Chemical and Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Modular Assembly of Host-Guest Metal-Phenolic Networks Using Macrocyclic Building Blocks
    Pan, S ; Guo, R ; Bertleff-Zieschang, N ; Li, S ; Besford, QA ; Zhong, Q-Z ; Yun, G ; Zhang, Y ; Cavalieri, F ; Ju, Y ; Goudeli, E ; Richardson, JJ ; Caruso, F (Wiley, 2020-01-02)
    The manipulation of interfacial properties has broad implications for the development of high‐performance coatings. Metal–phenolic networks (MPNs) are an emerging class of responsive, adherent materials. Herein, host–guest chemistry is integrated with MPNs to modulate their surface chemistry and interfacial properties. Macrocyclic cyclodextrins (host) are conjugated to catechol or galloyl groups and subsequently used as components for the assembly of functional MPNs. The assembled cyclodextrin‐based MPNs are highly permeable (even to high molecular weight polymers: 250–500 kDa), yet they specifically and noncovalently interact with various functional guests (including small molecules, polymers, and carbon nanomaterials), allowing for modular and reversible control over interfacial properties. Specifically, by using either hydrophobic or hydrophilic guest molecules, the wettability of the MPNs can be readily tuned between superrepellency (>150°) and superwetting (ca. 0°).
  • Item
    Thumbnail Image
    The Biomolecular Corona in 2D and Reverse: Patterning Metal–Phenolic Networks on Proteins, Lipids, Nucleic Acids, Polysaccharides, and Fingerprints
    Yun, G ; Richardson, JJ ; Capelli, M ; Hu, Y ; Besford, QA ; Weiss, ACG ; Lee, H ; Choi, IS ; Gibson, BC ; Reineck, P ; Caruso, F (Wiley, 2020-01-03)
    The adsorption of biomolecules onto nanomaterials can alter the performance of the nanomaterials in vitro and in vivo. Recent studies have primarily focused on the protein “corona”, formed upon adsorption of proteins onto nanoparticles in biological fluids, which can change the biological fate of the nanoparticles. Conversely, interactions between nanomaterials and other classes of biomolecules namely, lipids, nucleic acids, and polysaccharides have received less attention despite their important roles in biology. A possible reason is the challenge associated with investigating biomolecule interactions with nanomaterials using current technologies. Herein, a protocol is developed for studying bio–nano interactions by depositing four classes of biomolecules (proteins, lipids, nucleic acids, and polysaccharides) and complex biological media (blood) onto planar substrates, followed by exposure to metal–phenolic network (MPN) complexes. The MPNs preferentially interact with the biomolecule over the inorganic substrate (glass), highlighting that patterned biomolecules can be used to engineer patterned MPNs. Subsequent formation of silver nanoparticles on the MPN films maintains the patterns and endows the films with unique reflectance and fluorescence properties, enabling visualization of latent fingerprints (i.e., invisible residual biomolecule patterns). This study demonstrates the potential complexity of the biomolecule corona as all classes of biomolecules can adsorb onto MPN-based nanomaterials.