Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 60
  • Item
    Thumbnail Image
    Extracellular vesicles from early stage Plasmodium falciparum-infected red blood cells contain PfEMP1 and induce transcriptional changes in human monocytes
    Sampaio, NG ; Emery, SJ ; Garnham, AL ; Tan, QY ; Sisquella, X ; Pimentel, MA ; Jex, AR ; Regev-Rudzki, N ; Schofield, L ; Eriksson, EM (WILEY-HINDAWI, 2018-05)
    Pathogens can release extracellular vesicles (EVs) for cell-cell communication and host modulation. EVs from Plasmodium falciparum, the deadliest malaria parasite species, can transfer drug resistance genes between parasites. EVs from late-stage parasite-infected RBC (iRBC-EVs) are immunostimulatory and affect endothelial cell permeability, but little is known about EVs from early stage iRBC. We detected the parasite virulence factor PfEMP1, which is responsible for iRBC adherence and a major contributor to disease severity, in EVs, only up to 12-hr post-RBC invasion. Furthermore, using PfEMP1 transport knockout parasites, we determined that EVs originated from inside the iRBC rather than the iRBC surface. Proteomic analysis detected 101 parasite and 178 human proteins in iRBC-EVs. Primary human monocytes stimulated with iRBC-EVs released low levels of inflammatory cytokines and showed transcriptomic changes. Stimulation with iRBC-EVs from PfEMP1 knockout parasites induced more gene expression changes and affected pathways involved in defence response, stress response, and response to cytokines, suggesting a novel function of PfEMP1 when present in EVs. We show for the first time the presence of PfEMP1 in early stage P. falciparum iRBC-EVs and the effects of these EVs on primary human monocytes, uncovering a new mechanism of potential parasite pathogenesis and host interaction.
  • Item
    Thumbnail Image
    New species of Cloacina von Linstow, 1898 (Nematoda: Strongyloidea) parasitic in the stomachs of wallaroos, Osphranter spp. (Marsupialia: Macropodidae) from northern Australia
    Beveridge, I ; Jex, A ; Tan, N ; Jabbar, A (SPRINGER, 2018-07)
    Three new species of the parasitic nematode genus Cloacina von Linstow, 1898 (Strongyloidea: Cloacininae) are described from the stomachs of wallaroos, Osphranter spp. (Marsupialia: Macropodidae), from northern Australia. Cloacina spearei n. sp. is described from O. robustus woodwardi (Thomas) and O. antilopinus (Gould) and is distinguished from congeners by the shape of the cephalic papillae, the shallow buccal capsule, the presence of an oesophageal denticle and the convoluted but non-recurrent vagina in the female. Cloacina longibursata n. sp. also from O. robustus woodwardi and O. antilopinus is distinguished from congeners by the elongate dorsal lobe of the bursa, with the origin of the lateral branchlets posterior to the principal bifurcation, in the features of the spicule tip, the lack of bosses lining the oesophagus and the absence of an oesophageal denticle. Cloacina crassicaudata n. sp., from the same two host species was formerly identified as C. cornuta (Davey & Wood, 1938). Differences in the cephalic cuticle (inflation lacking in the new species), the shape of the cephalic papillae, the dorsal oesophageal tooth and the spicule tips, as well as differences in the sequences of the internal transcribed spacers of the nuclear ribosomal DNA, indicate that this is an independent species. The geographical distribution of this species is disjunct with populations in both the Northern Territory and Queensland. Possible reasons for the disjunct distribution are discussed.
