Melbourne Medical School Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    No Preview Available
    Lipidomic signatures for APOE genotypes provides new insights about mechanisms of resilience in Alzheimer’s disease
    Wang, T ; Huynh, K ; Giles, C ; Lim, WLF ; Duong, T ; Mellett, NA ; Smith, A ; Olshansky, G ; Drew, BG ; Cadby, G ; Melton, PE ; Hung, J ; Beilby, J ; Watts, GF ; Chatterjee, P ; Martins, I ; Laws, SM ; Bush, AI ; Rowe, CC ; Villemagne, VL ; Ames, D ; Masters, CL ; Arnold, M ; Kastenmüller, G ; Nho, K ; Saykin, AJ ; Baillie, R ; Han, X ; Martins, RN ; Moses, E ; Kaddurah‐Daouk, RF ; Meikle, PJ (Wiley, 2021-12)
    Background The apolipoprotein E gene (APOE) genotype is the first and strongest genetic risk factor for late‐onset Alzheimer’s disease and has emerged as a novel therapeutic target for AD. The encoded protein (Apolipoprotein E, APOE) is well‐known to be involved in lipoprotein transport and metabolism, but its effect on lipid metabolic pathways and the potential mediating effect of these on disease risk have not been fully defined. Method We performed lipidomic analysis on three independent cohorts (AIBL, n = 693; ADNI, n=207; BHS, n=4,384) and defined the association between APOE polymorphisms (ε4 and ε2) and plasma lipid species. To identify associations independent of lipoprotein metabolism, the analyses was performed with adjustment for clinical lipids (total cholesterol, HDL‐C and triglycerides). Causal mediation analysis was performed to estimate the proportion of risk in the outcome model explained by a direct effect of APOE genotype on prevalent AD — the average direct effect (ADE) — and the proportion that was mediated by lipid species or lipidomic risk models — the average causal mediation effect (ACME). Result We identified multiple associations of species from lipid classes such as ceramide, hexosylceramide, sphingomyelin, plasmalogens, alkyldiacylglycerol and cholesteryl esters with APOE polymorphisms (ε4 and ε2) that were independent of clinical lipoprotein measurements. There were 104 and 237 lipid species associated with APOE ε4 and ε2 respectively which were largely discordant. Of these 116 were also associated with Alzheimer’s disease. Individual lipid species (notably the alkyldiacylglycerol subspecies) or lipidomic risk models of APOE genotypes mediated up to 10% and 30% of APOE ε4 and ε2 treatment effect on AD risks respectively. Conclusion We demonstrate a strong relationship between APOE polymorphisms and peripheral lipid species. Lipids species mediate a proportion of the effects of APOE genotypes in risk of AD, particularly resilience with e2. Our results highlight the involvement of lipids in how APOE e2 mediates its resilience to AD and solidify their involvement with the disease pathway.
  • Item
    Thumbnail Image
    Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk: a mother-offspring cohort study
    Mir, SA ; Chen, L ; Burugupalli, S ; Burla, B ; Ji, S ; Smith, AAT ; Narasimhan, K ; Ramasamy, A ; Tan, KM-L ; Huynh, K ; Giles, C ; Mei, D ; Wong, G ; Yap, F ; Tan, KH ; Collier, F ; Saffery, R ; Vuillermin, P ; Bendt, AK ; Burgner, D ; Ponsonby, A-L ; Lee, YS ; Chong, YS ; Gluckman, PD ; Eriksson, JG ; Meikle, PJ ; Wenk, MR ; Karnani, N (BMC, 2022-07-25)
    BACKGROUND: Lipids play a vital role in health and disease, but changes to their circulating levels and the link with obesity remain poorly characterized in expecting mothers and their offspring in early childhood. METHODS: LC-MS/MS-based quantitation of 480 lipid species was performed on 2491 plasma samples collected at 4 time points in the mother-offspring Asian cohort GUSTO (Growing Up in Singapore Towards healthy Outcomes). These 4 time points constituted samples collected from mothers at 26-28 weeks of gestation (n=752) and 4-5 years postpartum (n=650), and their offspring at birth (n=751) and 6 years of age (n=338). Linear regression models were used to identify the pregnancy and developmental age-specific variations in the plasma lipidomic profiles, and their association with obesity risk. An independent birth cohort (n=1935), the Barwon Infant Study (BIS), comprising mother-offspring dyads of Caucasian origin was used for validation. RESULTS: Levels of 36% of the profiled lipids were significantly higher (absolute fold change > 1.5 and Padj < 0.05) in antenatal maternal circulation as compared to the postnatal