Architecture, Building and Planning - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    Scalable Label-efficient Footpath Network Generation Using Remote Sensing Data and Self-supervised Learning
    Wanyan, X ; Seneviratne, S ; Nice, K ; Thompson, J ; White, M ; Langenheim, N ; Stevenson, M (IEEE, 2023-01-01)
    Footpath mapping, modeling, and analysis can provide important geospatial insights to many fields of study, including transport, health, environment and urban planning. The availability of robust Geographic Information System (GIS) layers can benefit the management of infrastructure inventories, especially at local government level with urban planners responsible for the deployment and maintenance of such infrastructure. However, many cities still lack real-time information on the location, connectivity, and width of footpaths, and/or employ costly and manual survey means to gather this information. This work designs and implements an automatic pipeline for generating footpath networks based on remote sensing images using machine learning models. The annotation of segmentation tasks, especially labeling remote sensing images with specialized requirements, is very expensive, so we aim to introduce a pipeline requiring less labeled data. Considering supervised methods require large amounts of training data, we use a self-supervised method for feature representation learning to reduce annotation requirements. Then the pre-trained model is used as the encoder of the U-Net for footpath segmentation. Based on the generated masks, the footpath polygons are extracted and converted to footpath networks which can be loaded and visualized by geographic information systems conveniently. Validation results indicate considerable consistency when compared to manually collected GIS layers. The footpath network generation pipeline proposed in this work is low-cost and extensible, and it can be applied where remote sensing images are available. Github: https://github.com/WennyXY/FootpathSeg.
  • Item
    No Preview Available
    A systematic scoping review of methods for estimating link-level bicycling volumes
    Bhowmick, D ; Saberi, M ; Stevenson, M ; Thompson, J ; Winters, M ; Nelson, T ; Leao, SZ ; Seneviratne, S ; Pettit, C ; Vu, HL ; Nice, K ; Beck, B (TAYLOR & FRANCIS LTD, 2023-07-04)
  • Item
    No Preview Available
    Isolating the impacts of urban form and fabric from geography on urban heat and human thermal comfort
    Nice, KA ; Nazarian, N ; Lipson, MJ ; Hart, MA ; Seneviratne, S ; Thompson, J ; Naserikia, M ; Godic, B ; Stevenson, M (Elsevier, 2022-10-01)
    Public health risks resulting from urban heat in cities are increasing due to rapid urbanisation and climate change, motivating closer attention to urban heat mitigation and adaptation strategies that enable climate-sensitive urban design and development. These strategies incorporate four key factors influencing heat stress in cities: the urban form (morphology of vegetated and built surfaces), urban fabric, urban function (including human activities), and background climate and regional geographic settings (e.g. topography and distance to water bodies). The first two factors can be modified and redesigned as urban heat mitigation strategies (e.g. changing the albedo of surfaces, replacing hard surfaces with pervious vegetated surfaces, or increasing canopy cover). Regional geographical settings of cities, on the other hand, cannot be modified and while human activities can be modified, it often requires holistic behavioural and policy modifications and the impacts of these can be difficult to quantify. When evaluating the effectiveness of urban heat mitigation strategies in observational or traditional modelling studies, it can be difficult to separate the impacts of modifications to the built and natural forms from the interactions of the geographic influences, limiting the universality of results. To address this, we introduce a new methodology to determine the influence of urban form and fabric on thermal comfort, by utilising a comprehensive combination of possible urban forms, an urban morphology data source, and micro-climate modelling. We perform 9814 simulations covering a wide range of realistic built and natural forms (building, roads, grass, and tree densities as well as building and tree heights) to determine their importance and influence on thermal environments in urban canyons without geographical influences. We show that higher daytime air temperatures and thermal comfort indices are strongly driven by increased street fractions, with maximum air temperatures increases of up to 10 and 15 °C as street fractions increase from 10% (very narrow street canyons and/or extensive vegetation cover) to 80 and 90% (wide street canyons). Up to 5 °C reductions in daytime air temperatures are seen with increasing grass and tree fractions from zero (fully urban) to complete (fully natural) coverage. Similar patterns are seen with the Universal Thermal Climate Index (UTCI), with increasing street fractions of 80% and 90% driving increases of 6 and 12 °C, respectively. We then apply the results at a city-wide scale, generating heat maps of several Australian cities showing the impacts of present day urban form and fabric. The resulting method allows mitigation strategies to be tested on modifiable urban form factors isolated from geography, topography, and local weather conditions, factors that cannot easily be modified.
