Centre for Eye Research Australia (CERA) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    No Preview Available
    The genetic and clinical landscape of nanophthalmos and posterior microphthalmos in an Australian cohort
    Siggs, OM ; Awadalla, MS ; Souzeau, E ; Staffieri, SE ; Kearns, LS ; Laurie, K ; Kuot, A ; Qassim, A ; Edwards, TL ; Coote, MA ; Mancel, E ; Walland, MJ ; Dondey, J ; Galanopoulous, A ; Casson, RJ ; Mills, RA ; MacArthur, DG ; Ruddle, JB ; Burdon, KP ; Craig, JE (WILEY, 2020-05)
    Nanophthalmos and posterior microphthalmos are ocular abnormalities in which both eyes are abnormally small, and typically associated with extreme hyperopia. We recruited 40 individuals from 13 kindreds with nanophthalmos or posterior microphthalmos, with 12 probands subjected to exome sequencing. Nine probands (69.2%) were assigned a genetic diagnosis, with variants in MYRF, TMEM98, MFRP, and PRSS56. Two of four PRSS56 families harbored the previously described c.1066dupC variant implicated in over half of all reported PRSS56 kindreds, with different surrounding haplotypes in each family suggesting a mutational hotspot. Individuals with a genetic diagnosis had shorter mean axial lengths and higher hyperopia than those without, with recessive forms associated with the most extreme phenotypes. These findings detail the genetic architecture of nanophthalmos and posterior microphthalmos in a cohort of predominantly European ancestry, their relative clinical phenotypes, and highlight the shared genetic architecture of rare and common disorders of refractive error.
  • Item
    Thumbnail Image
    Highest reported visual acuity after electronic retinal implantation
    Kapetanovic, JC ; Troelenberg, N ; Edwards, TL ; Xue, K ; Ramsden, JD ; Stett, A ; Zrenner, E ; MacLaren, RE (WILEY, 2020-11)
    PURPOSE: To report the highest attained visual acuity with an electronic retinal implant for the treatment of advanced retinal degeneration following a novel intensive period of visual training. METHODS: A case study as part of the prospective, international, multi-centre, interventional clinical trial (ClinicalTrials.gov NCT02720640 and NCT01024803) of patients with the Retina Implant Alpha AMS (Retina Implant AG, Reutlingen, Germany) for advanced retinal degeneration. A patient with subretinal device implanted into worse-seeing eye with no useful perception of light vision secondary to USH2A retinal degeneration underwent intensive period of visual training. RESULTS: The device remains functional with no safety concerns at 3 years postsurgical implantation, and following visual training, the patient achieved the highest visual acuity so far with an electronic retinal device, with real, digitally unenhanced, reading vision of 0.04 decimal (equivalent to 1.39 LogMAR and 20/500 or 6/150 Snellen). In addition, perception as well as partial identification of obstacles and evaluation of distances was possible in both daylight and night-time settings. CONCLUSIONS: Retinal implants are currently the only available therapy option for advanced retinal degeneration. Visual rehabilitation postimplantation has potential to maximize visual percepts. The novel concept of intensive visual training presented herein shows what is achievable with electronic retinal implants and has implications for other therapeutic options, such as optogenetics, that aim to stimulate remaining inner retinal cells in advanced retinal degeneration.
  • Item
    Thumbnail Image
    Endogenous spartin (SPG20) is recruited to endosomes and lipid droplets and interacts with the ubiquitin E3 ligases AIP4 and AIP5
    Edwards, TL ; Clowes, VE ; Tsang, HTH ; Connell, JW ; Sanderson, CM ; Luzio, JP ; Reid, E (PORTLAND PRESS LTD, 2009-10-01)
    The HSPs (hereditary spastic paraplegias) are genetic conditions in which there is distal degeneration of the longest axons of the corticospinal tract, resulting in spastic paralysis of the legs. The gene encoding spartin is mutated in Troyer syndrome, an HSP in which paralysis is accompanied by additional clinical features. There has been controversy over the subcellular distribution of spartin. We show here that, at steady state, endogenous spartin exists in a cytosolic pool that can be recruited to endosomes and to lipid droplets. Cytosolic endogenous spartin is mono-ubiquitinated and we demonstrate that it interacts via a PPXY motif with the ubiquitin E3 ligases AIP4 [atrophin-interacting protein 4; ITCH (itchy E3 ubiquitin protein ligase homologue] [corrected] and AIP5 (WWP1). Surprisingly, the PPXY motif, AIP4 and AIP5 are not required for spartin's ubiquitination, and so we propose that spartin acts as an adaptor for these proteins. Our results suggest that spartin is involved in diverse cellular functions, which may be of relevance to the complex phenotype seen in Troyer syndrome.
