Centre for Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    No Preview Available
    Chronic intermittent toluene inhalation in adolescent rats alters behavioural responses to amphetamine and MK801
    Duncan, JR ; Gibbs, SJ ; Lawrence, AJ (ELSEVIER SCIENCE BV, 2014-03)
    Abuse of toluene-containing inhalants is common during adolescence, with ongoing chronic misuse associated with adverse outcomes and increased risk for addictive behaviours in adulthood. However, the mechanisms mediating the adaptive processes related to these outcomes are not well defined. To model human abuse patterns we exposed male adolescent Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (CIT, 10,000 ppm) or air (control) for 1h/day, three times/week for 3 weeks. The effects of CIT on behaviour and recovery were monitored. Locomotor activity was recorded following two consecutive injections of amphetamine (1mg/kg, i.p.) 72 and 96 h after the last exposure. This was followed with injection of the NMDA receptor antagonist MK801 (0.5mg/kg, i.p.) 20 days after the last exposure. CIT resulted in a significant and persistent retardation in weight gain during the exposure period and abstinence (p<0.05). Repeated exposure resulted in tolerance to the onset of toluene-induced behaviours and recovery latency. There was a reduction in the acute stimulant effects of amphetamine in CIT-exposed animals and an increase in the magnitude of locomotor activity (p<0.0125) following a subsequent exposure when compared to the responses observed in controls; this was associated with altered locomotor responses to MK801. Repeated exposure to CIT during adolescence alters parameters of growth, as measured by body weight, and leads to tolerance, indicating that increasing concentrations of the compound may be needed to reach the same behavioural state. Toluene during this period also alters responses to a psychostimulant which may be related to long-term glutamatergic dysfunction.
  • Item
    Thumbnail Image
    DISTRIBUTION OF OREXIN-1 RECEPTOR-GREEN FLUORESCENT PROTEIN- (OX1-GFP) EXPRESSING NEURONS IN THE MOUSE BRAIN STEM AND PONS: CO-LOCALIZATION WITH TYROSINE HYDROXYLASE AND NEURONAL NITRIC OXIDE SYNTHASE
    Darwinkel, A ; Stanic, D ; Booth, LC ; May, CN ; Lawrence, AJ ; Yao, ST (PERGAMON-ELSEVIER SCIENCE LTD, 2014-10-10)
    We used a reporter mouse line in which green fluorescent protein (GFP) was inserted into the orexin-1 receptor (OX1) locus to systematically map the neuroanatomical distribution of the OX1 receptor in the mouse brainstem and pons. Here, we show that the OX1 receptor is expressed in a select subset of medullary and pontine nuclei. In the medulla, we observed OX1-GFP expression in the cuneate, gracile, dorsal motor nucleus of the vagus (10N), nucleus of the solitary tract and medullary raphe areas. In the pons, the greatest expression was found in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). High to moderate expression was found in the pedunculopontine tegmental nucleus (PPTg), laterodorsal tegmental nucleus, A5 noradrenergic cell group (A5) and the periaqueductal gray. Double-labeling with neuronal nitric oxide synthase (NOS1) revealed extensive co-localization in cell bodies and fibers of the 10N, A5 cell group and the PPTg. Double-staining with tyrosine hydroxylase revealed extensive co-expression in the LC, DRN and the lateral paragigantocellularis cell group in the ventral medulla. Our findings faithfully recapitulate the findings of OX1 mRNA expression previously reported. This is the first study to systematically map the neuroanatomical distribution of OX1 receptors within the mouse hindbrain and suggest that this OX1-GFP transgenic reporter mouse line might be a useful tool with which to study the neuroanatomy and physiology of OX1 receptor-expressing cells.
  • Item
    Thumbnail Image
    mGlu5 receptor functional interactions and addiction
    Brown, RM ; Mustafa, S ; Ayoub, MA ; Dodd, PR ; Pfleger, KDG ; Lawrence, AJ (FRONTIERS MEDIA SA, 2012)
    The idea of "receptor mosaics" is that proteins may form complex and dynamic networks with respect to time and composition. These have the potential to markedly expand the diversity and specificity of G protein-coupled receptors (GPCR) signaling, particularly in neural cells, where a few key receptors have been implicated in many neurological and psychiatric disorders, including addiction. Metabotropic glutamate type 5 receptors (mGlu5) can form complexes with other GPCRs, including adenosine A(2A) and dopamine D(2) receptors. mGlu5-containing complexes have been reported in the striatum, a brain region critical for mediating the rewarding and incentive motivational properties of drugs of abuse. mGlu5-containing complexes and/or downstream interactions between divergent receptors may play roles in addiction-relevant behaviors. Interactions between mGlu5 receptors and other GPCRs can regulate the rewarding and conditioned effects of drugs as well as drug-seeking behaviors. mGlu5 complexes may influence striatal function, including GABAergic output of striatopallidal neurons and glutamatergic input from corticostriatal afferents. Given their discrete localization, mGlu5-[non-mGlu5] receptor interactions and/or mGlu5-containing complexes may minimize off-target effects and thus provide a novel avenue for drug discovery. The therapeutic targeting of receptor-receptor functional interactions and/or receptor mosaics in a tissue specific or temporal manner (for example, a sub-population of receptors in a "pathological state") might reduce detrimental side effects that may otherwise impair vital brain functions.