  • Item
    Thumbnail Image
    Developing urban biking typologies: Quantifying the complex interactions of bicycle ridership, bicycle network and built environment characteristics
    Beck, B ; Winters, M ; Nelson, T ; Pettit, C ; Leao, SZ ; Saberi, M ; Thompson, J ; Seneviratne, S ; Nice, K ; Stevenson, M (SAGE PUBLICATIONS LTD, 2023-01)
    Extensive research has been conducted exploring associations between built environment characteristics and biking. However, these approaches have often lacked the ability to understand the interactions of the built environment, population and bicycle ridership. To overcome these limitations, this study aimed to develop novel urban biking typologies using unsupervised machine learning methods. We conducted a retrospective analysis of travel surveys, bicycle infrastructure and population and land use characteristics in the Greater Melbourne region, Australia. To develop the urban biking typology, we used a k-medoids clustering method. Analyses revealed 5 clusters. We highlight areas with high bicycle network density and a high proportion of trips made by bike (Cluster 1; reflecting 12% of the population of Greater Melbourne, but 57% of all bike trips) and areas with high off-road and on-road bicycle network length, but a low proportion of trips made by bike (Cluster 4, reflecting 23% of the population of Greater Melbourne and 13% of all bike trips). Our novel approach to developing an urban biking typology enabled the exploration of the interaction of bicycle ridership, the bicycle network, population and land use characteristics. Such approaches are important in advancing our understanding of bicycling behaviour, but further research is required to understand the generalisability of these findings to other settings.
  • Item
    Thumbnail Image
    The impact of the COVID-19 pandemic on air pollution: A global assessment using machine learning techniques
    Wijnands, JS ; Nice, KA ; Seneviratne, S ; Thompson, J ; Stevenson, M (TURKISH NATL COMMITTEE AIR POLLUTION RES & CONTROL-TUNCAP, 2022-06)
    In response to the COVID-19 pandemic, most countries implemented public health ordinances that resulted in restricted mobility and a resultant change in air quality. This has provided an opportunity to quantify the extent to which carbon-based transport and industrial activity affect air quality. However, quantification of these complex effects has proven to be difficult, depending on the stringency of restrictions, country-specific emission source profiles, long-term trends and meteorological effects on atmospheric chemistry, emission levels and in-flow from nearby countries. In this study, confounding factors were disentangled for a direct comparison of pandemic-related reductions in absolute pollutions levels, globally. The non-linear relationships between atmospheric processes and daily ground-level NO 2 , PM10, PM2.5 and O 3 measurements were captured in city- and pollutant-specific XGBoost models for over 700 cities, adjusting for weather, seasonality and trends. City-level modelling allowed adaptation to the distinct topography, urban morphology, climate and atmospheric conditions for each city, individually, as the weather variables that were most predictive varied across cities. Pollution forecasts for 2020 in absence of a pandemic were generated based on weather and formed an ensemble for country-level pollution reductions. Findings were robust to modelling assumptions and consistent with various published case studies. NO 2 reduced most in China, Europe and India, following severe government restrictions as part of the initial lockdowns. Reductions were highly correlated with changes in mobility levels, especially trips to transit stations, workplaces, retail and recreation venues. Further, NO 2 did not fully revert to pre-pandemic levels in 2020. Ambient PM2.5 pollution, which has severe adverse health consequences, reduced most in China and India. Since positive health effects could be offset to some extent by prolonged exposure to indoor pollution, alternative transport initiatives could prove to be an important pathway towards better health outcomes in these countries. Increased O 3 levels during initial lockdowns have been documented widely. However, our analyses also found a subsequent reduction in O 3 for many countries below what was expected based on meteorological conditions during summer months (e.g., China, United Kingdom, France, Germany, Poland, Turkey). The effects in periods with high O 3 levels are especially important for the development of effective mitigation strategies to improve health outcomes.