  • Item
    Thumbnail Image
    The Spectrum of CHM Gene Mutations in Choroideremia and Their Relationship to Clinical Phenotype
    Simunovic, MP ; Jolly, JK ; Xue, K ; Edwards, TL ; Groppe, M ; Downes, SM ; MacLaren, RE (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2016-11)
    PURPOSE: We report the underlying genotype and explore possible genotypic-phenotypic correlations in a large cohort of choroideremia patients. METHODS: We studied prospectively a cohort of 79 patients diagnosed within a tertiary referral service for patients with retinal dystrophies. Phenotypic evaluation consisted of clinical examination, including visual acuity and residual retinal area by fundus autofluorescence (FAF). Genotype was established by sequencing. We also investigated whether particular genotypes were associated with more severe phenotypes by performing analysis of covariance (ANCOVA), with visual acuity and FAF as the dependent variables and age as the covariant. RESULTS: A total of 74 (94%) of patients in our cohort had causative mutations by sequencing, the majority of which were anticipated to be null. Of these, 35 (47%) had insertions and deletions, 13 (18%) had mutations predicted to affect splicing, and 26 (35%) had single point mutations. In the latter case, 13 of 21 (62%) pedigrees with single point mutations were C to T transitions at C-phosphate-G (CpG) dinucleotides. These mutations were spread across 5 of only 24 CpG dinucleotides in the entire CHM cDNA. Furthermore, these 5 locations are the only sites at which C to T transitions result in a stop codon. No clear evidence was found for genotype-phenotype correlation except in the instance of a patient with a large deletion involving neighbouring sequences. CONCLUSIONS: In patients with a diagnosis of choroideremia made by a specialty service, there is a high likelihood of establishing a genetic diagnosis. The majority of causative mutations appear to be null and, therefore, may benefit from gene replacement therapy. A disproportionate number of single point mutations observed were C to T transitions, consistent with the evolutionary decay of CpG dinucleotides through methylation and subsequent deamination. Hence, the development of choroideremia in such patients may represent the unwanted consequence of human evolution; de novo mutations are predicted to arise at these sites in future generations. (ClinicalTrials.gov number, NCT01461213.).
  • Item
    Thumbnail Image
    Correlation of Optical Coherence Tomography and Autofluorescence in the Outer Retina and Choroid of Patients With Choroideremia
    Xue, K ; Oldani, M ; Jolly, JK ; Edwards, TL ; Groppe, M ; Downes, SM ; MacLaren, RE (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2016-07)
    PURPOSE: To evaluate the relationships between RPE, photoreceptor, and choroidal degeneration in choroideremia. METHODS: Enhanced-depth imaging optical coherence tomography (EDI-OCT), scanning laser ophthalmoscopy (SLO), and autofluorescence (AF) were performed on 39 patients (78 eyes) with choroideremia. The edges of surviving outer retina on OCT and residual AF were aligned. The distribution of outer retinal tubulations was mapped over a range of ages (16-71 years), and comparison made between pre- and postsubretinal gene therapy. Subfoveal choroidal thickness (SFCT) was compared between 23 choroideremia patients (42 eyes) and 20 age- and refraction-matched male controls (40 eyes). RESULTS: The edges of RPE AF aligned with a reduction in outer nuclear layer thickness (Spearman's rho = 0.9992). Correlation was also found between the quality of AF and integrity of ellipsoid zone within islands of surviving retina. Tubulations existed in 71 of 78 (91%) eyes with choroideremia and remained stable following gene therapy. Subfoveal choroidal thickness was reduced at baseline in choroideremia (179.7 ± 17.2 μm) compared with controls (302.0 ± 4.8 μm; P < 0.0001), but did not undergo significant thinning until end-stage retinal degeneration (43.1 ± 6.5 μm). CONCLUSIONS: The data suggest that RPE loss is the primary cause of photoreceptor degeneration in choroideremia. The choroid is thinner than controls from early stages, in keeping with a mild developmental defect. Photoreceptors appear to lose outer segments following loss of underlying RPE and form tubulations at the edges of degeneration. The preservation of tubulations over time and after subretinal injection would be consistent with these structures maintaining attachment to the inner retina and hence being potentially light responsive (ClinicalTrials.gov, NCT01461213).
