Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    Whole genome sequence analysis of equid gammaherpesvirus-2 field isolates reveals high levels of genomic diversity and recombination
    Onasanya, AE ; El-Hage, C ; Diaz-Mendez, A ; Vaz, PK ; Legione, AR ; Browning, GF ; Devlin, JM ; Hartley, CA (BMC, 2022-08-30)
    BACKGROUND: Equid gammaherpesvirus 2 (EHV2) is a gammaherpesvirus with a widespread distribution in horse populations globally. Although its pathogenic significance can be unclear in most cases of infection, EHV2 infection can cause upper respiratory tract disease in foals. Co-infection of different strains of EHV2 in an individual horse is common. Small regions of the EHV2 genome have shown considerable genetic heterogeneity. This could suggest genomic recombination between different strains of EHV2, similar to the extensive recombination networks that have been demonstrated for some alphaherpesviruses. This study examined natural recombination and genome diversity of EHV2 field isolates. RESULTS: Whole genome sequencing analysis of 18 EHV2 isolates, along with analysis of two publicly available EHV2 genomes, revealed variation in genomes sizes (from 173.7 to 184.8 kbp), guanine plus cytosine content (from 56.7 to 57.8%) and the size of the terminal repeat regions (from 17,196 to 17,551 bp). The nucleotide sequence identity between the genomes ranged from 86.2 to 99.7%. The estimated average inter-strain nucleotide diversity between the 20 EHV2 genomes was 2.9%. Individual gene sequences showed varying levels of nucleotide diversity and ranged between 0 and 38.1%. The ratio of nonsynonymous substitutions, Ka, to synonymous substitutions, Ks, (Ka/Ks) suggests that over 50% of EHV2 genes are undergoing diversifying selection. Recombination analyses of the 20 EHV2 genome sequences using the recombination detection program (RDP4) and SplitsTree revealed evidence of viral recombination. CONCLUSIONS: Analysis of the 18 new EHV2 genomes alongside the 2 previously sequenced genomes revealed a high degree of genetic diversity and extensive recombination networks. Herpesvirus genome diversification and virus evolution can be driven by recombination, and our findings are consistent with recombination being a key mechanism by which EHV2 genomes may vary and evolve.
  • Item
    Thumbnail Image
    Construction and characterisation of glycoprotein E and glycoprotein I deficient mutants of Australian strains of infectious laryngotracheitis virus using traditional and CRISPR/Cas9-assisted homologous recombination techniques
    Armat, M ; Vaz, PK ; Browning, GF ; Noormohammadi, AH ; Hartley, CA ; Devlin, JM (SPRINGER, 2022-12)
    In alphaherpesviruses, glycoproteins E and I (gE and gI, respectively) form a heterodimer that facilitates cell-to-cell spread of virus. Using traditional homologous recombination techniques, as well as CRISPR/Cas9-assisted homologous recombination, we separately deleted gE and gI coding sequences from an Australian field strain (CSW-1) and a vaccine strain (A20) of infectious laryngotracheitis virus (ILTV) and replaced each coding sequence with sequence encoding green fluorescent protein (GFP). Virus mutants in which gE and gI gene sequences had been replaced with GFP were identified by fluorescence microscopy but were unable to be propagated separately from the wildtype virus in either primary chicken cells or the LMH continuous chicken cell line. These findings build on findings from a previous study of CSW-1 ILTV in which a double deletion mutant of gE and gI could not be propagated separately from wildtype virus and produced an in vivo phenotype of single-infected cells with no cell-to-cell spread observed. Taken together these studies suggest that both the gE and gI genes have a significant role in cell-to-cell spread in both CSW-1 and A20 strains of ILTV. The CRISPR/Cas9-assisted deletion of genes from the ILTV genome described in this study adds this virus to a growing list of viruses to which this approach has been used to study viral gene function.