  • Item
    Thumbnail Image
    A communal catalogue reveals Earth's multiscale microbial diversity
    Thompson, LR ; Sanders, JG ; McDonald, D ; Amir, A ; Ladau, J ; Locey, KJ ; Prill, RJ ; Tripathi, A ; Gibbons, SM ; Ackermann, G ; Navas-Molina, JA ; Janssen, S ; Kopylova, E ; Vazquez-Baeza, Y ; Gonzalez, A ; Morton, JT ; Mirarab, S ; Xu, ZZ ; Jiang, L ; Haroon, MF ; Kanbar, J ; Zhu, Q ; Song, SJ ; Kosciolek, T ; Bokulich, NA ; Lefler, J ; Brislawn, CJ ; Humphrey, G ; Owens, SM ; Hampton-Marcell, J ; Berg-Lyons, D ; McKenzie, V ; Fierer, N ; Fuhrman, JA ; Clauset, A ; Stevens, RL ; Shade, A ; Pollard, KS ; Goodwin, KD ; Jansson, JK ; Gilbert, JA ; Knight, R ; Rivera, JLA ; Al-Moosawi, L ; Alverdy, J ; Amato, KR ; Andras, J ; Angenent, LT ; Antonopoulos, DA ; Apprill, A ; Armitage, D ; Ballantine, K ; Barta, J ; Baum, JK ; Berry, A ; Bhatnagar, A ; Bhatnagar, M ; Biddle, JF ; Bittner, L ; Boldgiv, B ; Bottos, E ; Boyer, DM ; Braun, J ; Brazelton, W ; Brearley, FQ ; Campbell, AH ; Caporaso, JG ; Cardona, C ; Carroll, J ; Cary, SC ; Casper, BB ; Charles, TC ; Chu, H ; Claar, DC ; Clark, RG ; Clayton, JB ; Clemente, JC ; Cochran, A ; Coleman, ML ; Collins, G ; Colwell, RR ; Contreras, M ; Crary, BB ; Creer, S ; Cristol, DA ; Crump, BC ; Cui, D ; Daly, SE ; Davalos, L ; Dawson, RD ; Defazio, J ; Delsuc, F ; Dionisi, HM ; Dominguez-Bello, MG ; Dowell, R ; Dubinsky, EA ; Dunn, PO ; Ercolini, D ; Espinoza, RE ; Ezenwa, V ; Fenner, N ; Findlay, HS ; Fleming, ID ; Fogliano, V ; Forsman, A ; Freeman, C ; Friedman, ES ; Galindo, G ; Garcia, L ; Alexandra Garcia-Amado, M ; Garshelis, D ; Gasser, RB ; Gerdts, G ; Gibson, MK ; Gifford, I ; Gill, RT ; Giray, T ; Gittel, A ; Golyshin, P ; Gong, D ; Grossart, H-P ; Guyton, K ; Haig, S-J ; Hale, V ; Hall, RS ; Hallam, SJ ; Handley, KM ; Hasan, NA ; Haydon, SR ; Hickman, JE ; Hidalgo, G ; Hofmockel, KS ; Hooker, J ; Hulth, S ; Hultman, J ; Hyde, E ; Ibanez-Alamo, JD ; Jastrow, JD ; Jex, AR ; Johnson, LS ; Johnston, ER ; Joseph, S ; Jurburg, SD ; Jurelevicius, D ; Karlsson, A ; Karlsson, R ; Kauppinen, S ; Kellogg, CTE ; Kennedy, SJ ; Kerkhof, LJ ; King, GM ; Kling, GW ; Koehler, AV ; Krezalek, M ; Kueneman, J ; Lamendella, R ; Landon, EM ; Lane-deGraaf, K ; LaRoche, J ; Larsen, P ; Laverock, B ; Lax, S ; Lentino, M ; Levin, II ; Liancourt, P ; Liang, W ; Linz, AM ; Lipson, DA ; Liu, Y ; Lladser, ME ; Lozada, M ; Spirito, CM ; MacCormack, WP ; MacRae-Crerar, A ; Magris, M ; Martin-Platero, AM ; Martin-Vivaldi, M ; Margarita Martinez, L ; Martinez-Bueno, M ; Marzinelli, EM ; Mason, OU ; Mayer, GD ; McDevitt-Irwin, JM ; McDonald, JE ; McGuire, KL ; McMahon, KD ; McMinds, R ; Medina, M ; Mendelson, JR ; Metcalf, JL ; Meyer, F ; Michelangeli, F ; Miller, K ; Mills, DA ; Minich, J ; Mocali, S ; Moitinho-Silva, L ; Moore, A ; Morgan-Kiss, RM ; Munroe, P ; Myrold, D ; Neufeld, JD ; Ni, Y ; Nicol, GW ; Nielsen, S ; Nissimov, JI ; Niu, K ; Nolan, MJ ; Noyce, K ; O'Brien, SL ; Okamoto, N ; Orlando, L ; Castellano, YO ; Osuolale, O ; Oswald, W ; Parnell, J ; Peralta-Sanchez, JM ; Petraitis, P ; Pfister, C ; Pilon-Smits, E ; Piombino, P ; Pointing, SB ; Pollock, FJ ; Potter, C ; Prithiviraj, B ; Quince, C ; Rani, A ; Ranjan, R ; Rao, S ; Rees, AP ; Richardson, M ; Riebesell, U ; Robinson, C ; Rockne, KJ ; Rodriguezl, SM ; Rohwer, F ; Roundstone, W ; Safran, RJ ; Sangwan, N ; Sanz, V ; Schrenk, M ; Schrenzel, MD ; Scott, NM ; Seger, RL ; Seguin-Orlando, A ; Seldin, L ; Seyler, LM ; Shakhsheer, B ; Sheets, GM ; Shen, C ; Shi, Y ; Shin, H ; Shogan, BD ; Shutler, D ; Siegel, J ; Simmons, S ; Sjoling, S ; Smith, DP ; Soler, JJ ; Sperling, M ; Steinberg, PD ; Stephens, B ; Stevens, MA ; Taghavi, S ; Tai, V ; Tait, K ; Tan, CL ; Tas, N ; Taylor, DL ; Thomas, T ; Timling, I ; Turner, BL ; Urich, T ; Ursell, LK ; van der Lelie, D ; Van Treuren, W ; van Zwieten, L ; Vargas-Robles, D ; Thurber, RV ; Vitaglione, P ; Walker, DA ; Walters, WA ; Wang, S ; Wang, T ; Weaver, T ; Webster, NS ; Wehrle, B ; Weisenhorn, P ; Weiss, S ; Werner, JJ ; West, K ; Whitehead, A ; Whitehead, SR ; Whittingham, LA ; Willerslev, E ; Williams, AE ; Wood, SA ; Woodhams, DC ; Yang, Y ; Zaneveld, J ; Zarraonaindia, I ; Zhang, Q ; Zhao, H (NATURE PORTFOLIO, 2017-11-23)
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.
  • Item
    No Preview Available
    The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus
    Schwarz, EM ; Korhonen, PK ; Campbell, BE ; Young, ND ; Jex, AR ; Jabbar, A ; Hall, RS ; Mondal, A ; Howe, AC ; Pell, J ; Hofmann, A ; Boag, PR ; Zhu, X-Q ; Gregory, TR ; Loukas, A ; Williams, BA ; Antoshechkin, I ; Brown, CT ; Sternberg, PW ; Gasser, RB (BMC, 2013)
    BACKGROUND: The barber's pole worm, Haemonchus contortus, is one of the most economically important parasites of small ruminants worldwide. Although this parasite can be controlled using anthelmintic drugs, resistance against most drugs in common use has become a widespread problem. We provide a draft of the genome and the transcriptomes of all key developmental stages of H. contortus to support biological and biotechnological research areas of this and related parasites. RESULTS: The draft genome of H. contortus is 320 Mb in size and encodes 23,610 protein-coding genes. On a fundamental level, we elucidate transcriptional alterations taking place throughout the life cycle, characterize the parasite's gene silencing machinery, and explore molecules involved in development, reproduction, host-parasite interactions, immunity, and disease. The secretome of H. contortus is particularly rich in peptidases linked to blood-feeding activity and interactions with host tissues, and a diverse array of molecules is involved in complex immune responses. On an applied level, we predict drug targets and identify vaccine molecules. CONCLUSIONS: The draft genome and developmental transcriptome of H. contortus provide a major resource to the scientific community for a wide range of genomic, genetic, proteomic, metabolomic, evolutionary, biological, ecological, and epidemiological investigations, and a solid foundation for biotechnological outcomes, including new anthelmintics, vaccines and diagnostic tests. This first draft genome of any strongylid nematode paves the way for a rapid acceleration in our understanding of a wide range of socioeconomically important parasites of one of the largest nematode orders.
