School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    A regionalisation approach for rainfall based on extremal dependence
    Saunders, KR ; Stephenson, AG ; Karoly, DJ (SPRINGER, 2021-06)
    Abstract To mitigate the risk posed by extreme rainfall events, we require statistical models that reliably capture extremes in continuous space with dependence. However, assuming a stationary dependence structure in such models is often erroneous, particularly over large geographical domains. Furthermore, there are limitations on the ability to fit existing models, such as max-stable processes, to a large number of locations. To address these modelling challenges, we present a regionalisation method that partitions stations into regions of similar extremal dependence using clustering. To demonstrate our regionalisation approach, we consider a study region of Australia and discuss the results with respect to known climate and topographic features. To visualise and evaluate the effectiveness of the partitioning, we fit max-stable models to each of the regions. This work serves as a prelude to how one might consider undertaking a project where spatial dependence is non-stationary and is modelled on a large geographical scale.
  • Item
    Thumbnail Image
    Warming Patterns Affect El Nino Diversity in CMIP5 and CMIP6 Models
    Freund, MB ; Brown, JR ; Henley, BJ ; Karoly, DJ ; Brown, JN (American Meteorological Society, 2020-10-01)
    Given the consequences and global significance of El Niño–Southern Oscillation (ENSO) events it is essential to understand the representation of El Niño diversity in climate models for the present day and the future. In recent decades, El Niño events have occurred more frequently in the central Pacific (CP). Eastern Pacific (EP) El Niño events have increased in intensity. However, the processes and future implications of these observed changes in El Niño are not well understood. Here, the frequency and intensity of El Niño events are assessed in models from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6), and results are compared to extended instrumental and multicentury paleoclimate records. Future changes of El Niño are stronger for CP events than for EP events and differ between models. Models with a projected La Niña–like mean-state warming pattern show a tendency toward more EP but fewer CP events compared to models with an El Niño–like warming pattern. Among the models with more El Niño–like warming, differences in future El Niño can be partially explained by Pacific decadal variability (PDV). During positive PDV phases, more El Niño events occur, so future frequency changes are mainly determined by projected changes during positive PDV phases. Similarly, the intensity of El Niño is strongest during positive PDV phases. Future changes to El Niño may thus depend on both mean-state warming and decadal-scale natural variability.
  • Item
    Thumbnail Image
    Evaluation of CMIP6 AMIP climate simulations with the ACCESS-AM2 model
    Bodman, RW ; Karoly, DJ ; Dix, MR ; Harman, IN ; Srbinovsky, J ; Dobrohotoff, PB ; Mackallah, C (CSIRO PUBLISHING, 2020)
    The most recent version of the ACCESS-AM2 atmosphere-only climate model is introduced with results from the CMIP6 Atmospheric Model Intercomparison Project (AMIP) experiments configured with two land-surface models: CABLE and JULES. AMIP simulations are required as part of the CMIP6 core experiments. They are forced by prescribed time-varying observed sea surface temperature and sea-ice variations as well as variations in natural and anthropogenic external forcings. We evaluate the performance of the two configurations using three historical realisations for each. Model biases are estimated both globally and for the Australian region. The model shows close agreement with observed interannual variations of global-mean temperature across the latitude range 65°N–65°S. This is also true for the land-only temperature for 65°N–65°S, and a more stringent test of the model is driven by specified observed sea surface temperatures. Patterns of mean precipitation are simulated reasonably well, although there are biases in the amount and distribution of precipitation, typical of longstanding problems in representing this aspect of the climate. Selected features of the atmospheric circulation are discussed, including air temperatures and wind speeds. For the Australian region, in addition to examining the climatological patterns of temperature and precipitation, important drivers of climate variability are reviewed: El Niño-Southern Oscillation, the Indian Ocean Dipole and the Southern Annular Mode. In general, the correlation patterns for precipitation simulated by ACCESS-AM2 are somewhat weaker than in observations, although the ensemble means show better agreement than individual ensemble members. Overall, the two different land-surface schemes perform similarly. ACCESS-AM2 has reduced root mean square errors for both temperature and precipitation of around 15–20% at the global scale compared to the older CMIP5 versions of the model: ACCESS 1.0 and ACCESS 1.3.