Centre for Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    A small peptide mimetic of brain-derived neurotrophic factor promotes peripheral myelination
    Xiao, J ; Hughes, RA ; Lim, JY ; Wong, AW ; Ivanusic, JJ ; Ferner, AH ; Kilpatrick, TJ ; Murray, SS (WILEY-BLACKWELL, 2013-05)
    The expression of the neurotrophins and their receptors is essential for peripheral nervous system development and myelination. We have previously demonstrated that brain-derived neurotrophic factor (BDNF) exerts contrasting influences upon Schwann cell myelination in vitro - promoting myelination via neuronally expressed p75NTR, but inhibiting myelination via neuronally expressed TrkB. We have generated a small peptide called cyclo-dPAKKR that structurally mimics the region of BDNF that binds p75NTR. Here, we have investigated whether utilizing cyclo-dPAKKR to selectively target p75NTR is an approach that could exert a unified promyelinating response. Like BDNF, cyclo-dPAKKR promoted myelination of nerve growth factor-dependent neurons in vitro, an effect dependent on the neuronal expression of p75NTR. Importantly, cyclo-dPAKKR also significantly promoted the myelination of tropomyosin-related kinase receptor B-expressing neurons in vitro, whereas BDNF exerted a significant inhibitory effect. This indicated that while BDNF exerted a contrasting influence upon the myelination of distinct subsets of dorsal root ganglion (DRG) neurons in vitro, cyclo-dPAKKR uniformly promoted their myelination. Local injection of cyclo-dPAKKR adjacent to the developing sciatic nerve in vivo significantly enhanced myelin protein expression and significantly increased the number of myelinated axons. These results demonstrate that cyclo-dPAKKR promotes peripheral myelination in vitro and in vivo, suggesting it is a strategy worthy of further investigation for the treatment of peripheral demyelinating diseases.
  • Item
    No Preview Available
    Extracellular signal-regulated kinase 1/2 signaling promotes oligodendrocyte myelination in vitro
    Xiao, J ; Ferner, AH ; Wong, AW ; Denham, M ; Kilpatrick, TJ ; Murray, SS (WILEY-BLACKWELL, 2012-09)
    Multiple extracellular factors have been implicated in orchestrating myelination of the CNS; however, less is known about the intracellular signaling cascades that regulate this process. We have previously shown that brain-derived neurotrophic factor (BDNF) promotes oligodendrocyte myelination. Here, we screened for the activation of candidate signaling pathways in in vitro myelination assays and found that extracellular signal-regulated kinase (Erk) signaling positively correlated with basal levels of oligodendrocyte myelination as well as BDNF-induced myelination in vitro. By selectively manipulating Erk1/2 activation in oligodendrocytes in vitro, we found that constitutive activation of Erk1/2 significantly increased myelination, mimicking the promyelinating effect of BDNF, and also caused myelination to occur earlier. Conversely, selective inhibition of Erk1/2 in oligodendrocytes significantly reduced the basal level of myelination and blocked the promyelinating effect of BDNF. Analysis of myelinating spinal cord and corpus callosum white matter tracts revealed that the majority of mature oligodendrocytes are co-labeled with phospho-Erk1/2, whereas phospho-Erk1/2 was rarely observed in oligodendrocyte progenitor cells. Finally, the total level of phospho-Erk1/2 correlated with myelin formation during the early postnatal period. Collectively, these data identify that Erk1/2 signaling within oligodendrocytes exerts an important and direct effect to promote myelination.