  • Item
    Thumbnail Image
    Whole genome sequence analysis of equid herpesvirus type 2 field isolates reveals high levels of genomic diversity and recombination
    Onasanya, AE ; Diaz-Méndez, A ; El-Hage, C ; Vaz, PK ; Legione, AR ; Browning, GF ; Devlin, JM ; Hartley, CA ( 2022-04-28)
    BackgroundEquid gammaherpesvirus 2 (EHV2) is a gammaherpesvirus with a widespread distribution in horse populations globally. Although its pathogenic significance can be unclear in most cases of infection, EHV2 infection can cause upper respiratory tract disease in foals. Co-infection of different strains of EHV2 in an individual horse is common. Small regions of the EHV2 genome have shown considerable genetic heterogeneity. This could suggest genomic recombination between different strains of EHV2, similar to the extensive recombination networks that have been demonstrated for some alphaherpesviruses. This study examined natural recombination and genome diversity of EHV2 field isolates. ResultsWhole genome sequencing analysis of 18 EHV2 isolates, along with analysis of two publicly available EHV2 genomes, revealed variation in genomes sizes (from 173.7 to 184.8 kbp), guanine plus cytosine content (from 56.7 to 57.8 %) and the size of the terminal repeat regions (from 17,196 to 17,551 bp). The nucleotide sequence identity between the genomes ranged from 86.2 to 99.7%. The estimated average inter-strain nucleotide diversity between the 20 EHV2 genomes was 2.9%. Individual gene sequences showed varying levels of nucleotide diversity and ranged between 0 and 3.8%. The ratio of nonsynonymous substitutions, Ka, to synonymous substitutions, Ks, (Ka/Ks) suggests that over 50% of EHV2 genes are undergoing diversifying selection. Recombination analyses of the 20 EHV2 genome sequences using the recombination detection program (RDP4) and SplitsTree revealed evidence of viral recombination. ConclusionsAnalysis of the 18 new EHV2 genomes alongside the 2 previously sequenced genomes revealed a high degree of genetic diversity and extensive recombination networks. Herpesvirus genome diversification and virus evolution can be driven by recombination, and our findings are consistent with recombination being a key mechanism by which EHV2 genomes may vary and evolve.
  • Item
    No Preview Available
    Replication-independent reduction in the number and diversity of recombinant progeny viruses in chickens vaccinated with an attenuated infectious laryngotracheitis vaccine
    Loncoman, CA ; Hartley, CA ; Coppo, MJC ; Browning, GF ; Quinteros, JA ; Diaz-Mendez, A ; Thilakarathne, D ; Fakhri, O ; Vaz, PK ; Devlin, JM (ELSEVIER SCI LTD, 2018-09-11)
    Recombination is closely linked with virus replication and is an important mechanism that contributes to genome diversification and evolution in alphaherpesviruses. Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) is an alphaherpesvirus that causes respiratory disease in poultry. In the past, natural (field) recombination events between different strains of ILTV generated virulent recombinant viruses that have caused severe disease and economic loss in poultry industries. In this study, chickens were vaccinated with attenuated ILTV vaccines to examine the effect of vaccination on viral recombination and diversity following subsequent co-inoculation with two field strains of ILTV. Two of the vaccines (SA2 and A20) prevented ILTV replication in the trachea after challenge, but the level of viral replication after co-infection in birds that received the Serva ILTV vaccine strain did not differ from that of the mock-vaccinated (control) birds. Even though the levels of viral replication were similar in the two groups, the number of recombinant progeny viruses and the level of viral diversity were significantly lower in the Serva-vaccinated birds than in mock-vaccinated birds. In both the mock-vaccinated and Serva-vaccinated groups, a high proportion of recombinant viruses were detected in naïve in-contact chickens that were housed with the co-inoculated birds. Our results indicate that vaccination can limit the number and diversity of recombinant progeny viruses in a manner that is independent of the level of virus replication. It is possible that immune responses induced by vaccination can select for virus genotypes that replicate well under the pressure of the host immune response.
  • Item
    No Preview Available
    Single Nucleotide Polymorphism Genotyping Analysis Shows That Vaccination Can Limit the Number and Diversity of Recombinant Progeny of Infectious Laryngotracheitis Viruses from the United States
    Loncoman, CA ; Hartley, CA ; Coppo, MJC ; Browning, GF ; Beltran, G ; Riblet, S ; Freitas, CO ; Garcia, M ; Devlin, JM ; Schaffner, DW (AMER SOC MICROBIOLOGY, 2018-12)
    Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) causes mild to severe respiratory disease in poultry worldwide. Recombination in this virus under natural (field) conditions was first described in 2012 and more recently has been studied under laboratory conditions. Previous studies have revealed that natural recombination is widespread in ILTV and have also demonstrated that recombination between two attenuated ILTV vaccine strains generated highly virulent viruses that produced widespread disease within poultry flocks in Australia. In the United States, natural ILTV recombination has also been detected, but not as frequently as in Australia. To better understand recombination in ILTV strains originating from the United States, we developed a TaqMan single nucleotide polymorphism (SNP) genotyping assay to detect recombination between two virulent U.S. field strains of ILTV (63140 and 1874c5) under experimental in vivo conditions. We also tested the capacity of the Innovax-ILT vaccine (a recombinant vaccine using herpesvirus of turkeys as a vector) and the Trachivax vaccine (a conventionally attenuated chicken embryo origin vaccine) to reduce recombination. The Trachivax vaccine prevented ILTV replication, and therefore recombination, in the trachea after challenge. The Innovax-ILT vaccine allowed the challenge viruses to replicate and to recombine, but at a significantly lower rate than in an unvaccinated group of birds. Our results demonstrate that the TaqMan SNP genotyping assay is a useful tool to study recombination between these ILTV strains and also show that vaccination can limit the number and diversity of recombinant progeny viruses.IMPORTANCE Recombination allows alphaherpesviruses to evolve over time and become more virulent. Historically, characterization of viral vaccines in poultry have mainly focused on limiting clinical disease, rather than limiting virus replication, but such approaches can allow field viruses to persist and evolve in vaccinated populations. In this study, we vaccinated chickens with Gallid alphaherpesvirus 1 vaccines that are commercially available in the United States and then performed coinoculations with two field strains of virus to measure the ability of the vaccines to prevent field strains from replicating and recombining. We found that vaccination reduced viral replication, recombination, and diversity compared to those in unvaccinated chickens, although the extent to which this occurred differed between vaccines. We suggest that characterization of vaccines could include studies to examine the ability of vaccines to reduce viral recombination in order to limit the rise of new virulent field strains due to recombination, especially for those vaccines that are known not to prevent viral replication following challenge.