  • Item
    Thumbnail Image
    Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities
    Sinha, R ; Pearson, LA ; Davis, TW ; Muenchhoff, J ; Pratama, R ; Jex, A ; Burford, MA ; Neilan, BA (BMC, 2014-01-29)
    BACKGROUND: Cylindrospermopsis raciborskii is an invasive filamentous freshwater cyanobacterium, some strains of which produce toxins. Sporadic toxicity may be the result of gene deletion events, the horizontal transfer of toxin biosynthesis gene clusters, or other genomic variables, yet the evolutionary drivers for cyanotoxin production remain a mystery. Through examining the genomes of toxic and non-toxic strains of C. raciborskii, we hoped to gain a better understanding of the degree of similarity between these strains of common geographical origin, and what the primary differences between these strains might be. Additionally, we hoped to ascertain why some cyanobacteria possess the cylindrospermopsin biosynthesis (cyr) gene cluster and produce toxin, while others do not. It has been hypothesised that toxicity or lack thereof might confer a selective advantage to cyanobacteria under certain environmental conditions. RESULTS: In order to examine the fundamental differences between toxic and non-toxic C. raciborskii strains, we sequenced the genomes of two closely related isolates, CS-506 (CYN+) and CS-509 (CYN-) sourced from different lakes in tropical Queensland, Australia. These genomes were then compared to a third (reference) genome from C. raciborskii CS-505 (CYN+). Genome sizes were similar across all three strains and their G + C contents were almost identical. At least 2,767 genes were shared among all three strains, including the taxonomically important rpoc1, ssuRNA, lsuRNA, cpcA, cpcB, nifB and nifH, which exhibited 99.8-100% nucleotide identity. Strains CS-506 and CS-509 contained at least 176 and 101 strain-specific (or non-homologous) genes, respectively, most of which were associated with DNA repair and modification, nutrient uptake and transport, or adaptive measures such as osmoregulation. However, the only significant genetic difference observed between the two strains was the presence or absence of the cylindrospermopsin biosynthesis gene cluster. Interestingly, we also identified a cryptic secondary metabolite gene cluster in strain CS-509 (CYN-) and a second cryptic cluster common to CS-509 and the reference strain, CS-505 (CYN+). CONCLUSIONS: Our results confirm that the most important factor contributing to toxicity in C. raciborskii is the presence or absence of the cyr gene cluster. We did not identify any other distally encoded genes or gene clusters that correlate with CYN production. The fact that the additional genomic differences between toxic and non-toxic strains were primarily associated with stress and adaptation genes suggests that CYN production may be linked to these physiological processes.