phase, with phosphatidylethanolamine levels changing the most. Compared to antenatal maternal lipids, cord blood showed lower concentrations of most lipid species (79%) except lysophospholipids and acylcarnitines. Changes in lipid concentrations from birth to 6 years of age were much higher in magnitude (log2FC=-2.10 to 6.25) than the changes observed between a 6-year-old child and an adult (postnatal mother) (log2FC=-0.68 to 1.18). Associations of cord blood lipidomic profiles with birth weight displayed distinct trends compared to the lipidomic profiles associated with child BMI at 6 years. Comparison of the results between the child and adult BMI identified similarities in association with consistent trends (R2=0.75). However, large number of lipids were associated with BMI in adults (67%) compared to the children (29%). Pre-pregnancy BMI was specifically associated with decrease in the levels of phospholipids, sphingomyelin, and several triacylglycerol species in pregnancy. CONCLUSIONS: In summary, our study provides a detailed landscape of the in utero lipid environment provided by the gestating mother to the growing fetus, and the magnitude of changes in plasma lipidomic profiles from birth to early childhood. We identified the effects of adiposity on the circulating lipid levels in pregnant and non-pregnant women as well as offspring at birth and at 6 years of age. Additionally, the pediatric vs maternal overlap of the circulating lipid phenotype of obesity risk provides intergenerational insights and early opportunities to track and intervene the onset of metabolic adversities. CLINICAL TRIAL REGISTRATION: This birth cohort is a prospective observational study, which was registered on 1 July 2010 under the identifier NCT01174875 .
  • Item
    Thumbnail Image
    Influence of the Human Lipidome on Epicardial Fat Volume in Mexican American Individuals
    Leandro, AC ; Michael, LF ; Almeida, M ; Kuokkanen, M ; Huynh, K ; Giles, C ; Duong, T ; Diego, VP ; Duggirala, R ; Clarke, GD ; Blangero, J ; Meikle, PJ ; Curran, JE (FRONTIERS MEDIA SA, 2022-06-06)
    INTRODUCTION: Cardiovascular disease (CVD) is the leading cause of mortality worldwide and is the leading cause of death in the US. Lipid dysregulation is a well-known precursor to metabolic diseases, including CVD. There is a growing body of literature that suggests MRI-derived epicardial fat volume, or epicardial adipose tissue (EAT) volume, is linked to the development of coronary artery disease. Interestingly, epicardial fat is also actively involved in lipid and energy homeostasis, with epicardial adipose tissue having a greater capacity for release and uptake of free fatty acids. However, there is a scarcity of knowledge on the influence of plasma lipids on EAT volume. AIM: The focus of this study is on the identification of novel lipidomic species associated with CMRI-derived measures of epicardial fat in Mexican American individuals. METHODS: We performed lipidomic profiling on 200 Mexican American individuals. High-throughput mass spectrometry enabled rapid capture of precise lipidomic profiles, providing measures of 799 unique species from circulating plasma samples. Because of our extended pedigree design, we utilized a standard quantitative genetic linear mixed model analysis to determine whether lipids were correlated with EAT by formally testing for association between each lipid species and the CMRI epicardial fat phenotype. RESULTS: After correction for multiple testing using the FDR approach, we identified 135 lipid species showing significant association with epicardial fat. Of those, 131 lipid species were positively correlated with EAT, where increased circulating lipid levels were correlated with increased epicardial fat. Interestingly, the top 10 lipid species associated with an increased epicardial fat volume were from the deoxyceramide (Cer(m)) and triacylglycerol (TG) families. Deoxyceramides are atypical and neurotoxic sphingolipids. Triacylglycerols are an abundant lipid class and comprise the bulk of storage fat in tissues. Pathologically elevated TG and Cer(m) levels are related to CVD risk and, in our study, to EAT volume. CONCLUSION: Our results indicate that specific lipid abnormalities such as enriched saturated triacylglycerols and the presence of toxic ceramides Cer(m) in plasma of our individuals could precede CVD with increased EAT volume.
