Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    The use of microarray technology for the analysis of Streptococcus pneumoniae
    McCluskey, J ; Dowson, CG ; Mitchell, TJ (JOHN WILEY & SONS LTD, 2002-08)
    Streptococcus pneumoniae is an important human pathogen associated with pneumonia, septicaemia, meningitis and otitis media. It is estimated to result in over 3 million child deaths worldwide every year and an even greater number of deaths among the elderly. Prior to the complete sequencing of the genomes of S. pneumoniae TIGR4 (serotype 4) and S. pneumoniae R6 (serotype 2), we designed a custom miniarray consisting of 497 pneumococcal genes. The overall objectives of our microarray investigations were, first, to assess the genetic diversity between different S. pneumoniae serotypes, clinical isolates and also different Streptococcus species; second, we aimed to use microarray technology to examine the mechanisms by which environmental factors influence pneumococcal gene expression, and ultimately to further the understanding of how these changes in gene expression are achieved and how they may alter the virulence of the organism.
  • Item
    Thumbnail Image
    Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition
    Archbold, JK ; Macdonald, WA ; Gras, S ; Ely, LK ; Miles, JJ ; Bell, MJ ; Brennan, RM ; Beddoe, T ; Wilce, MCJ ; Clements, CS ; Purcell, AW ; McCluskey, J ; Burrows, SR ; Rossjohn, J (ROCKEFELLER UNIV PRESS, 2009-01-16)
    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR-HLA-B*4405(EENLLDFVRF) complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.
  • Item
    Thumbnail Image
    A minimal binding footprint on CD1d-glycolipid is a basis for selection of the unique human NKT TCR
    Wun, KS ; Borg, NA ; Kjer-Nielsen, L ; Beddoe, T ; Koh, R ; Richardson, SK ; Thakur, M ; Howell, AR ; Scott-Browne, JP ; Gapin, L ; Godfrey, DI ; McCluskey, J ; Rossjohn, J (ROCKEFELLER UNIV PRESS, 2008-04-14)
    Although it has been established how CD1 binds a variety of lipid antigens (Ag), data are only now emerging that show how alphabeta T cell receptors (TCRs) interact with CD1-Ag. Using the structure of the human semiinvariant NKT TCR-CD1d-alpha-galactosylceramide (alpha-GalCer) complex as a guide, we undertook an alanine scanning mutagenesis approach to define the energetic basis of this interaction between the NKT TCR and CD1d. Moreover, we explored how analogues of alpha-GalCer affected this interaction. The data revealed that an identical energetic footprint underpinned the human and mouse NKT TCR-CD1d-alpha-GalCer cross-reactivity. Some, but not all, of the contact residues within the Jalpha18-encoded invariant CDR3alpha loop and Vbeta11-encoded CDR2beta loop were critical for recognizing CD1d. The residues within the Valpha24-encoded CDR1alpha and CDR3alpha loops that contacted the glycolipid Ag played a smaller energetic role compared with the NKT TCR residues that contacted CD1d. Collectively, our data reveal that the region distant to the protruding Ag and directly above the F' pocket of CD1d was the principal factor in the interaction with the NKT TCR. Accordingly, although the structural footprint at the NKT TCR-CD1d-alpha-GalCer is small, the energetic footprint is smaller still, and reveals the minimal requirements for CD1d restriction.
  • Item
    Thumbnail Image
    The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation
    Tynan, FE ; Elhassen, D ; Purcell, AW ; Burrows, JM ; Borg, NA ; Miles, JJ ; Williamson, NA ; Green, KJ ; Tellam, J ; Kjer-Nielsen, L ; McCluskey, J ; Rossjohn, J ; Burrows, SR (ROCKEFELLER UNIV PRESS, 2005-11-07)
    Thousands of potentially antigenic peptides are encoded by an infecting pathogen; however, only a small proportion induce measurable CD8(+) T cell responses. To investigate the factors that control peptide immunogenicity, we have examined the cytotoxic T lymphocyte (CTL) response to a previously undefined epitope ((77)APQPAPENAY(86)) from the BZLF1 protein of Epstein-Barr virus (EBV). This peptide binds well to two human histocompatibility leukocyte antigen (HLA) allotypes, HLA-B*3501 and HLA-B*3508, which differ by a single amino acid at position 156 ((156)Leucine vs. (156)Arginine, respectively). Surprisingly, only individuals expressing HLA-B*3508 show evidence of a CTL response to the (77)APQPAPENAY(86) epitope even though EBV-infected cells expressing HLA-B*3501 process and present similar amounts of peptide for CTL recognition, suggesting that factors other than peptide presentation levels are influencing immunogenicity. Functional and structural analysis revealed marked conformational differences in the peptide, when bound to each HLA-B35 allotype, that are dictated by the polymorphic HLA residue 156 and that directly affected T cell receptor recognition. These data indicate that the immunogenicity of an antigenic peptide is influenced not only by how well the peptide binds to major histocompatibility complex (MHC) molecules but also by its bound conformation. It also illustrates a novel mechanism through which MHC polymorphism can further diversify the immune response to infecting pathogens.