  • Item
    No Preview Available
    Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome
    Loncoman, CA ; Hartley, CA ; Coppo, MJC ; Vaz, PK ; Diaz-Mendez, A ; Browning, GF ; Garcia, M ; Spatz, S ; Devlin, JM ; Drake, HL (AMER SOC MICROBIOLOGY, 2017-12)
    Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome.IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in field isolates, recombination occurred at greater frequency in recombination hot spot regions of the virus genome. Our results suggest that control measures that aim to limit viral replication could offer the potential to limit virus recombination and thus the evolution of virulence. The development and use of vaccines that are focused on limiting virus replication, rather than vaccines that are focused more on limiting clinical disease, may be indicated in order to better control disease.
  • Item
    No Preview Available
    Koala and Wombat Gammaherpesviruses Encode the First Known Viral NTPDase Homologs and Are Phylogenetically Divergent from All Known Gammaherpesviruses
    Vaz, PK ; Hartley, CA ; Lee, S-Y ; Sansom, FM ; Adams, TE ; Stalder, K ; Pearce, L ; Lovrecz, G ; Browning, GF ; Mueller, CE ; Devlin, JM ; Jung, JU (AMER SOC MICROBIOLOGY, 2019-03)
    There is a large taxonomic gap in our understanding of mammalian herpesvirus genetics and evolution corresponding to those herpesviruses that infect marsupials, which diverged from eutherian mammals approximately 150 million years ago (mya). We compare the genomes of two marsupial gammaherpesviruses, Phascolarctid gammaherpesvirus 1 (PhaHV1) and Vombatid gammaherpesvirus 1 (VoHV1), which infect koalas (Phascolarctos cinereus) and wombats (Vombatus ursinus), respectively. The core viral genomes were approximately 117 kbp and 110 kbp in length, respectively, sharing 69% pairwise nucleotide sequence identity. Phylogenetic analyses showed that PhaHV1 and VoHV1 formed a separate branch, which may indicate a new gammaherpesvirus genus. The genomes contained 60 predicted open reading frames (ORFs) homologous to those in eutherian herpesviruses and 20 ORFs not yet found in any other herpesvirus. Seven of these ORFs were shared by the two viruses, indicating that they were probably acquired prespeciation, approximately 30 to 40 mya. One of these shared genes encodes a putative nucleoside triphosphate diphosphohydrolase (NTPDase). NTPDases are usually found in mammals and higher-order eukaryotes, with a very small number being found in bacteria. This is the first time that an NTPDase has been identified in any viral genome. Interrogation of public transcriptomic data sets from two koalas identified PhaHV1-specific transcripts in multiple host tissues, including transcripts for the novel NTPDase. PhaHV1 ATPase activity was also demonstrated in vitro, suggesting that the encoded NTPDase is functional during viral infection. In mammals, NTPDases are important in downregulation of the inflammatory and immune responses, but the role of the PhaHV1 NTPDase during viral infection remains to be determined.IMPORTANCE The genome sequences of the koala and wombat gammaherpesviruses show that the viruses form a distinct branch, indicative of a novel genus within the Gammaherpesvirinae Their genomes contain several new ORFs, including ORFs encoding a β-galactoside α-2,6-sialyltransferase that is phylogenetically closest to poxvirus and insect homologs and the first reported viral NTPDase. NTPDases are ubiquitously expressed in mammals and are also present in several parasitic, fungal, and bacterial pathogens. In mammals, these cell surface-localized NTPDases play essential roles in thromboregulation, inflammation, and immune suppression. In this study, we demonstrate that the virus-encoded NTPDase is enzymatically active and is transcribed during natural infection of the host. Understanding how these enzymes benefit viruses can help to inform how they may cause disease or evade host immune defenses.