  • Item
    Thumbnail Image
    Robot-assisted vitreoretinal surgery: current perspectives.
    Roizenblatt, M ; Edwards, TL ; Gehlbach, PL (Informa UK Limited, 2018)
    Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to "robotic medicine". Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon's capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society.
  • Item
    Thumbnail Image
    The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling
    Tsang, HTH ; Edwards, TL ; Wang, X ; Connell, JW ; Davies, RJ ; Durrington, HJ ; O'Kane, CJ ; Luzio, JP ; Reid, E (OXFORD UNIV PRESS, 2009-10-15)
    The hereditary spastic paraplegias (HSPs) are genetic conditions characterized by distal axonopathy of the longest corticospinal tract axons, and so their study provides an important opportunity to understand mechanisms involved in axonal maintenance and degeneration. A group of HSP genes encode proteins that localize to endosomes. One of these is NIPA1 (non-imprinted in Prader-Willi/Angelman syndrome 1) and we have shown recently that its Drosophila homologue spichthyin inhibits bone morphogenic protein (BMP) signalling, although the relevance of this finding to the mammalian protein was not known. We show here that mammalian NIPA1 is also an inhibitor of BMP signalling. NIPA1 physically interacts with the type II BMP receptor (BMPRII) and we demonstrate that this interaction does not require the cytoplasmic tail of BMPRII. We show that the mechanism by which NIPA1 inhibits BMP signalling involves downregulation of BMP receptors by promoting their endocytosis and lysosomal degradation. Disease-associated mutant versions of NIPA1 alter the trafficking of BMPRII and are less efficient at promoting BMPRII degradation than wild-type NIPA1. In addition, we demonstrate that two other members of the endosomal group of HSP proteins, spastin and spartin, are inhibitors of BMP signalling. Since BMP signalling is important for distal axonal function, we propose that dysregulation of BMP signalling could be a unifying pathological component in this endosomal group of HSPs, and perhaps of importance in other conditions in which distal axonal degeneration is found.
  • Item
    Thumbnail Image
    A Qualitative and Quantitative Assessment of Fundus Autofluorescence Patterns in Patients With Choroideremia
    Jolly, JK ; Edwards, TL ; Moules, J ; Groppe, M ; Downes, SM ; MacLaren, RE (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2016-08)
    PURPOSE: We set out to characterize the pattern of fundus autofluorescence (AF) loss in choroideremia (CHM) patients of varying ages and disease severity in order to determine the average rate of progression of this potential disease biomarker. METHODS: Fifty consecutive CHM patients (100 eyes) attending outpatient clinics at Oxford Eye Hospital underwent analysis with the Heidelberg OCT Spectralis with autofluorescence capabilities. The area of residual AF was traced using Heidelberg Eye Explorer. Bland-Altman analysis was used to calculate the coefficient of repeatability (CR). The degree of AF loss was correlated to different ages and the pattern of residual AF constructed into color-coded maps in order to gain insight into the mechanism of disease progression. RESULTS: The CR for measurement of AF area is <1%, indicating that a small change is likely to be significant. Correlation of patient age and area of residual AF produced a clinically relevant index of expected anatomic disease. Progression is 7.7% of the residual area each year (95% confidence intervals 7.0%-8.2%) and follows a logarithmic pattern with age (r = 0.95, P < 0.001). From this we derived the mean half-life of AF as 9 years. Qualitatively, the pattern of remaining AF centered on a point temporal to the fovea. CONCLUSIONS: The area of residual AF in CHM can be measured reproducibly and shows a distinct pattern of loss. The measured residual area is inversely correlated to age. The ratio of the two variables may provide useful information regarding the rate of progression for any one individual at a given point in time.
