Anatomy and Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    No Preview Available
    Evidence for decreased copper associated with demyelination in the corpus callosum of cuprizone-treated mice
    Hilton, JBW ; Kysenius, K ; Liddell, JR ; Mercer, SW ; Hare, DJ ; Buncic, G ; Paul, B ; Wang, Y ; Murray, SS ; Kilpatrick, TJ ; White, AR ; Donnelly, PS ; Crouch, PJ (OXFORD UNIV PRESS, 2024-01-05)
    Demyelination within the central nervous system (CNS) is a significant feature of debilitating neurological diseases such as multiple sclerosis and administering the copper-selective chelatorcuprizone to mice is widely used to model demyelination in vivo. Conspicuous demyelination within the corpus callosum is generally attributed to cuprizone's ability to restrict copper availability in this vulnerable brain region. However, the small number of studies that have assessed copper in brain tissue from cuprizone-treated mice have produced seemingly conflicting outcomes, leaving the role of CNS copper availability in demyelination unresolved. Herein we describe our assessment of copper concentrations in brain samples from mice treated with cuprizone for 40 d. Importantly, we applied an inductively coupled plasma mass spectrometry methodology that enabled assessment of copper partitioned into soluble and insoluble fractions within distinct brain regions, including the corpus callosum. Our results show that cuprizone-induced demyelination in the corpus callosum was associated with decreased soluble copper in this brain region. Insoluble copper in the corpus callosum was unaffected, as were pools of soluble and insoluble copper in other brain regions. Treatment with the blood-brain barrier permeant copper compound CuII(atsm) increased brain copper levels and this was most pronounced in the soluble fraction of the corpus callosum. This effect was associated with significant mitigation of cuprizone-induced demyelination. These results provide support for the involvement of decreased CNS copper availability in demyelination in the cuprizone model. Relevance to human demyelinating disease is discussed.
  • Item
    No Preview Available
    The Tolerogenic Influence of Dexamethasone on Dendritic Cells Is Accompanied by the Induction of Efferocytosis, Promoted by MERTK.
    Li, V ; Binder, MD ; Kilpatrick, TJ (MDPI AG, 2023-11-02)
    Many treatments for autoimmune diseases, caused by the loss of immune self-tolerance, are broadly immunosuppressive. Dendritic cells (DCs) can be induced to develop anti-inflammatory/tolerogenic properties to suppress aberrant self-directed immunity by promoting immune tolerance in an antigen-specific manner. Dexamethasone can generate tolerogenic DCs and upregulates MERTK expression. As MERTK can inhibit inflammation, we investigated whether dexamethasone's tolerogenic effects are mediated via MERTK, potentially providing a novel therapeutic approach. Monocyte-derived DCs were treated with dexamethasone, and with and without MERTK ligands or MERTK inhibitors. Flow cytometry was used to assess effects of MERTK modulation on co-stimulatory molecule expression, efferocytosis, cytokine secretion and T cell proliferation. The influence on expression of Rab17, which coordinates the diversion of efferocytosed material away from cell surface presentation, was assessed. Dexamethasone-treated DCs had upregulated MERTK expression, decreased expression of co-stimulatory molecules, maturation and proliferation of co-cultured T cells and increased uptake of myelin debris. MERTK ligands did not potentiate these properties, whilst specific MERTK inhibition only reversed dexamethasone's effect on myelin uptake. Cells undergoing efferocytosis had higher Rab17 expression. Dexamethasone-enhanced efferocytosis in DCs is MERTK-dependent and could exert its tolerogenic effects by increasing Rab17 expression to prevent the presentation of efferocytosed material on the cell surface to activate adaptive immune responses.
  • Item
    No Preview Available
    Mertk-expressing microglia influence oligodendrogenesis and myelin modelling in the CNS.