  • Item
    Thumbnail Image
    Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease
    Cadby, G ; Giles, C ; Melton, PE ; Huynh, K ; Mellett, NA ; Thy, D ; Anh, N ; Cinel, M ; Smith, A ; Olshansky, G ; Wang, T ; Brozynska, M ; Inouye, M ; McCarthy, NS ; Ariff, A ; Hung, J ; Hui, J ; Beilby, J ; Dube, M-P ; Watts, GF ; Shah, S ; Wray, NR ; Lim, WLF ; Chatterjee, P ; Martins, I ; Laws, SM ; Porter, T ; Vacher, M ; Bush, A ; Rowe, CC ; Villemagne, VL ; Ames, D ; Masters, CL ; Taddei, K ; Arnold, M ; Kastenmueller, G ; Nho, K ; Saykin, AJ ; Han, X ; Kaddurah-Daouk, R ; Martins, RN ; Blangero, J ; Meikle, PJ ; Moses, EK (NATURE PORTFOLIO, 2022-06-06)
    We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10-3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases.
  • Item
    No Preview Available
    Aberrations in circulating ceramide levels are associated with poor clinical outcomes across localised and metastatic prostate cancer
    Lin, H-M ; Huynh, K ; Kohli, M ; Tan, W ; Azad, AA ; Yeung, N ; Mahon, KL ; Mak, B ; Sutherland, PD ; Shepherd, A ; Mellett, N ; Docanto, M ; Giles, C ; Centenera, MM ; Butler, LM ; Meikle, PJ ; Horvath, LG (SPRINGERNATURE, 2021-09)
    BACKGROUND: Dysregulated lipid metabolism is associated with more aggressive pathology and poorer prognosis in prostate cancer (PC). The primary aim of the study is to assess the relationship between the plasma lipidome and clinical outcomes in localised and metastatic PC. The secondary aim is to validate a prognostic circulating 3-lipid signature specific to metastatic castration-resistant PC (mCRPC). PATIENTS AND METHODS: Comprehensive lipidomic analysis was performed on pre-treatment plasma samples from men with localised PC (N = 389), metastatic hormone-sensitive PC (mHSPC)(N = 44), or mCRPC (validation cohort, N = 137). Clinical outcomes from our previously published mCRPC cohort (N = 159) that was used to derive the prognostic circulating 3-lipid signature, were updated. Associations between circulating lipids and clinical outcomes were examined by Cox regression and latent class analysis. RESULTS: Circulating lipid profiles featuring elevated levels of ceramide species were associated with metastatic relapse in localised PC (HR 5.80, 95% CI 3.04-11.1, P = 1 × 10-6), earlier testosterone suppression failure in mHSPC (HR 3.70, 95% CI 1.37-10.0, P = 0.01), and shorter overall survival in mCRPC (HR 2.54, 95% CI 1.73-3.72, P = 1 × 10-6). The prognostic significance of circulating lipid profiles in localised PC was independent of standard clinicopathological and metabolic factors (P < 0.0002). The 3-lipid signature was verified in the mCRPC validation cohort (HR 2.39, 95% CI 1.63-3.51, P = 1 × 10-5). CONCLUSIONS: Elevated circulating ceramide species are associated with poorer clinical outcomes across the natural history of PC. These clinically actionable lipid profiles could be therapeutically targeted in prospective clinical trials to potentially improve PC outcomes.
  • Item
    Thumbnail Image
    APOE ε2 resilience for Alzheimer's disease is mediated by plasma lipid species: Analysis of three independent cohort studies
    Wang, T ; Huynh, K ; Giles, C ; Mellett, NA ; Thy, D ; Anh, N ; Lim, WLF ; Smith, AAT ; Olshansky, G ; Cadby, G ; Hung, J ; Hui, J ; Beilby, J ; Watts, GF ; Chatterjee, P ; Martins, I ; Laws, SM ; Bush, A ; Rowe, CC ; Villemagne, VL ; Ames, D ; Masters, CL ; Taddei, K ; Dore, V ; Fripp, J ; Arnold, M ; Kastenmueller, G ; Nho, K ; Saykin, AJ ; Baillie, R ; Han, X ; Martins, RN ; Moses, EK ; Kaddurah-Daouk, R ; Meikle, PJ (WILEY, 2022-11)
    INTRODUCTION: The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS: We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS: A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION: Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.