  • Item
    Thumbnail Image
    Proteomic Analysis of the Excretory-Secretory Products from Larval Stages of Ascaris suum Reveals High Abundance of Glycosyl Hydrolases
    Wang, T ; Van Steendam, K ; Dhaenens, M ; Vlaminck, J ; Deforce, D ; Jex, AR ; Gasser, RB ; Geldhof, P ; Sripa, B (PUBLIC LIBRARY SCIENCE, 2013-10)
    BACKGROUND: Ascaris lumbricoides and Ascaris suum are socioeconomically important and widespread parasites of humans and pigs, respectively. The excretory-secretory (ES) molecules produced and presented at the parasite-host interface during the different phases of tissue invasion and migration are likely to play critical roles in the induction and development of protective immune and other host responses. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to identify the ES proteins of the different larval stages (L3-egg, L3-lung and L4) by LC-MS/MS. In total, 106 different proteins were identified, 20 in L3-egg, 45 in L3-lung stage and 58 in L4. Although most of the proteins identified were stage-specific, 15 were identified in the ES products of at least two stages. Two proteins, i.e. a 14-3-3-like protein and a serpin-like protein, were present in the ES products from the three different larval stages investigated. Interestingly, a comparison of ES products from L4 with those of L3-egg and L3-lung showed an abundance of metabolic enzymes, particularly glycosyl hydrolases. Further study indicated that most of these glycolytic enzymes were transcriptionally upregulated from L4 onwards, with a peak in the adult stage, particularly in intestinal tissue. This was also confirmed by enzymatic assays, showing the highest glycosidase activity in protein extracts from adult worms gut. CONCLUSIONS/SIGNIFICANCE: The present proteomic analysis provides important information on the host-parasite interaction and the biology of the migratory stages of A. suum. In particular, the high transcriptional upregulation of glycosyl hydrolases from the L4 stage onwards reveals that the degradation of complex carbohydrates forms an essential part of the energy metabolism of this parasite once it establishes in the small intestine.
  • Item
    Thumbnail Image
    The mitochondrial genome of Protostrongylus rufescens - implications for population and systematic studies
    Jabbar, A ; Mohandas, N ; Jex, AR ; Gasser, RB (BMC, 2013-09-12)
    BACKGROUND: Protostrongylus rufescens is a metastrongyloid nematode of small ruminants, such as sheep and goats, causing protostrongylosis. In spite of its importance, the ecology and epidemiology of this parasite are not entirely understood. In addition, genetic data are scant for P. rufescens and related metastrongyloids. METHODS: The mt genome was amplified from a single adult worm of P. rufescens (from sheep) by long-PCR, sequenced using 454-technology and annotated using bioinformatic tools. Amino acid sequences inferred from individual genes of the mt genomes were concatenated and subjected to phylogenetic analysis using Bayesian inference. RESULTS: The circular mitochondrial genome was 13,619 bp in length and contained two ribosomal RNA, 12 protein-coding and 22 transfer RNA genes, consistent with nematodes of the order Strongylida for which mt genomes have been determined. Phylogenetic analysis of the concatenated amino acid sequence data for the 12 mt proteins showed that P. rufescens was closely related to Aelurostrongylus abstrusus, Angiostrongylus vasorum, Angiostrongylus cantonensis and Angiostrongylus costaricensis. CONCLUSIONS: The mt genome determined herein provides a source of markers for future investigations of P. rufescens. Molecular tools, employing such mt markers, are likely to find applicability in studies of the population biology of this parasite and the systematics of lungworms.
  • Item
    Thumbnail Image
    Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective
    Roeber, F ; Jex, AR ; Gasser, RB (BMC, 2013-05-27)
    Parasitic nematodes (roundworms) of small ruminants and other livestock have major economic impacts worldwide. Despite the impact of the diseases caused by these nematodes and the discovery of new therapeutic agents (anthelmintics), there has been relatively limited progress in the development of practical molecular tools to study the epidemiology of these nematodes. Specific diagnosis underpins parasite control, and the detection and monitoring of anthelmintic resistance in livestock parasites, presently a major concern around the world. The purpose of the present article is to provide a concise account of the biology and knowledge of the epidemiology of the gastrointestinal nematodes (order Strongylida), from an Australian perspective, and to emphasize the importance of utilizing advanced molecular tools for the specific diagnosis of nematode infections for refined investigations of parasite epidemiology and drug resistance detection in combination with conventional methods. It also gives a perspective on the possibility of harnessing genetic, genomic and bioinformatic technologies to better understand parasites and control parasitic diseases.