  • Item
    Thumbnail Image
    Metabotropic glutamate 5 receptors regulate sensitivity to ethanol in mice
    Bird, MK ; Kirchhoff, J ; Djouma, E ; Lawrence, AJ (CAMBRIDGE UNIV PRESS, 2008-09)
    The metabotropic glutamate receptor 5 (mGlu5) has been implicated in ethanol- and drug-seeking behaviours in rodent studies. Here we examine a number of ethanol-related behavioural assays in mice lacking mGlu5 and wild-type littermates. In a two-bottle free-choice paradigm, mGlu5-deficient mice consumed less ethanol with a reduced preference compared to wild-type mice. Indeed, mGlu5-deficienct mice were ethanol-avoiding at both concentrations of ethanol proffered (5% and 10% v/v). However, there was no difference in the rate of hepatic ethanol and acetaldehyde metabolism between genotypes and consumption of saccharin was similar. In a conditioned place preference study, mGlu5-deficient mice displayed a place preference for ethanol when conditioned with a low dose (1g/kg) of ethanol. Thus, while mGlu5-deficient mice consume less ethanol (with a reduced preference) than wild-type mice, this is not apparently related to impaired hepatic metabolism or a lack of reward from ethanol. Rather, we provide evidence that deletion of the mGlu5 receptor increases sensitivity to centrally mediated effects of ethanol.
  • Item
    Thumbnail Image
    Cocaine-mediated synaptic potentiation is absent in VTA neurons from mGlu5-deficient mice
    Bird, MK ; Reid, CA ; Chen, F ; Tan, HO ; Petrou, S ; Lawrence, AJ (OXFORD UNIV PRESS, 2010-03)
    Drugs of abuse have the ability to instantiate plastic adaptations within the central nervous system, and this property may relate to the development and persistence of addiction. In this context, a single exposure to cocaine in rodents may induce synaptic plasticity by increasing the AMPA/NMDA receptor excitatory post-synaptic current (EPSC) amplitude ratio in dopaminergic cells of the ventral tegmental area (VTA). Here, we examine the role of the metabotropic glutamate 5 (mGlu5) receptor in this regard using a genetic mouse model. The control AMPA/NMDA EPSC ratio is reduced in mGlu5-deficient mice compared to wild-types. Moreover, cocaine-induced enhancement of this EPSC ratio is also absent in mutant mice, which suggests that mGlu5 receptors are required for single-dose cocaine-induced plasticity onto VTA cells. While the temporal profile of hyperactivity to acute cocaine is altered in mGlu5-deficient mice; these mice still develop and express sensitized psychomotor responses to cocaine. These data suggest that the mGlu5 receptor is required for cocaine-induced plasticity in VTA dopaminergic cells. In contrast, the mGlu5 receptor may not be essential for psychostimulant behavioural sensitization; although it probably impacts other aspects drug addiction, such as motivation to self-administer.
  • Item
    Thumbnail Image
    Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats
    Adams, CL ; Cowen, MS ; Short, JL ; Lawrence, AJ (CAMBRIDGE UNIV PRESS, 2008-03)
    Adenosine and glutamate have been implicated as mediators involved in the self-administration of alcohol. In the present study we sought to determine whether adenosine receptors could interact with metabotropic glutamate receptors to regulate operant responding for alcohol and also the integration of the salience of alcohol-paired cues. Alcohol-preferring (iP) rats were trained to self-administer alcohol under operant conditions. The availability of alcohol was paired with an olfactory cue plus a stimulus light. Rats were examined under fixed ratio responding and also following extinction under a cue-induced reinstatement paradigm. Administration of the selective adenosine A2A receptor antagonist, SCH 58261, reduced fixed ratio responding for alcohol in iP rats in a dose-related manner. Furthermore, the combination of a subthreshold dose of SCH 58261 with a subthreshold dose of the mGlu5 receptor antagonist MTEP also reduced alcohol self-administration and increased the latency to the first reinforced response, suggesting a pre-ingestive effect. Moreover, this combination of SCH 58261 and MTEP also prevented the conditioned reinstatement of alcohol-seeking elicited by the re-presentation of cues previously paired with alcohol availability. In contrast, combinations of the selective adenosine A1 receptor antagonist, DPCPX, with either SCH 58261 or MTEP had no effect on alcohol responding. Collectively, these data suggest a functional interaction between adenosine A2A and mGlu5 receptors in relation to alcohol-seeking and the integration of the drug-related cues.