  • Item
    Thumbnail Image
    Ontogeny of circulating lipid metabolism in pregnancy and early childhood - a longitudinal population study
    Burugupalli, S ; Smith, AAT ; Oshlensky, G ; Huynh, K ; Giles, C ; Wang, T ; George, A ; Paul, S ; Nguyen, A ; Duong, T ; Mellett, N ; Cinel, M ; Mir, SA ; Chen, L ; Wenk, MR ; Karnani, N ; Collier, F ; Saffery, R ; Vuillermin, P ; Ponsonby, A-L ; Burgner, D ; Meikle, P (eLIFE SCIENCES PUBL LTD, 2022-03-02)
    BACKGROUND: There is mounting evidence that in utero and early life exposures may predispose an individual to metabolic disorders in later life; and dysregulation of lipid metabolism is critical in such outcomes. However, there is limited knowledge about lipid metabolism and factors causing lipid dysregulation in early life that could result in adverse health outcomes in later life. We studied the effect of antenatal factors such as gestational age, birth weight, and mode of birth on lipid metabolism at birth; changes in the circulating lipidome in the first 4 years of life and the effect of breastfeeding in the first year of life. From this study, we aim to generate a framework for deeper understanding into factors effecting lipid metabolism in early life, to provide early interventions for those at risk of developing metabolic disorders including cardiovascular diseases. METHODS: We performed comprehensive lipid profiling of 1074 mother-child dyads in the Barwon Infant Study (BIS), a population-based pre-birth cohort and measured 776 distinct lipid features across 39 lipid classes using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). We measured lipids in 1032 maternal serum samples at 28 weeks' gestation, 893 cord serum samples at birth, 793, 735, and 511 plasma samples at 6, 12 months, and 4 years, respectively. Cord serum was enriched with long chain poly-unsaturated fatty acids (LC-PUFAs), and corresponding cholesteryl esters relative to the maternal serum. We performed regression analyses to investigate the associations of cord serum lipid species with antenatal factors: gestational age, birth weight, mode of birth and duration of labour. RESULTS: The lipidome differed between mother and newborn and changed markedly with increasing child's age. Alkenylphosphatidylethanolamine species containing LC-PUFAs increased with child's age, whereas the corresponding lysophospholipids and triglycerides decreased. Majority of the cord serum lipids were strongly associated with gestational age and birth weight, with most lipids showing opposing associations. Each mode of birth showed an independent association with cord serum lipids. Breastfeeding had a significant impact on the plasma lipidome in the first year of life, with up to 17-fold increases in a few species of alkyldiaclylglycerols at 6 months of age. CONCLUSIONS: This study sheds light on lipid metabolism in infancy and early childhood and provide a framework to define the relationship between lipid metabolism and health outcomes in early childhood. FUNDING: This work was supported by the A*STAR-NHMRC joint call funding (1711624031).
  • Item
    Thumbnail Image
    Macrophage polarization state affects lipid composition and the channeling of exogenous fatty acids into endogenous lipid pools
    Morgan, PK ; Huynh, K ; Pernes, G ; Miotto, PM ; Mellett, NA ; Giles, C ; Meikle, PJ ; Murphy, AJ ; Lancaster, G (ELSEVIER, 2021-12)
    Adipose-tissue-resident macrophages (ATMs) maintain metabolic homeostasis but also contribute to obesity-induced adipose tissue inflammation and metabolic dysfunction. Central to these contrasting effects of ATMs on metabolic homeostasis is the interaction of macrophages with fatty acids. Fatty acid levels are increased within adipose tissue in various pathological and physiological conditions, but appear to initiate inflammatory responses only upon interaction with particular macrophage subsets within obese adipose tissue. The molecular basis underlying these divergent outcomes is likely due to phenotypic differences between ATM subsets, although how macrophage polarization state influences the metabolism of exogenous fatty acids is relatively unknown. Herein, using stable isotope-labeled and nonlabeled fatty acids in combination with mass spectrometry lipidomics, we show marked differences in the utilization of exogenous fatty acids within inflammatory macrophages (M1 macrophages) and macrophages involved in tissue homeostasis (M2 macrophages). Specifically, the accumulation of exogenous fatty acids within triacylglycerols and cholesterol esters is significantly higher in M1 macrophages, while there is an increased enrichment of exogenous fatty acids within glycerophospholipids, ether lipids, and sphingolipids in M2 macrophages. Finally, we show that functionally distinct ATM populations in vivo have distinct lipid compositions. Collectively, this study identifies new aspects of the metabolic reprogramming that occur in distinct macrophage polarization states. The channeling of exogenous fatty acids into particular lipid synthetic pathways may contribute to the sensitivity/resistance of macrophage subsets to the inflammatory effects of increased environmental fatty acid levels.
