation. 2019;139(10):e56-e528. doi:10.1161/CIR.
0000000000000659

4. Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical
patients: derivation and validation of a prediction model. JAMA Intern Med. 2013;173(8):632-638. doi:10.1001/
jamainternmed.2013.3023

5. Rana S, Tran T, Luo W, Phung D, Kennedy RL, Venkatesh S. Predicting unplanned readmission after myocardial
infarction from routinely collected administrative hospital data. Aust Health Rev. 2014;38(4):377-382. doi:10.1071/
AH14059

6. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service
program. N Engl J Med. 2009;360(14):1418-1428. doi:10.1056/NEJMsa0803563

7. Centers for Medicare & Medicaid Services. Hospital Readmissions Reduction Program (HRRP). Published 2013.
Accessed December 18, 2020. http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/
AcuteInpatientPPS/Readmissions-Reduction-Program.html

8. Angelelli J, Gifford D, Intrator O, Gozalo P, Laliberte L, Mor V. Access to postacute nursing home care before and
after the BBA. Health Aff (Millwood). 2002;21(5):254-264. doi:10.1377/hlthaff.21.5.254

9. Gerhardt G, Yemane A, Apostle K, Oelschlaeger A, Rollins E, Brennan N. Evaluating whether changes in
utilization of hospital outpatient services contributed to lower Medicare readmission rate. Medicare Medicaid Res
Rev. 2014;4(1):mmrr2014.004.01.b03. doi:10.5600/mmrr.004.01.b03

10. Au AG, McAlister FA, Bakal JA, Ezekowitz J, Kaul P, van Walraven C. Predicting the risk of unplanned
readmission or death within 30 days of discharge after a heart failure hospitalization. Am Heart J. 2012;164(3):
365-372. doi:10.1016/j.ahj.2012.06.010

11. Choudhry SA, Li J, Davis D, Erdmann C, Sikka R, Sutariya B. A public-private partnership develops and externally
validates a 30-day hospital readmission risk prediction model. Online J Public Health Inform. 2013;5(2):219. doi:10.
5210/ojphi.v5i2.4726

12. Amarasingham R, Audet AM, Bates DW, et al. Consensus statement on electronic health predictive analytics:
a guiding framework to address challenges. EGEMS (Wash DC). 2016;4(1):1163. doi:10.13063/2327-9214.1163

JAMA Network Open | Cardiology Electronic Health Record–Based Models for Readmission Risk After Myocardial Infarction

JAMA Network Open. 2021;4(1):e2035782. doi:10.1001/jamanetworkopen.2020.35782 (Reprinted) January 29, 2021 10/12

Downloaded From: https://jamanetwork.com/ on 07/19/2021

https://dx.doi.org/10.1161/CIR.0000000000000152
http://medpac.gov/docs/default-source/reports/jun13_entirereport.pdf
http://medpac.gov/docs/default-source/reports/jun13_entirereport.pdf
https://dx.doi.org/10.1161/CIR.0000000000000659
https://dx.doi.org/10.1161/CIR.0000000000000659
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamainternmed.2013.3023&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.35782
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamainternmed.2013.3023&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.35782
https://dx.doi.org/10.1071/AH14059
https://dx.doi.org/10.1071/AH14059
https://dx.doi.org/10.1056/NEJMsa0803563
http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html
http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html
https://dx.doi.org/10.1377/hlthaff.21.5.254
https://dx.doi.org/10.5600/mmrr.004.01.b03
https://dx.doi.org/10.1016/j.ahj.2012.06.010
https://dx.doi.org/10.5210/ojphi.v5i2.4726
https://dx.doi.org/10.5210/ojphi.v5i2.4726
https://dx.doi.org/10.13063/2327-9214.1163


13. Cholleti S, Post A, Gao J, et al. Leveraging derived data elements in data analytic models for understanding and
predicting hospital readmissions. AMIA Annu Symp Proc. 2012;2012:103-111.

14. Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling
reuse for clinical research. J Am Med Inform Assoc. 2013;20(1):144-151. doi:10.1136/amiajnl-2011-000681

15. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in regression and machine learning models
for acute kidney injury. J Am Med Inform Assoc. 2017;24(6):1052-1061. doi:10.1093/jamia/ocx030

16. Rosenbloom ST, Carroll RJ, Warner JL, Matheny ME, Denny JC. Representing knowledge consistently across
health systems. Yearb Med Inform. 2017;26(1):139-147. doi:10.15265/IY-2017-018

17. FitzHenry F, Resnic FS, Robbins SL, et al. Creating a common data model for comparative effectiveness with
the observational medical outcomes partnership. Appl Clin Inform. 2015;6(3):536-547. doi:10.4338/ACI-2014-12-
CR-0121

