Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Homologue of macrophage-activating lipoprotein in Mycoplasma gallisepticum is not essential for growth and pathogenicity in tracheal organ cultures
    Markham, PF ; Kanci, A ; Czifra, G ; Sundquist, B ; Hains, P ; Browning, GF (AMER SOC MICROBIOLOGY, 2003-04)
    While the genomes of a number of Mycoplasma species have been fully determined, there has been limited characterization of which genes are essential. The surface protein (p47) identified by monoclonal antibody B3 is the basis for an enzyme-linked immunosorbent assay for serological detection of Mycoplasma gallisepticum infection and appears to be constitutively expressed. Its gene was cloned, and the DNA sequence was determined. Subsequent analysis of the p47 amino acid sequence and searches of DNA databases found homologous gene sequences in the genomes of M. pneumoniae and M. genitalium and identity with a gene family in Ureaplasma urealyticum and genes in M. agalactiae and M. fermentans. The proteins encoded by these genes were found to belong to a family of basic membrane proteins (BMP) that are found in a wide range of bacteria, including a number of pathogens. Several of the BMP family members, including p47, contain selective lipoprotein-associated motifs that are found in macrophage-activating lipoprotein 404 of M. fermentans and lipoprotein P48 of M. agalactiae. The p47 gene was predicted to encode a 59-kDa peptide, but affinity-purified p47 had a molecular mass of approximately 47 kDa, as determined by polyacrylamide gel analysis. Analysis of native and recombinant p47 by mass peptide fingerprinting revealed the absence of the carboxyl end of the protein encoded by the p47 gene in native p47, which would account for the difference seen in the predicted and measured molecular weights and indicated posttranslational cleavage of the lipoprotein at its carboxyl end. A DNA construct containing the p47 gene interrupted by the gene encoding tetracycline resistance was used to transform M. gallisepticum cells. A tetracycline-resistant mycoplasma clone, P2, contained the construct inserted within the genomic p47 gene, with crossovers occurring between 73 bp upstream and 304 bp downstream of the inserted tetracycline resistance gene. The absence of p47 protein in clone P2 was determined by the lack of reactivity with rabbit anti-p47 sera or monoclonal antibody B3 in Western blots of whole-cell proteins. There was no difference between the p47(-) mutant and wild-type M. gallisepticum in pathogenicity in chicken tracheal organ cultures. Thus, p47, although homologous to genes that occur in many prokaryotes, is not essential for growth in vitro or for attachment and the initial stages of pathogenesis in chickens.