  • Item
    Thumbnail Image
    Characterizing the Natural History of Visual Function in Choroideremia Using Microperimetry and Multimodal Retinal Imaging
    Jolly, JK ; Xue, K ; Edwards, TL ; Groppe, M ; MacLaren, RE (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2017-10)
    PURPOSE: Centripetal retinal degeneration in choroideremia (CHM) leads to early visual field restriction and late central vision loss. The latter marks an acute decline in quality of life but visual prognostication remains challenging. We investigated visual function in CHM by correlating best-corrected visual acuity (BCVA), microperimetry and multimodal imaging. METHODS: Fifty-six consecutive CHM patients attending Oxford Eye Hospital were examined with BCVA, 10-2 microperimetry, optical coherence tomography, and fundus autofluorescence (AF). Microperimetry was repeated in 21 eyes and analyzed with Bland-Altman. Kaplan-Meier survival plots of eyes retaining 20/20 BCVA were created. Intereye symmetry was assessed. RESULTS: Microperimetry coefficient of repeatability was 1.45 dB. Survival analysis showed an indistinguishable pattern between eyes (median survival 39 years). Macular sensitivity showed a similar decline in right and left eyes, with half-lives of 13.6 years. Zonal analysis showed faster decline nasal to the fovea. Intereye symmetry was more consistent for microperimetry sensitivity (r = 0.95, P < 0.001) than BCVA (r = 0.42, P = 0.0006). Near normal foveal sensitivity was maintained when the fovea was at least 2500 μm from the advancing edge of AF. CONCLUSIONS: BCVA is a marker of central degeneration and can provide valuable information about the position of the remaining retina as well as a measure of the impact on daily living. Microperimetry represents the global macular region. Both visual functions showed a high degree of intereye symmetry, particularly in early stages, indicating the fellow eye can provide a suitable control for assessing interventions to one eye. The findings may help to tailor visual prognosis and interpret outcomes of trials.
  • Item
    Thumbnail Image
    Tropism of engineered and evolved recombinant AAV serotypes in the rd1 mouse and ex vivo primate retina
    Hickey, DG ; Edwards, TL ; Barnard, AR ; Singh, MS ; de Silva, SR ; McClements, ME ; Flannery, JG ; Hankins, MW ; MacLaren, RE (NATURE PUBLISHING GROUP, 2017-12)
    There is much debate on the adeno-associated virus (AAV) serotype that best targets specific retinal cell types and the route of surgical delivery-intravitreal or subretinal. This study compared three of the most efficacious AAV vectors known to date in a mouse model of retinal degeneration (rd1 mouse) and macaque and human retinal explants. Green fluorescent protein (GFP) driven by a ubiquitous promoter was packaged into three AAV capsids: AAV2/8(Y733F), AAV2/2(quad Y-F) and AAV2/2(7m8). Overall, AAV2/2(7m8) transduced the largest area of retina and resulted in the highest level of GFP expression, followed by AAV2/2(quad Y-F) and AAV2/8(Y733F). AAV2/2(7m8) and AAV2/2(quad Y-F) both resulted in similar patterns of transduction whether they were injected intravitreally or subretinally. AAV2/8(Y733F) transduced a significantly smaller area of retina when injected intravitreally compared with subretinally. Retinal ganglion cells, horizontal cells and retinal pigment epithelium expressed relatively high levels of GFP in the mouse retina, whereas amacrine cells expressed low levels of GFP and bipolar cells were infrequently transduced. Cone cells were the most frequently transduced cell type in macaque retina explants, whereas Müller cells were the predominant transduced cell type in human retinal explants. Of the AAV serotypes tested, AAV2/2(7m8) was the most effective at transducing a range of cell types in degenerate mouse retina and macaque and human retinal explants.