School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    No Preview Available
    Balanced callose and cellulose biosynthesis in Arabidopsis quorum-sensing signaling and pattern-triggered immunity
    Liu, X ; Ma, Z ; Tran, TM ; Rautengarten, C ; Cheng, Y ; Yang, L ; Ebert, B ; Persson, S ; Miao, Y (OXFORD UNIV PRESS INC, 2023-12-30)
    The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a β-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.
  • Item
    Thumbnail Image
    Conserved Glu-47 and Lys-50 residues are critical for UDP-N-acetylglucosamine/UMP antiport activity of the mouse Golgi-associated transporter Slc35a3
    Agustina Toscanini, M ; Belen Favarolo, M ; Gonzalez Flecha, FL ; Ebert, B ; Rautengarten, C ; Bredeston, LM (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2019-06-28)
    Nucleotide sugar transporters (NSTs) regulate the flux of activated sugars from the cytosol into the lumen of the Golgi apparatus where glycosyltransferases use them for the modification of proteins, lipids, and proteoglycans. It has been well-established that NSTs are antiporters that exchange nucleotide sugars with the respective nucleoside monophosphate. Nevertheless, information about the molecular basis of ligand recognition and transport is scarce. Here, using topology predictors, cysteine-scanning mutagenesis, expression of GFP-tagged protein variants, and phenotypic complementation of the yeast strain Kl3, we identified residues involved in the activity of a mouse UDP-GlcNAc transporter, murine solute carrier family 35 member A3 (mSlc35a3). We specifically focused on the putative transmembrane helix 2 (TMH2) and observed that cells expressing E47C or K50C mSlc35a3 variants had lower levels of GlcNAc-containing glycoconjugates than WT cells, indicating impaired UDP-GlcNAc transport activity of these two variants. A conservative substitution analysis revealed that single or double substitutions of Glu-47 and Lys-50 do not restore GlcNAc glycoconjugates. Analysis of mSlc35a3 and its genetic variants reconstituted into proteoliposomes disclosed the following: (i) all variants act as UDP-GlcNAc/UMP antiporters; (ii) conservative substitutions (E47D, E47Q, K50R, or K50H) impair UDP-GlcNAc uptake; and (iii) substitutions of Glu-47 and Lys-50 dramatically alter kinetic parameters, consistent with a critical role of these two residues in mSlc35a3 function. A bioinformatics analysis revealed that an EXXK motif in TMH2 is highly conserved across SLC35 A subfamily members, and a 3D-homology model predicted that Glu-47 and Lys-50 are facing the central cavity of the protein.
  • Item
    Thumbnail Image
    Profiling Cell Wall Monosaccharides and Nucleotide-Sugars from Plants.
    Rautengarten, C ; Heazlewood, JL ; Ebert, B (Wiley-Blackwell, 2019-06)
    The cell wall is an intricate mesh largely composed of polysaccharides that vary in structure and abundance. Apart from cellulose biosynthesis, the assembly of matrix polysaccharides such as pectin and hemicellulose occur in the Golgi apparatus before being transported via vesicles to the cell wall. Matrix polysaccharides are biosynthesized from activated precursors or nucleotide sugars. The composition and assembly of the cell wall is an important aspect in plant development and plant biomass utilization. The application of anion-exchange chromatography to determine the monosaccharide composition of the insoluble matrix polysaccharides enables a complete profile of all major sugars in the cell wall from a single run. While porous carbon graphite chromatography and tandem mass spectrometry delivers a sensitive and robust nucleotide sugar profile from plant extracts. Here we describe detailed methodology to quantify nucleotide sugars within the cell and profile the non-cellulosic monosaccharide composition of the cell wall.
  • Item
    Thumbnail Image
    Cell surface carbohydrates of symbiotic dinoflagellates and their role in the establishment of cnidarian-dinoflagellate symbiosis
    Tortorelli, G ; Rautengarten, C ; Bacic, A ; Segal, G ; Ebert, B ; Davy, SK ; van Oppen, MJH ; McFadden, G (SPRINGERNATURE, 2022-01)
    Symbiodiniaceae algae are often photosymbionts of reef-building corals. The establishment of their symbiosis resembles a microbial infection where eukaryotic pattern recognition receptors (e.g. lectins) are thought to recognize a specific range of taxon-specific microbial-associated molecular patterns (e.g. glycans). The present study used the sea anemone, Exaiptasia diaphana and three species of Symbiodiniaceae (the homologous Breviolum minutum, the heterologous-compatible Cladocopium goreaui and the heterologous-incompatible Fugacium kawagutii) to compare the surface glycomes of three symbionts and explore the role of glycan-lectin interactions in host-symbiont recognition and establishment of symbiosis. We identified the nucleotide sugars of the algal cells, then examined glycans on the cell wall of the three symbiont species with monosaccharide analysis, lectin array technology and fluorescence microscopy of the algal cell decorated with fluorescently tagged lectins. Armed with this inventory of possible glycan moieties, we then assayed the ability of the three Symbiodiniaceae to colonize aposymbiotic E. diaphana after modifying the surface of one of the two partners. The Symbiodiniaceae cell-surface glycome varies among algal species. Trypsin treatment of the alga changed the rate of B. minutum and C. goreaui uptake, suggesting that a protein-based moiety is an essential part of compatible symbiont recognition. Our data strongly support the importance of D-galactose (in particular β-D-galactose) residues in the establishment of the cnidarian-dinoflagellate symbiosis, and we propose a potential involvement of L-fucose, D-xylose and D-galacturonic acid in the early steps of this mutualism.