    Nguyen, LT ; Aprico, A ; Nwoke, E ; Walsh, AD ; Blades, F ; Avneri, R ; Martin, E ; Zalc, B ; Kilpatrick, TJ ; Binder, MD (Springer Science and Business Media LLC, 2023-11-06)
    BACKGROUND: Microglia, an immune cell found exclusively within the CNS, initially develop from haematopoietic stem cell precursors in the yolk sac and colonise all regions of the CNS early in development. Microglia have been demonstrated to play an important role in the development of oligodendrocytes, the myelin producing cells in the CNS, as well as in myelination. Mertk is a receptor expressed on microglia that mediates immunoregulatory functions, including myelin efferocytosis. FINDINGS: Here we demonstrate an unexpected role for Mertk-expressing microglia in both oligodendrogenesis and myelination. The selective depletion of Mertk from microglia resulted in reduced oligodendrocyte production in early development and the generation of pathological myelin. During demyelination, mice deficient in microglial Mertk had thinner myelin and showed signs of impaired OPC differentiation. We established that Mertk signalling inhibition impairs oligodendrocyte repopulation in Xenopus tadpoles following demyelination. CONCLUSION: These data highlight the importance of microglia in myelination and are the first to identify Mertk as a regulator of oligodendrogenesis and myelin ultrastructure.
  • Item
    No Preview Available
    Mouse microglia express unique miRNA-mRNA networks to facilitate age-specific functions in the developing central nervous system
    Walsh, AD ; Stone, S ; Freytag, S ; Aprico, A ; Kilpatrick, TJ ; Ansell, BRE ; Binder, MD (NATURE PORTFOLIO, 2023-05-22)
    Microglia regulate multiple processes in the central nervous system, exhibiting a considerable level of cellular plasticity which is facilitated by an equally dynamic transcriptional environment. While many gene networks that regulate microglial functions have been characterised, the influence of epigenetic regulators such as small non-coding microRNAs (miRNAs) is less well defined. We have sequenced the miRNAome and mRNAome of mouse microglia during brain development and adult homeostasis, identifying unique profiles of known and novel miRNAs. Microglia express both a consistently enriched miRNA signature as well as temporally distinctive subsets of miRNAs. We generated robust miRNA-mRNA networks related to fundamental developmental processes, in addition to networks associated with immune function and dysregulated disease states. There was no apparent influence of sex on miRNA expression. This study reveals a unique developmental trajectory of miRNA expression in microglia during critical stages of CNS development, establishing miRNAs as important modulators of microglial phenotype.
  • Item
    No Preview Available
    High-efficiency pharmacogenetic ablation of oligodendrocyte progenitor cells in the adult mouse CNS
    Xing, YL ; Poh, J ; Chuang, BHA ; Moradi, K ; Mitew, S ; Richardson, WD ; Kilpatrick, TJ ; Osanai, Y ; Merson, TD (CELL PRESS, 2023-02-27)
    Approaches to investigate adult oligodendrocyte progenitor cells (OPCs) by targeted cell ablation in the rodent CNS have limitations in the extent and duration of OPC depletion. We have developed a pharmacogenetic approach for conditional OPC ablation, eliminating >98% of OPCs throughout the brain. By combining recombinase-based transgenic and viral strategies for targeting OPCs and ventricular-subventricular zone (V-SVZ)-derived neural precursor cells (NPCs), we found that new PDGFRA-expressing cells born in the V-SVZ repopulated the OPC-deficient brain starting 12 days after OPC ablation. Our data reveal that OPC depletion induces V-SVZ-derived NPCs to generate vast numbers of PDGFRA+NG2+ cells with the capacity to proliferate and migrate extensively throughout the dorsal anterior forebrain. Further application of this approach to ablate OPCs will advance knowledge of the function of both OPCs and oligodendrogenic NPCs in health and disease.