  • Item
    Thumbnail Image
    Modelling SARS-CoV-2 disease progression in Australia and New Zealand: an account of an agent-based approach to support public health decision-making
    Thompson, J ; McClure, R ; Blakely, T ; Wilson, N ; Baker, MG ; Wijnands, JS ; De Sa, TH ; Nice, K ; Cruz, C ; Stevenson, M (ELSEVIER SCIENCE INC, 2022-06)
    OBJECTIVE: In 2020, we developed a public health decision-support model for mitigating the spread of SARS-CoV-2 infections in Australia and New Zealand. Having demonstrated its capacity to describe disease progression patterns during both countries' first waves of infections, we describe its utilisation in Victoria in underpinning the State Government's then 'RoadMap to Reopening'. METHODS: Key aspects of population demographics, disease, spatial and behavioural dynamics, as well as the mechanism, timing, and effect of non-pharmaceutical public health policies responses on the transmission of SARS-CoV-2 in both countries were represented in an agent-based model. We considered scenarios related to the imposition and removal of non-pharmaceutical interventions on the estimated progression of SARS-CoV-2 infections. RESULTS: Wave 1 results suggested elimination of community transmission of SARS-CoV-2 was possible in both countries given sustained public adherence to social restrictions beyond 60 days' duration. However, under scenarios of decaying adherence to restrictions, a second wave of infections (Wave 2) was predicted in Australia. In Victoria's second wave, we estimated in early September 2020 that a rolling 14-day average of <5 new cases per day was achievable on or around 26 October. Victoria recorded a 14-day rolling average of 4.6 cases per day on 25 October. CONCLUSIONS: Elimination of SARS-CoV-2 transmission represented in faithfully constructed agent-based models can be replicated in the real world. IMPLICATIONS FOR PUBLIC HEALTH: Agent-based public health policy models can be helpful to support decision-making in novel and complex unfolding public health crises.
  • Item
    Thumbnail Image
    Identifying safe intersection design through unsupervised feature extraction from satellite imagery
    Wijnands, JS ; Zhao, H ; Nice, KA ; Thompson, J ; Scully, K ; Guo, J ; Stevenson, M (WILEY, 2021-03)
    Abstract The World Health Organization has listed the design of safer intersections as a key intervention to reduce global road trauma. This article presents the first study to systematically analyze the design of all intersections in a large country, based on aerial imagery and deep learning. Approximately 900,000 satellite images were downloaded for all intersections in Australia and customized computer vision techniques emphasized the road infrastructure. A deep autoencoder extracted high‐level features, including the intersection's type, size, shape, lane markings, and complexity, which were used to cluster similar designs. An Australian telematics data set linked infrastructure design to driving behaviors captured during 66 million kilometers of driving. This showed more frequent hard acceleration events (per vehicle) at four‐ than three‐way intersections, relatively low hard deceleration frequencies at T‐intersections, and consistently low average speeds on roundabouts. Overall, domain‐specific feature extraction enabled the identification of infrastructure improvements that could result in safer driving behaviors, potentially reducing road trauma.