  • Item
    Thumbnail Image
    Differential regulation of sphingolipid metabolism in plasma, hippocampus, and cerebral cortex of mice administered sphingolipid modulating agents
    Giles, C ; Takechi, R ; Mellett, NA ; Meikle, PJ ; Dhaliwal, S ; Mamo, JC (WILEY, 2017-05)
    Accumulation of ceramide is implicated in mediating the cellular responses to stress and aberrant sphingolipid metabolism is frequently associated with metabolic and neurodegenerative diseases. It is often assumed that (i) peripheral disturbances in sphingolipid concentrations are reflective of processes occurring in the brain, or (ii) circulating sphingolipids directly influence cerebral sphingolipid abundance. In order to address these assumptions, this study explores, in a physiological system, the metabolic pathways regulating sphingolipid metabolism in the brain and plasma of mice. Male C57Bl/6 were maintained on a low fat (control diet) or saturated fat enriched (SFA) diet with, or without the provision of sphingolipid modulating agents. Following 6 months of feeding, the abundance of seven sphingolipid classes was assessed by LC-ESI-MS/MS in the hippocampus (HPF), cerebral cortex (CTX), and plasma. Long-term consumption of the SFA diet increased ceramide and dihydroceramide in the plasma. Inhibiting de novo synthesis ameliorated this effect, while inhibition of acidic sphingomyelinase, or the sphingosine-1-phosphate receptor agonist did not. SFA feeding did not influence sphingolipid levels in either the HPF or CTX. De novo synthesis inhibition reduced ceramide in the CTX, while treatment with a sphingosine-1-phosphate receptor agonist reduced ceramides in the HPF. Analysis of the individual ceramide species revealed the effects were chain-length dependent. Both positive and negative correlations were observed between plasma and HPF/CTX ceramide species. The findings in this study show that HPF and CTX sphingolipid concentration are influenced by distinct pathways, independent of peripheral sphingolipid concentration.
  • Item
    Thumbnail Image
    Clinical lipidomics: realizing the potential of lipid profiling
    Meikle, TG ; Huynh, K ; Giles, C ; Meikle, PJ (ELSEVIER, 2021)
    Dysregulation of lipid metabolism plays a major role in the etiology and sequelae of inflammatory disorders, cardiometabolic and neurological diseases, and several forms of cancer. Recent advances in lipidomic methodology allow comprehensive lipidomic profiling of clinically relevant biological samples, enabling researchers to associate lipid species and metabolic pathways with disease onset and progression. The resulting data serve not only to advance our fundamental knowledge of the underlying disease process but also to develop risk assessment models to assist in the diagnosis and management of disease. Currently, clinical applications of in-depth lipidomic profiling are largely limited to the use of research-based protocols in the analysis of population or clinical sample sets. However, we foresee the development of purpose-built clinical platforms designed for continuous operation and clinical integration-assisting health care providers with disease risk assessment, diagnosis, and monitoring. Herein, we review the current state of clinical lipidomics, including the use of research-based techniques and platforms in the analysis of clinical samples as well as assays already available to clinicians. With a primary focus on MS-based strategies, we examine instrumentation, analysis techniques, statistical models, prospective design of clinical platforms, and the possible pathways toward implementation of clinical lipidomics.