18. Keenan PS, Normand SL, Lin Z, et al. An administrative claims measure suitable for profiling hospital
performance on the basis of 30-day all-cause readmission rates among patients with heart failure. Circ Cardiovasc
Qual Outcomes. 2008;1(1):29-37. doi:10.1161/CIRCOUTCOMES.108.802686

19. Hannan EL, Zhong Y, Krumholz H, et al. 30-Day readmission for patients undergoing percutaneous coronary
interventions in New York state. JACC Cardiovasc Interv. 2011;4(12):1335-1342. doi:10.1016/j.jcin.2011.08.013

20. Yeh RW, Rosenfield K, Zelevinsky K, et al. Sources of hospital variation in short-term readmission rates after
percutaneous coronary intervention. Circ Cardiovasc Interv. 2012;5(2):227-236. doi:10.1161/CIRCINTERVENTIONS.
111.967638

21. Khawaja FJ, Shah ND, Lennon RJ, et al. Factors associated with 30-day readmission rates after percutaneous
coronary intervention. Arch Intern Med. 2012;172(2):112-117. doi:10.1001/archinternmed.2011.569

22. Krumholz HM, Lin Z, Drye EE, et al. An administrative claims measure suitable for profiling hospital
performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction. Circ
Cardiovasc Qual Outcomes. 2011;4(2):243-252. doi:10.1161/CIRCOUTCOMES.110.957498

23. Shmueli G, Koppius OR. Predictive analytics in information systems research. Manage Inf Syst Q. 2011;35(3):
553-572. doi:10.2307/23042796

24. Cronin PR, Greenwald JL, Crevensten GC, Chueh HC, Zai AH. Development and implementation of a real-time
30-day readmission predictive model. AMIA Annu Symp Proc. 2014;2014:424-431.

25. Watson AJ, O’Rourke J, Jethwani K, et al. Linking electronic health record-extracted psychosocial data in real-
time to risk of readmission for heart failure. Psychosomatics. 2011;52(4):319-327. doi:10.1016/j.psym.2011.02.007

26. Centers for Medicare & Medicaid Services. MEDPAR Limited Data Set (LDS). Published 2019. Accessed
December 18, 2020. https://www.cms.gov/Research-Statistics-Data-and-Systems/Files-for-Order/
LimitedDataSets/MEDPARLDSHospitalNational.html

27. Giuse DA. Supporting communication in an integrated patient record system. AMIA Annu Symp Proc. 2003;
2003:1065.

28. Giuse NB, Williams AM, Giuse DA. Integrating best evidence into patient care: a process facilitated by a
seamless integration with informatics tools. J Med Libr Assoc. 2010;98(3):220-222. doi:10.3163/1536-5050.
98.3.009

29. Garza M, Del Fiol G, Tenenbaum J, Walden A, Zozus MN. Evaluating common data models for use with a
longitudinal community registry. J Biomed Inform. 2016;64:333-341. doi:10.1016/j.jbi.2016.10.016

30. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. doi:10.1136/bmj.g7594

31. Pedersen AB, Mikkelsen EM, Cronin-Fenton D, et al. Missing data and multiple imputation in clinical
epidemiological research. Clin Epidemiol. 2017;9:157-166. doi:10.2147/CLEP.S129785

32. Yuan YC. Multiple imputation for missing data: concepts and new development. Published 2000. Accessed
December 18, 2020. https://connect.ssri.duke.edu/sites/connect.ssri.duke.edu/files/upload/help-resource/
multipleimputation%20missing%20data%20-%20sas.pdf

33. Probst P, Wright MN, Boulesteix AL. Hyperparameters and tuning strategies for random forest. WIRES Data:
Data Mining and Knowledge Discovery. 2019;9(3):e1301. doi:10.1002/widm.1301

34. Ridgeway G. Generalized boosted models: a guide to the gbm package. Accessed December 18, 2020. https://
cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf

35. Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1-26. doi:10.18637/
jss.v028.i05

JAMA Network Open | Cardiology Electronic Health Record–Based Models for Readmission Risk After Myocardial Infarction

JAMA Network Open. 2021;4(1):e2035782. doi:10.1001/jamanetworkopen.2020.35782 (Reprinted) January 29, 2021 11/12