  • Item
    Thumbnail Image
    An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development
    Kehelpannala, C ; Rupasinghe, T ; Pasha, A ; Esteban, E ; Hennessy, T ; Bradley, D ; Ebert, B ; Provart, NJ ; Roessner, U (WILEY, 2021-07)
    Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.
  • Item
    Thumbnail Image
    UDP-Api/UDP-Xyl synthases affect plant development by controlling the content of UDP-Api to regulate the RG-II-borate complex
    Zhao, X ; Ebert, B ; Zhang, B ; Liu, H ; Zhang, Y ; Zeng, W ; Rautengarten, C ; Li, H ; Chen, X ; Bacic, A ; Wang, G ; Men, S ; Zhou, Y ; Heazlewood, JL ; Wu, A-M (WILEY, 2020-09)
    Rhamnogalacturonan‐II (RG‐II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG‐II molecules can form an RG‐II‐borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate cross‐linking of pectin in the cell wall. But the relationship of Api biosynthesis and RG‐II dimer is still unclear. In this study we investigated the two homologous UDP‐D‐apiose/UDP‐D‐xylose synthases (AXSs) in Arabidopsis thaliana that synthesize UDP‐D‐apiose (UDP‐Api). Both AXSs are ubiquitously expressed, while AXS2 has higher overall expression than AXS1 in the tissues analyzed. The homozygous axs double mutant is lethal, while heterozygous axs1/+ axs2 and axs1 axs2/+ mutants display intermediate phenotypes. The axs1/+ axs2 mutant plants are unable to set seed and die. By contrast, the axs1 axs2/+ mutant plants exhibit loss of shoot and root apical dominance. UDP‐Api content in axs1 axs2/+ mutants is decreased by 83%. The cell wall of axs1 axs2/+ mutant plants is thicker and contains less RG‐II‐borate complex than wild‐type Col‐0 plants. Taken together, these results provide direct evidence of the importance of AXSs for UDP‐Api and RG‐II‐borate complex formation in plant growth and development.
  • Item
    Thumbnail Image
    A Pipeline towards the Biochemical Characterization of the Arabidopsis GT14 Family
    Xuan, L ; Zhang, J ; Lu, W ; Gluza, P ; Ebert, B ; Kotake, T ; Lu, M ; Zhang, Y ; Clausen, MH ; Johnson, KL ; Doblin, MS ; Heazlewood, JL ; Bacic, A ; Song, L ; Zeng, W (MDPI, 2021-02)
    Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), β-1,6-galactotetraose (β-1,6-Gal4) and β-1,3-galactopentose (β-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the β-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.
  • Item
    Thumbnail Image
    A comprehensive comparison of four methods for extracting lipids from Arabidopsis tissues
    Kehelpannala, C ; Rupasinghe, TWT ; Hennessy, T ; Bradley, D ; Ebert, B ; Roessner, U (BioMed Central, 2020-12-03)
    Background The plant lipidome is highly complex, and the composition of lipids in different tissues as well as their specific functions in plant development, growth and stress responses have yet to be fully elucidated. To do this, efficient lipid extraction protocols which deliver target compounds in solution at concentrations adequate for subsequent detection, quantitation and analysis through spectroscopic methods are required. To date, numerous methods are used to extract lipids from plant tissues. However, a comprehensive analysis of the efficiency and reproducibility of these methods to extract multiple lipid classes from diverse tissues of a plant has not been undertaken. Results In this study, we report the comparison of four different lipid extraction procedures in order to determine the most effective lipid extraction protocol to extract lipids from different tissues of the model plant Arabidopsis thaliana. Conclusion While particular methods were best suited to extract different lipid classes from diverse Arabidopsis tissues, overall a single-step extraction method with a 24 h extraction period, which uses a mixture of chloroform, isopropanol, methanol and water, was the most efficient, reproducible and the least labor-intensive to extract a broad range of lipids for untargeted lipidomic analysis of Arabidopsis tissues. This method extracted a broad range of lipids from leaves, stems, siliques, roots, seeds, seedlings and flowers of Arabidopsis. In addition, appropriate methods for targeted lipid analysis of specific lipids from particular Arabidopsis tissues were also identified.
  • Item
    Thumbnail Image
    Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana
    Schliep, M ; Ebert, B ; Simon-Rosin, U ; Zoeller, D ; Fisahn, J (SPRINGER WIEN, 2010-05)
    Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes.
  • Item
    Thumbnail Image
    Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants
    Petersen, PD ; Lau, J ; Ebert, B ; Yang, F ; Verhertbruggen, Y ; Kim, JS ; Varanasi, P ; Suttangkakul, A ; Auer, M ; Loque, D ; Scheller, HV (BIOMED CENTRAL LTD, 2012-11-26)
    BACKGROUND: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. RESULTS: Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx) mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. CONCLUSIONS: Spatial and temporal deposition of xylan in the secondary cell wall of Arabidopsis can be manipulated by using the promoter regions of vessel-specific genes to express xylan biosynthetic genes. The expression of xylan specifically in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels.