Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Load response and gap formation in a single-row cruciate suture rotator cuff repair
    Huntington, L ; Richardson, M ; Sobol, T ; Caldow, J ; Ackland, DC (WILEY, 2017-06)
    BACKGROUND: Double-row rotator cuff tendon repair techniques may provide superior contact area and strength compared with single-row repairs, but are associated with higher material expenses and prolonged operating time. The purpose of this study was to evaluate gap formation, ultimate tensile strength and stiffness of a single-row cruciate suture rotator cuff repair construct, and to compare these results with those of the Mason-Allen and SutureBridge repair constructs. METHODS: Infraspinatus tendons from 24 spring lamb shoulders were harvested and allocated to cruciate suture, Mason-Allen and SutureBridge repair groups. Specimens were loaded cyclically between 10 and 62 N for 200 cycles, and gap formation simultaneously measured using a high-speed digital camera. Specimens were then loaded in uniaxial tension to failure, and construct stiffness and repair strength were evaluated. RESULTS: Gap formation in the cruciate suture repair was significantly lower than that of the Mason-Allen repair (mean difference = 0.6 mm, P = 0.009) and no different from that of the SutureBridge repair (P > 0.05). Both the cruciate suture repair (mean difference = 15.7 N/mm, P = 0.002) and SutureBridge repair (mean difference = 15.8 N/mm, P = 0.034) were significantly stiffer than that of the Mason-Allen repair; however, no significant differences in ultimate tensile strength between repair groups were discerned (P > 0.05). CONCLUSION: The cruciate suture repair construct, which may represent a simple and cost-effective alternative to double-row and double-row equivalent rotator cuff repairs, has comparable biomechanical strength and integrity with that of the SutureBridge repair, and may result in improved construct longevity and tendon healing compared with the Mason-Allen repair.
  • Item
    Thumbnail Image
    Biomechanical performance of an intramedullary Echidna pin for fixation of comminuted mid-shaft clavicle fractures
    Sidhu, N ; Huntington, LS ; Richardson, M ; Ackland, DC (Wiley, 2019-10-01)
    Surgical fixation of comminuted mid‐shaft clavicle fractures commonly employs intramedullary devices; however, pins with smooth surfaces are prone to migration, whilst threaded pins can be challenging to remove post‐operatively. The aim of this study was to evaluate the biomechanical performance of fractured clavicles repaired using a novel intramedullary Echidna pin device and a non‐threaded Knowles pin. The Echidna pin features retractable spines that engage with the bone to minimize migration and facilitate ease of device removal.
  • Item
    Thumbnail Image
    Muscle and Joint Function After Anatomic and Reverse Total Shoulder Arthroplasty Using a Modular Shoulder Prosthesis
    Ackland, DC ; Wu, W ; Thomas, R ; Patel, M ; Page, R ; Sangeux, M ; Richardson, M (John Wiley & Sons, Inc., 2019-09-01)
    Changes in joint architecture and muscle loading resulting from total shoulder arthroplasty (TSA) and reverse total shoulder arthroplasty (RSA) are known to influence joint stability and prosthesis survivorship. This study aimed to measure changes in muscle moment arms, muscle lines of action, as well as muscle and joint loading following TSA and RSA using a metal‐backed uncemented modular shoulder prosthesis. Eight cadaveric upper extremities were assessed using a customized testing rig. Abduction, flexion, and axial rotation muscle moment arms were quantified using the tendon‐excursion method, and muscle line‐of‐force directions evaluated radiographically pre‐operatively, and after TSA and revision RSA. Specimen‐specific musculoskeletal models were used to estimate muscle and joint loading pre‐ and post‐operatively. TSA lateralized the glenohumeral joint center by 4.3 ± 3.2 mm, resulting in small but significant increases in middle deltoid force (2.0%BW) and joint compression during flexion (2.1%BW) (p < 0.05). Revision RSA significantly increased the moment arms of the major abductors, flexors, adductors, and extensors, and reduced their peak forces (p < 0.05). The superior inclination of the deltoid significantly increased while the inferior inclination of the rotator cuff muscles decreased (p < 0.05). TSA using an uncemented metal‐backed modular shoulder prosthesis effectively restores native joint function; however, lateralization of the glenoid component should be minimized intra‐operatively to mitigate increased glenohumeral joint loading and polyethylene liner contact stresses. Revision RSA reduces muscle forces required during shoulder function but produces greater superior joint shear force and less joint compression. The findings may help to guide component selection and placement to mitigate joint instability after arthroplasty.