  • Item
    Thumbnail Image
    Cladribine Treatment for MS Preserves the Differentiative Capacity of Subsequently Generated Monocytes, Whereas Its Administration In Vitro Acutely Influences Monocyte Differentiation but Not Microglial Activation
    Medeiros-Furquim, T ; Ayoub, S ; Johnson, LJ ; Aprico, A ; Nwoke, E ; Binder, MD ; Kilpatrick, TJ (FRONTIERS MEDIA SA, 2022-06-06)
    Cladribine (2-chlorodeoxyadenosine, 2CdA) is one of the most effective disease-modifying drugs for multiple sclerosis (MS). Cladribine is a synthetic purine nucleoside analog that induces cell death of lymphocytes and oral cladribine treatment leads to a long-lasting disease stabilization, potentially attributable to immune reconstitution. In addition to its effects on lymphocytes, cladribine has been shown to have immunomodulatory effects on innate immune cells, including dendritic cells and monocytes, which could also contribute to its therapeutic efficacy. However, whether cladribine can modulate human macrophage/microglial activation or monocyte differentiation is currently unknown. The aim of this study was to determine the immunomodulatory effects of cladribine upon monocytes, monocyte-derived macrophages (MDMs) and microglia. We analyzed the phenotype and differentiation of monocytes from MS patients receiving their first course of oral cladribine both before and three weeks after the start of treatment. Flow cytometric analysis of monocytes from MS patients undergoing cladribine treatment revealed that the number and composition of CD14/CD16 monocyte subsets remained unchanged after treatment. Furthermore, after differentiation with M-CSF, such MDMs from treated MS patients showed no difference in gene expression of the inflammatory markers compared to baseline. We further investigated the direct effects of cladribine in vitro using human adult primary MDMs and microglia. GM-CSF-derived MDMs were more sensitive to cell death than M-CSF-derived MDMs. In addition, MDMs treated with cladribine showed increased expression of costimulatory molecules CD80 and CD40, as well as expression of anti-inflammatory, pro-trophic genes IL10 and MERTK, depending on the differentiation condition. Cladribine treatment in vitro did not modulate the expression of activation markers in human microglia. Our study shows that cladribine treatment in vitro affects the differentiation of monocytes into macrophages by modulating the expression of activation markers, which might occur similarly in tissue after their infiltration in the CNS during MS.
  • Item
    Thumbnail Image
    White matter tract conductivity is resistant to wide variations in paranodal structure and myelin thickness accompanying the loss of Tyro3: an experimental and simulated analysis
    Blades, F ; Chambers, JD ; Aumann, TD ; Nguyen, CTO ; Wong, VHY ; Aprico, A ; Nwoke, EC ; Bui, B ; Grayden, DB ; Kilpatrick, TJ ; Binder, MD (SPRINGER HEIDELBERG, 2022-07)
    Myelination within the central nervous system (CNS) is crucial for the conduction of action potentials by neurons. Variation in compact myelin morphology and the structure of the paranode are hypothesised to have significant impact on the speed of action potentials. There are, however, limited experimental data investigating the impact of changes in myelin structure upon conductivity in the central nervous system. We have used a genetic model in which myelin thickness is reduced to investigate the effect of myelin alterations upon action potential velocity. A detailed examination of the myelin ultrastructure of mice in which the receptor tyrosine kinase Tyro3 has been deleted showed that, in addition to thinner myelin, these mice have significantly disrupted paranodes. Despite these alterations to myelin and paranodal structure, we did not identify a reduction in conductivity in either the corpus callosum or the optic nerve. Exploration of these results using a mathematical model of neuronal conductivity predicts that the absence of Tyro3 would lead to reduced conductivity in single fibres, but would not affect the compound action potential of multiple myelinated neurons as seen in neuronal tracts. Our data highlight the importance of experimental assessment of conductivity and suggests that simple assessment of structural changes to myelin is a poor predictor of neural functional outcomes.