  • Item
    Thumbnail Image
    A Molecular Diagnostic Tool to Replace Larval Culture in Conventional Faecal Egg Count Reduction Testing in Sheep
    Roeber, F ; Larsen, JWA ; Anderson, N ; Campbell, AJD ; Anderson, GA ; Gasser, RB ; Jex, AR ; Diemert, DJ (PUBLIC LIBRARY SCIENCE, 2012-05-22)
    The accurate diagnosis of parasitic nematode infections in livestock (including sheep and goats) is central to their effective control and the detection of the anthelmintic resistance. Traditionally, the faecal egg count reduction test (FECRT), combined with the technique of larval culture (LC), has been used widely to assess drug-susceptibility/resistance in strongylid nematodes. However, this approach suffers from a lack of specificity, sensitivity and reliability, and is time-consuming and costly to conduct. Here, we critically assessed a specific PCR assay to support FECRT, in a well-controlled experiment on sheep with naturally acquired strongylid infections known to be resistant to benzimidazoles. We showed that the PCR results were in close agreement with those of total worm count (TWC), but not of LC. Importantly, albendazole resistance detected by PCR-coupled FECRT was unequivocally linked to Teladorsagia circumcincta and, to lesser extent, Trichostrongylus colubriformis, a result that was not achievable by LC. The key findings from this study demonstrate that our PCR-coupled FECRT approach has major merit for supporting anthelmintic resistance in nematode populations. The findings also show clearly that our PCR assay can be used as an alternative to LC, and is more time-efficient and less laborious, which has important practical implications for the effective management and control strongylid nematodes of sheep.
  • Item
    Thumbnail Image
    Assessment of the genetic relationship between Dictyocaulus species from Bos taurus and Cervus elaphus using complete mitochondrial genomic datasets
    Gasser, RB ; Jabbar, A ; Mohandas, N ; Hoglund, J ; Hall, RS ; Littlewood, DTJ ; Jex, AR (BMC, 2012-10-30)
    BACKGROUND: Dictyocaulus species are strongylid nematodes of major veterinary significance in ruminants, such as cattle and cervids, and cause serious bronchitis or pneumonia (dictyocaulosis or "husk"). There has been ongoing controversy surrounding the validity of some Dictyocaulus species and their host specificity. Here, we sequenced and characterized the mitochondrial (mt) genomes of Dictyocaulus viviparus (from Bos taurus) with Dictyocaulus sp. cf. eckerti from red deer (Cervus elaphus), used mt datasets to assess the genetic relationship between these and related parasites, and predicted markers for future population genetic or molecular epidemiological studies. METHODS: The mt genomes were amplified from single adult males of D. viviparus and Dictyocaulus sp. cf. eckerti (from red deer) by long-PCR, sequenced using 454-technology and annotated using bioinformatic tools. Amino acid sequences inferred from individual genes of each of the two mt genomes were compared, concatenated and subjected to phylogenetic analysis using Bayesian inference (BI), also employing data for other strongylids for comparative purposes. RESULTS: The circular mt genomes were 13,310 bp (D. viviparus) and 13,296 bp (Dictyocaulus sp. cf. eckerti) in size, and each contained 12 protein-encoding, 22 transfer RNA and 2 ribosomal RNA genes, consistent with other strongylid nematodes sequenced to date. Sliding window analysis identified genes with high or low levels of nucleotide diversity between the mt genomes. At the predicted mt proteomic level, there was an overall sequence difference of 34.5% between D. viviparus and Dictyocaulus sp. cf. eckerti, and amino acid sequence variation within each species was usually much lower than differences between species. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 mt proteins showed that both D. viviparus and Dictyocaulus sp. cf. eckerti were closely related, and grouped to the exclusion of selected members of the superfamilies Metastrongyloidea, Trichostrongyloidea, Ancylostomatoidea and Strongyloidea. CONCLUSIONS: Consistent with previous findings for nuclear ribosomal DNA sequence data, the present analyses indicate that Dictyocaulus sp. cf. eckerti (red deer) and D. viviparus are separate species. Barcodes in the two mt genomes and proteomes should serve as markers for future studies of the population genetics and/or epidemiology of these and related species of Dictyocaulus.