  • Item
    Thumbnail Image
    The "Paris-end" of Town?: Deriving Urban Typologies Using Three Imagery Types
    Nice, K ; Thompson, J ; Wijnands, J ; Aschwanden, G ; Stevenson, M (MDPI, 2020)
    Urban typologies allow areas to be categorised according to form and the social, demographic, and political uses of the areas. The use of these typologies and finding similarities and dissimilarities between cities enables better targeted interventions for improved health, transport, and environmental outcomes in urban areas. A better understanding of local contexts can also assist in applying lessons learned from other cities. Constructing urban typologies at a global scale through traditional methods, such as functional or network analysis, requires the collection of data across multiple political districts, which can be inconsistent and then require a level of subjective classification. To overcome these limitations, we use neural networks to analyse millions of images of urban form (consisting of street view, satellite imagery, and street maps) to find shared characteristics between the largest 1692 cities in the world. The comparison city of Paris is used as an exemplar and we perform a case study using two Australian cities, Melbourne and Sydney, to determine if a "Paris-end" of town exists or can be found in these cities using these three big data imagery sets. The results show specific advantages and disadvantages of each type of imagery in constructing urban typologies. Neural networks trained with map imagery will be highly influenced by the structural mix of roads, public transport, and green and blue space. Satellite imagery captures a combination of both urban form and decorative and natural details. The use of street view imagery emphasises the features of a human-scaled visual geography of streetscapes. However, for both satellite and street view imagery to be highly effective, a reduction in scale and more aggressive pre-processing might be required in order to reduce detail and create greater abstraction in the imagery.
  • Item
    No Preview Available
    A global analysis of urban design types and road transport injury: an image processing study.
    Thompson, J ; Stevenson, M ; Wijnands, JS ; Nice, KA ; Aschwanden, GD ; Silver, J ; Nieuwenhuijsen, M ; Rayner, P ; Schofield, R ; Hariharan, R ; Morrison, CN (Elsevier, 2020-01-01)
    BACKGROUND: Death and injury due to motor vehicle crashes is the world's fifth leading cause of mortality and morbidity. City and urban designs might play a role in mitigating the global burden of road transport injury to an extent that has not been captured by traditional safe system approaches. We aimed to determine the relationship between urban design and road trauma across the globe. METHODS: Applying a combined convolutional neural network and graph-based approach, 1692 cities capturing one third of the world's population were classified into types based on urban design characteristics represented in sample maps. Associations between identified city types, characteristics contained within sample maps, and the burden of road transport injury as measured by disability adjusted life-years were estimated through univariate and multivariate analyses, controlling for the influence of economic activity. FINDINGS: Between Mar 1, 2017, and Dec 24, 2018, nine global city types based on a final sample of 1632 cities were identified. Burden of road transport injury was an estimated two-times higher (risk ratio 2·05, 95% CI 1·84-2·27) for the poorest performing city type compared with the best performing city type, culminating in an estimated loss of 8·71 (8·08-9·25) million disability-adjusted life-years per year attributable to suboptimal urban design. City types that featured a greater proportion of railed public transport networks combined with dense road networks characterised by smaller blocks showed the lowest rates of road traffic injury. INTERPRETATION: This study highlights the important role that city and urban design plays in mitigating road transport injury burden at a global scale. It is recommended that road and transport safety efforts promote urban design that features characteristics inherent in identified high-performance city types including higher density road infrastructure and high rates of public transit. FUNDING: See acknowledgments.
  • Item
    Thumbnail Image
    Sky pixel detection in outdoor imagery using an adaptive algorithm and machine learning
    Nice, KA ; Wijnands, JS ; Middel, A ; Wang, J ; Qiu, Y ; Zhao, N ; Thompson, J ; Aschwanden, GDPA ; Zhao, H ; Stevenson, M (Elsevier, 2019)
    Computer vision techniques enable automated detection of sky pixels in outdoor imagery. In urban climate, sky detection is an important first step in gathering information about urban morphology and sky view factors. However, obtaining accurate results remains challenging and becomes even more complex using imagery captured under a variety of lighting and weather conditions. To address this problem, we present a new sky pixel detection system demonstrated to produce accurate results using a wide range of outdoor imagery types. Images are processed using a selection of mean-shift segmentation, K-means clustering, and Sobel filters to mark sky pixels in the scene. The algorithm for a specific image is chosen by a convolutional neural network, trained with 25,000 images from the Skyfinder data set, reaching 82% accuracy for the top three classes. This selection step allows the sky marking to follow an adaptive process and to use different techniques and parameters to best suit a particular image. An evaluation of fourteen different techniques and parameter sets shows that no single technique can perform with high accuracy across varied Skyfinder and Google Street View data sets. However, by using our adaptive process, large increases in accuracy are observed. The resulting system is shown to perform better than other published techniques.