  • Item
    No Preview Available
    Infectious bronchitis viruses with naturally occurring genomic rearrangement and gene deletion
    Hewson, KA ; Ignjatovic, J ; Browning, GF ; Devlin, JM ; Noormohammadi, AH (SPRINGER WIEN, 2011-02)
    Infectious bronchitis viruses (IBVs) are group III coronaviruses that infect poultry worldwide. Genetic variations, including whole-gene deletions, are key to IBV evolution. Australian subgroup 2 IBVs contain sequence insertions and multiple gene deletions that have resulted in a substantial genomic divergence from international IBVs. The genomic variations present in Australian IBVs were investigated and compared to those of another group III coronavirus, turkey coronavirus (TCoV). Open reading frames (ORFs) found throughout the genome of Australian IBVs were analogous in sequence and position to TCoV ORFs, except for ORF 4b, which appeared to be translocated to a different position in the subgroup 2 strains. Subgroup 2 strains were previously reported to lack genes 3a, 3b and 5a, with some also lacking 5b. Of these, however, genes 3b and 5b were found to be present but contained various mutations that may affect transcription. In this study, it was found that subgroup 2 IBVs have undergone a more substantial genomic rearrangements than previously thought.
  • Item
    No Preview Available
    Application of high-resolution melt curve analysis for classification of infectious bronchitis viruses in field specimens
    Hewson, KA ; Browning, GF ; Devlin, JM ; Ignjatovic, J ; Noormohammadi, AH (WILEY, 2010-10)
    OBJECTIVE: A real-time polymerase chain reaction (PCR)/high-resolution melt (HRM) curve analysis protocol was developed in our laboratory to differentiate infectious bronchitis (IB) virus reference strains. In the current study, this method was used to detect and classify IB viruses in field submissions. PROCEDURE: Over an 11-month period samples from 40 cases of suspected IB virus were received and 17 submissions were positive for IB virus by polymerase chain reaction. HRM curve analysis classified each strain as subgroup 1, 2 or 3 strain (12 submissions) or a strain that was unable to be classified (5 submissions). The 3' untranslated region (UTR) and partial S1 gene nucleotide sequences for the 17 IB virus strains were determined and their identity with those of the relative reference strains compared to confirm the classifications generated using the HRM curve analysis. RESULTS: Of the 12 IB field viruses classified as subgroup 1, 2, or 3 using HRM curve analysis, the 3'UTR and S1 gene nucleotide sequences had identities ≥99% with the respective subgroup reference strain. Analysis of the 3' UTR and S1 gene nucleotide sequences for the five IB virus strains that could not be classified indicated that four belonged to one of the subgroups, and one was a potential recombinant strain (between strains from subgroups 2 and 3). A novel recombinant strain was also detected. CONCLUSION: HRM curve analysis can rapidly assign the majority of IB viruses present in field submissions to known subgroups. Importantly, HRM curve analysis also identified variant genotypes that require further investigation.
  • Item
    No Preview Available
    Pathogenesis and tissue tropism of natural field recombinants of infectious laryngotracheitis virus
    Thilakarathne, DS ; Noormohammadi, AH ; Browning, GF ; Quinteros, JA ; Underwood, GJ ; Hartley, CA ; Coppo, MJ ; Devlin, JM ; Diaz-Mendez, A (ELSEVIER, 2020-04)
    Infectious laryngotracheitis virus (ILTV) is an economically significant respiratory pathogen of poultry. Novel recombinant strains of ILTV have emerged in Australia during the last decade and currently class 9 (CL9) and class 10 (CL10) ILTV are the most prevalent circulating strains. This study conducted a comprehensive investigation of the pathogenesis of these two viral strains. Commercial broiler and specific pathogen free (SPF) chickens were inoculated with varying doses of CL9 or CL10 ILTV and subsequently evaluated for clinical and pathological signs of infection. While no difference in the levels of acute viral replication were observed across the different challenge doses, the severity of clinical signs, tracheal pathology and mortality were dose dependent. Both strains of virus persisted in the respiratory tract for up to 14 days post inoculation (dpi) and could be detected in the lung and feathers with sporadic detection in the liver, spleen or bursa. Given the prevalence of CL9 and CL10 in Australian poultry flocks, this study provides an important foundation for the development of diagnostic and therapeutic approaches for the detection and prevention of ILTV.