  • Item
    Thumbnail Image
    The influence of rotator cuff tears on muscle and joint-contact loading after reverse total shoulder arthroplasty
    Ackland, DC ; Robinson, DL ; Wilkosz, A ; Wu, W ; Richardson, M ; Lee, P ; Tse, KM (WILEY, 2019-01)
  • Item
    Thumbnail Image
    An intramedullary Echidna pin for fixation of comminuted clavicle fractures: a biomechanical study
    Ackland, D ; Griggs, I ; Hislop, P ; Wu, W ; Patel, M ; Richardson, M (BMC, 2017-08-11)
    BACKGROUND: Intramedullary fixation of comminuted mid-shaft clavicle fractures has traditionally been employed with satisfactory clinical outcomes; however, pins with smooth surfaces may protrude from the bone and are prone to migration, while some threaded pins are difficult to remove post-operatively. The aim of this proof-of-concept study was to develop and evaluate the biomechanical strength of a novel intramedullary Echidna pin device designed to maintain fracture reduction, resist migration and facilitate ease of post-operative removal. METHODS: Thirty human clavicle specimens were harvested and fractured in a comminuted mid-shaft butterfly configuration. Each specimen was randomly allocated to three surgical repair groups including intramedullary fixation using the Echidna pin and Herbert Cannulated Bone Screw System, as well as plate fixation using bi-cortical locking screws. Using a biomechanical testing apparatus, construct bending and torsional stiffness were measured, as well as ultimate bending strength. RESULTS: There was no significant difference in torsional stiffness and ultimate bending moment between the Echidna pin and Herbert screw repair constructs (p > 0.05); however, the Echidna pin construct demonstrated a significantly greater bending stiffness compared to that of the Herbert screw construct (mean difference 0.55 Nm/deg., p = 0.001). The plate construct demonstrated significantly greater torsional stiffness, bending stiffness and ultimate bending moment compared to those of the Herbert screw and Echidna pin (p < 0.05). CONCLUSIONS: An intramedullary Echidna pin device was designed to stabilize comminuted fractures of the clavicle, maintain fracture compression and provide ease of removal post-operatively. Since the results suggest equivalent or superior torsional and bending stability in the Echidna pin compared to that of the Herbert screw, the Echidna pin concept may represent an alternative fixation device to conventional intramedullary screws, nails and pins; however, superior plating using bi-cortical locking screws provides substantially higher construct structural rigidity than intramedullary devices, and may therefore be useful in cases of osteoporotic bone, or where high fracture stability is required.
  • Item
    Thumbnail Image
    Occlusion of the lumbar spine canal during high-rate axial compression
    Robinson, DL ; Tse, KM ; Franklyn, M ; Ackland, DC ; Richardson, MD ; Lee, PVS (ELSEVIER SCIENCE INC, 2020-10)
    BACKGROUND CONTEXT: While burst fracture is a well-known cause of spinal canal occlusion with dynamic, axial spinal compression, it is unclear how such loading mechanisms might cause occlusion without fracture. PURPOSE: To determine how spinal canal occlusion during dynamic compression of the lumbar spine is differentially caused by fracture or mechanisms without fracture and to examine the influence of spinal level on occlusion. STUDY DESIGN: A cadaveric biomechanical study. METHODS: Twenty sets of three-vertebrae specimens from all spinal levels between T12 and S1 were subjected to dynamic compression using a hydraulic loading apparatus up to a peak velocity between 0.1 and 0.9 m/s. The presence of canal occlusion was measured optically with a high-speed camera. This was repeated with incremental increases of 4% compressive strain until a vertebral fracture was detected using acoustic emission measurements and computed tomographic imaging. RESULTS: For axial compression without fracture, the peak occlusion (Omax) was 29.9±10.0%, which was deduced to be the result of posterior bulging of the intervertebral disc into the spinal canal. Omax correlated significantly with lumbar spinal level (p<.001), the compressive displacement (p<.001) and the cross-sectional area of the vertebra (p=.031). CONCLUSIONS: Spinal canal occlusion observed without vertebral fracture involves intervertebral disc bulging. The lower lumbar spine tended to be more severely occluded than more proximal levels. CLINICAL SIGNIFICANCE: Clinically, intermittent canal occlusion from disc bulging during dynamic compression may not show any radiographic features. The lower lumbar spine should be a focus of injury prevention intervention in cases of high-rate axial compression.