  • Item
    No Preview Available
    Evaluating the perspective of patients with MS and related conditions on their DMT in relation to the COVID-19 pandemic in one MS centre in Australia
    Seery, N ; Li, V ; Nguyen, A-L ; Roos, I ; Buzzard, KA ; Atvars, R ; Taylor, N ; Tunnell, K ; Carey, J ; Dwyer, C ; Taylor, HFL ; Baker, J ; Marriott, MP ; Kilpatrick, TJ ; Kalincik, T ; Monif, M (ELSEVIER SCI LTD, 2020-11-01)
    Objective: Patients with Multiple Sclerosis (MS) and on disease modifying therapies (DMTs) that can be immunosuppressive or immunomodulatory form a special group where risk of continuation of DMT needs to be taken into account with risk of contracting Covid-19. This concept can pose a degree of anxiety for patients as well as neurologists. We aimed to evaluate patient perspectives regarding the use of Natalizumab and anti-CD20 therapies (Rituximab and Ocrelizumab) in the context of the COVID-19 pandemic. Methods: cross-sectional study conducted via voluntary survey filled in by patients with MS and related disorders receiving their infusional treatment in one MS centre in Australia, exploring their concerns regarding their therapy, their therapy and COVID-19, precautions undertaken in response to the pandemic, and factors impacting their decision-making. Results: 170 patients completed the survey. Of patients on Natalizumab, the majority had either no or mild concern regarding their DMT and COVID-19, and of patients on B-cell depleting therapies, again, the majority had no or mild concern, though a slightly higher proportion had a moderate level of concern. Asked to delineate their concerns, an increased risk of contracting COVID-19 was more commonly conveyed than MS-specific factors or poor outcomes pertaining to COVID-19 if contracted, by patients in both groups. Conversely, being invited to specifically consider the possibility of contracting COVID-19 or experience a relapse of MS, almost half of the cohort rated both of equal of concern. More than half of the cohort were self-isolating more stringently than general government advice and government-related resources followed by information provided by patient's neurologist where the commonest means of information to guide decision making. Conclusions: Whilst a large proportion of patients had some concern regarding the impact of their DMT on COVID-19, whether on their risk of contracting COVID-19 or a theoretical risk for more severe disease, the overall level of concern in most cases was at most mild. Patients on B-cell depleting therapies were more inclined to express a higher level of concern. A similar concern was ascribed to a risk of a relapse or worsening MS symptoms compared to the risk of contracting COVID-19. Such attitudes may underscore a willingness of patients to continue their DMT where benefits outweigh risks during future phases of the COVID-19 pandemic.
  • Item
    Thumbnail Image
    Multiple Sclerosis as a Syndrome-Implications for Future Management
    Dwyer, CM ; Nguyen, LT-T ; Healy, LM ; Dutta, R ; Ludwin, S ; Antel, J ; Binder, MD ; Kilpatrick, TJ (FRONTIERS MEDIA SA, 2020-08-28)
    We propose that multiple sclerosis (MS) is best characterized as a syndrome rather than a single disease because different pathogenetic mechanisms can result in the constellation of symptoms and signs by which MS is clinically characterized. We describe several cellular mechanisms that could generate inflammatory demyelination through disruption of homeostatic interactions between immune and neural cells. We illustrate that genomics is important in identifying phenocopies, in particular for primary progressive MS. We posit that molecular profiling, rather than traditional clinical phenotyping, will facilitate meaningful patient stratification, as illustrated by interactions between HLA and a regulator of homeostatic phagocytosis, MERTK. We envisage a personalized approach to MS management where genetic, molecular, and cellular information guides management.
  • Item
    Thumbnail Image
    Tyro3 Contributes to Retinal Ganglion Cell Function, Survival and Dendritic Density in the Mouse Retina
    Blades, F ; Wong, VHY ; Nguyen, CTO ; Bui, BV ; Kilpatrick, TJ ; Binder, MD (FRONTIERS MEDIA SA, 2020-08-14)
    Retinal ganglion cells (RGCs) are the only output neurons of the vertebrate retina, integrating signals from other retinal neurons and transmitting information to the visual centers of the brain. The death of RGCs is a common outcome in many optic neuropathies, such as glaucoma, demyelinating optic neuritis and ischemic optic neuropathy, resulting in visual defects and blindness. There are currently no therapies in clinical use which can prevent RGC death in optic neuropathies; therefore, the identification of new targets for supporting RGC survival is crucial in the development of novel treatments for eye diseases. In this study we identify that the receptor tyrosine kinase, Tyro3, is critical for normal neuronal function in the adult mouse retina. The loss of Tyro3 results in a reduction in photoreceptor and RGC function as measured using electroretinography. The reduction in RGC function was associated with a thinner retinal nerve fiber layer and fewer RGCs. In the central retina, independent of the loss of RGCs, Tyro3 deficiency resulted in a dramatic reduction in the number of RGC dendrites in the inner plexiform layer. Our results show that Tyro3 has a novel, previously unidentified role in retinal function, RGC survival and RGC morphology. The Tyro3 pathway could therefore provide an alternative, targetable pathway for RGC protective therapeutics.