Downloaded From: https://jamanetwork.com/ on 07/19/2021

https://www.ncbi.nlm.nih.gov/pubmed/23304278
https://dx.doi.org/10.1136/amiajnl-2011-000681
https://dx.doi.org/10.1093/jamia/ocx030
https://dx.doi.org/10.15265/IY-2017-018
https://dx.doi.org/10.4338/ACI-2014-12-CR-0121
https://dx.doi.org/10.4338/ACI-2014-12-CR-0121
https://dx.doi.org/10.1161/CIRCOUTCOMES.108.802686
https://dx.doi.org/10.1016/j.jcin.2011.08.013
https://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.967638
https://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.967638
https://jama.jamanetwork.com/article.aspx?doi=10.1001/archinternmed.2011.569&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.35782
https://dx.doi.org/10.1161/CIRCOUTCOMES.110.957498
https://dx.doi.org/10.2307/23042796
https://www.ncbi.nlm.nih.gov/pubmed/25954346
https://dx.doi.org/10.1016/j.psym.2011.02.007
https://www.cms.gov/Research-Statistics-Data-and-Systems/Files-for-Order/LimitedDataSets/MEDPARLDSHospitalNational.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Files-for-Order/LimitedDataSets/MEDPARLDSHospitalNational.html
https://www.ncbi.nlm.nih.gov/pubmed/14728568
https://www.ncbi.nlm.nih.gov/pubmed/14728568
https://dx.doi.org/10.3163/1536-5050.98.3.009
https://dx.doi.org/10.3163/1536-5050.98.3.009
https://dx.doi.org/10.1016/j.jbi.2016.10.016
https://dx.doi.org/10.1136/bmj.g7594
https://dx.doi.org/10.2147/CLEP.S129785
https://connect.ssri.duke.edu/sites/connect.ssri.duke.edu/files/upload/help-resource/multipleimputation%20missing%20data%20-%20sas.pdf
https://connect.ssri.duke.edu/sites/connect.ssri.duke.edu/files/upload/help-resource/multipleimputation%20missing%20data%20-%20sas.pdf
https://dx.doi.org/10.1002/widm.1301
https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf
https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf
https://dx.doi.org/10.18637/jss.v028.i05
https://dx.doi.org/10.18637/jss.v028.i05


36. Liaw A, Wiener M. Classification and regression by RandomForest. R News. Published November 2001.
Accessed December 20, 2020. https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf

37. Nattino G, Finazzi S, Bertolini G. A new calibration test and a reappraisal of the calibration belt for the
assessment of prediction models based on dichotomous outcomes. Stat Med. 2014;33(14):2390-2407. doi:10.
1002/sim.6100

38. Gerds TA, van de Wiel MA. Confidence scores for prediction models. Biom J. 2011;53(2):259-274. doi:10.1002/
bimj.201000157

39. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for
traditional and novel measures. Epidemiology. 2010;21(1):128-138. doi:10.1097/EDE.0b013e3181c30fb2

40. Meddings J, Reichert H, Smith SN, et al. The impact of disability and social determinants of health on
condition-specific readmissions beyond Medicare risk adjustments: a cohort study. J Gen Intern Med. 2017;32
(1):71-80. doi:10.1007/s11606-016-3869-x

41. Smith LN, Makam AN, Darden D, et al. Acute myocardial infarction readmission risk prediction models:
a systematic review of model performance. Circ Cardiovasc Qual Outcomes. 2018;11(1):e003885. doi:10.1161/
CIRCOUTCOMES.117.003885

42. McManus DD, Saczynski JS, Lessard D, et al; TRACE-CORE Investigators. TRACE-CORE Investigators.
Reliability of predicting early hospital readmission after discharge for an acute coronary syndrome using claims-
based data. Am J Cardiol. 2016;117(4):501-507. doi:10.1016/j.amjcard.2015.11.034

43. Davis SE, Greevy RA, Fonnesbeck C, Lasko TA, Walsh CG, Matheny ME. A nonparametric updating method to
correct clinical prediction model drift. J Am Med Inform Assoc. 2019;26(12):1448-1457. doi:10.1093/jamia/ocz127

44. Artetxe A, Beristain A, Graña M. Predictive models for hospital readmission risk: a systematic review of
methods. Comput Methods Programs Biomed. 2018;164:49-64. doi:10.1016/j.cmpb.2018.06.006

45. Hebert C, Shivade C, Foraker R, et al. Diagnosis-specific readmission risk prediction using electronic health
data: a retrospective cohort study. BMC Med Inform Decis Mak. 2014;14:65. Published online August 4, 2014. doi:
10.1186/1472-6947-14-65

46. Nguyen OK, Makam AN, Clark C, Zhang S, Das SR, Halm EA. Predicting 30-day hospital readmissions in acute
myocardial infarction: the AMI “READMITS” (renal function, elevated brain natriuretic peptide, age, diabetes
mellitus, nonmale sex, intervention with timely percutaneous coronary intervention, and low systolic blood
pressure) score. J Am Heart Assoc. 2018;7(8):e008882. doi:10.1161/JAHA.118.008882

47. Burke RE, Schnipper JL, Williams MV, et al. The HOSPITAL score predicts potentially preventable 30-day
readmissions in conditions targeted by the hospital readmissions reduction program. Med Care. 2017;55(3):
285-290. doi:10.1097/MLR.0000000000000665

48. Dodson JA, Hajduk AM, Murphy TE, et al. Thirty-day readmission risk model for older adults hospitalized with
acute myocardial infarction. Circ Cardiovasc Qual Outcomes. 2019;12(5):e005320. doi:10.1161/CIRCOUTCOMES.
118.005320

49. Wasfy JH, Singal G, O’Brien C, et al. Enhancing the prediction of 30-day readmission after percutaneous
coronary intervention using data extracted by querying of the electronic health record. Circ Cardiovasc Qual
Outcomes. 2015;8(5):477-485. doi:10.1161/CIRCOUTCOMES.115.001855

50. Minne L, Eslami S, de Keizer N, de Jonge E, de Rooij SE, Abu-Hanna A. Effect of changes over time in the
performance of a customized SAPS-II model on the quality of care assessment. Intensive Care Med. 2012;38
(1):40-46. doi:10.1007/s00134-011-2390-2

SUPPLEMENT.
eTable 1. Possible ML Variables
eTable 2. Patient Characteristics for 4024 Patients Hospitalized at Dartmouth-Hitchcock Medical Center With a
Primary Diagnosis of Acute Myocardial Infarction AMI Cohort
eFigure 1. Calibration Curves for Final VUMC Models
eFigure 2. Calibration Curves for Final DHMC Models
eTable 3. Final Elastic Net Model Parameter Coefficients for VUMC
eTable 4. Final LASSO Model Parameter Coefficients for VUMC
eTable 5. Final Ridge Regression Model Parameter Coefficients for VUMC
eTable 6. Pooled Variable Importance Results of Final Random Forest Model for VUMC
eTable 7. Pooled Relative Influence Values from Final Gradient Boosting Model for VUMC
eTable 8. Full Variable List Value Set Definitions

JAMA Network Open | Cardiology Electronic Health Record–Based Models for Readmission Risk After Myocardial Infarction

JAMA Network Open. 2021;4(1):e2035782. doi:10.1001/jamanetworkopen.2020.35782 (Reprinted) January 29, 2021 12/12

Downloaded From: https://jamanetwork.com/ on 07/19/2021

https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf
https://dx.doi.org/10.1002/sim.6100
https://dx.doi.org/10.1002/sim.6100
https://dx.doi.org/10.1002/bimj.201000157
https://dx.doi.org/10.1002/bimj.201000157
https://dx.doi.org/10.1097/EDE.0b013e3181c30fb2
https://dx.doi.org/10.1007/s11606-016-3869-x
https://dx.doi.org/10.1161/CIRCOUTCOMES.117.003885
https://dx.doi.org/10.1161/CIRCOUTCOMES.117.003885
https://dx.doi.org/10.1016/j.amjcard.2015.11.034
https://dx.doi.org/10.1093/jamia/ocz127
https://dx.doi.org/10.1016/j.cmpb.2018.06.006
https://dx.doi.org/10.1186/1472-6947-14-65
https://dx.doi.org/10.1161/JAHA.118.008882
https://dx.doi.org/10.1097/MLR.0000000000000665
https://dx.doi.org/10.1161/CIRCOUTCOMES.118.005320
https://dx.doi.org/10.1161/CIRCOUTCOMES.118.005320
https://dx.doi.org/10.1161/CIRCOUTCOMES.115.001855
https://dx.doi.org/10.1007/s00134-011-2390-2


Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Matheny, ME;Ricket, I;Goodrich, CA;Shah, RU;Stabler, ME;Perkins, AM;Dorn, C;Denton,
J;Bray, BE;Gouripeddi, R;Higgins, J;Chapman, WW;MacKenzie, TA;Brown, JR

Title:
Development of Electronic Health Record-Based Prediction Models for 30-Day Readmission
Risk Among Patients Hospitalized for Acute Myocardial Infarction

Date:
2021-01-29

Citation:
Matheny, M. E., Ricket, I., Goodrich, C. A., Shah, R. U., Stabler, M. E., Perkins, A. M., Dorn,
C., Denton, J., Bray, B. E., Gouripeddi, R., Higgins, J., Chapman, W. W., MacKenzie, T. A.
& Brown, J. R. (2021). Development of Electronic Health Record-Based Prediction Models
for 30-Day Readmission Risk Among Patients Hospitalized for Acute Myocardial Infarction.
JAMA NETWORK OPEN, 4 (1), https://doi.org/10.1001/jamanetworkopen.2020.35782.

Persistent Link:
http://hdl.handle.net/11343/280233

License:
CC BY

http://hdl.handle.net/11343/280233
CC%20BY

