Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 36
  • Item
    No Preview Available
    The P. falciparum alternative histones Pf H2A.Z and Pf H2B.Z are dynamically acetylated and antagonized by PfSir2 histone deacetylases at heterochromatin boundaries
    Azizan, S ; Selvarajah, SA ; Tang, J ; Jeninga, MD ; Schulz, D ; Pareek, K ; Herr, T ; Day, KP ; De Koning-Ward, TF ; Petter, M ; Duffy, MF ; Soldati-Favre, D (American Society for Microbiology, 2023-12-19)
    The Plasmodium falciparum alternative histones Pf H2A.Z and Pf H2B.Z are enriched in the same nucleosomes in intergenic euchromatin but depleted from heterochromatin. They occupy most promoters but are only dynamically associated with expression at var genes. In other organisms, acetylation of H2A.Z is important for its functions in gene expression and chromatin structure. Here, we show that acetylated Pf H2A.Z and Pf H2B.Z are dynamically associated with gene expression at promoters. In addition, acetylated Pf H2A.Z and Pf H2B.Z are antagonized by the sirtuin class III histone deacetylases (HDAC) PfSir2A and B at heterochromatin boundaries and encroach upon heterochromatin in parasites lacking PfSir2A or B. However, the majority of acetylated Pf H2A.Z and Pf H2B.Z are deacetylated by class I or II HDACs. Acetylated Pf H2A.Z and Pf H2B.Z are also dynamically associated with promoter activity of both canonical upstream var gene promoters and var gene introns. These findings suggest that both acetylated Pf H2A.Z and Pf H2B.Z play critical roles in gene expression and contribute to maintenance of chromatin structure at the boundaries of subtelomeric, facultative heterochromatin, critical for the variegated expression of genes that enable rapid adaptation to altered host environments.IMPORTANCEThe malaria parasite Plasmodium falciparum relies on variant expression of members of multi-gene families as a strategy for environmental adaptation to promote parasite survival and pathogenesis. These genes are located in transcriptionally silenced DNA regions. A limited number of these genes escape gene silencing, and switching between them confers variant fitness on parasite progeny. Here, we show that PfSir2 histone deacetylases antagonize DNA-interacting acetylated alternative histones at the boundaries between active and silent DNA. This finding implicates acetylated alternative histones in the mechanism regulating P. falciparum variant gene silencing and thus malaria pathogenesis. This work also revealed that acetylation of alternative histones at promoters is dynamically associated with promoter activity across the genome, implicating acetylation of alternative histones in gene regulation genome wide. Understanding mechanisms of gene regulation in P. falciparum may aid in the development of new therapeutic strategies for malaria, which killed 619,000 people in 2021.
  • Item
    No Preview Available
    Chromosome 9 from independent clones and isolates of Plasmodium falciparum undergoes subtelomeric deletions with similar breakpoints in vitro
    SHIRLEY, MW ; BIGGS, BA ; FORSYTH, KP ; BROWN, HJ ; THOMPSON, JK ; BROWN, GV ; KEMP, DJ (Elsevier, 1990-04-01)
    We show that chromosome 9 in all isolates and clones of Plasmodium falciparum examined so far exists as one of two distinctly different forms, a large form about 1.9 megabases long or a smaller form about 25% shorter. Physical maps of chromosome 9 from independent clones with large and small forms of chromosome 9, and from an isolate with the large form and 3 derived clones with the small form reveal the underlying structural basis of this size polymorphism. The small form differs from the large only in that there are subtelomeric deletions at each end, one of these deletions involving about 0.45 megabases. Remarkably, the breakpoints map within about +/- 1% of the total chromosome length for each of these populations. We discuss some possible mechanisms for this.
  • Item
  • Item
    Thumbnail Image
    Relationship of circulating Plasmodium falciparum lifecycle stage to circulating parasitemia and total parasite biomass
    Duffy, MF ; Tonkin-Hill, GQ ; Trianty, L ; Noviyanti, R ; Nguyen, HHT ; Rambhatla, JS ; McConville, MJ ; Rogerson, SJ ; Brown, GV ; Price, RN ; Anstey, NM ; Day, KP ; Papenfuss, AT (NATURE PORTFOLIO, 2022-09-23)
  • Item
    Thumbnail Image
    An accurate method for identifying recent recombinants from unaligned sequences
    Feng, Q ; Tiedje, KE ; Ruybal-Pesantez, S ; Tonkin-Hill, G ; Duffy, MF ; Day, KP ; Shim, H ; Chan, Y-B ; Alkan, C (OXFORD UNIV PRESS, 2022-03-28)
    MOTIVATION: Recombination is a fundamental process in molecular evolution, and the identification of recombinant sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed for aligned sequences. Thus, they struggle with analyses of highly diverse genes, such as the var genes of the malaria parasite Plasmodium falciparum, which are known to diversify primarily through recombination. RESULTS: We introduce an algorithm to detect recent recombinant sequences from a dataset without a full multiple alignment. Our algorithm can handle thousands of gene-length sequences without the need for a reference panel. We demonstrate the accuracy of our algorithm through extensive numerical simulations; in particular, it maintains its effectiveness in the presence of insertions and deletions. We apply our algorithm to a dataset of 17 335 DBLα types in var genes from Ghana, observing that sequences belonging to the same ups group or domain subclass recombine amongst themselves more frequently, and that non-recombinant DBLα types are more conserved than recombinant ones. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/qianfeng2/detREC_program. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  • Item
    No Preview Available
    Indoor residual spraying with a non-pyrethroid insecticide reduces the reservoir of Plasmodium falciparum in a high-transmission area in northern Ghana.
    Tiedje, KE ; Oduro, AR ; Bangre, O ; Amenga-Etego, L ; Dadzie, SK ; Appawu, MA ; Frempong, K ; Asoala, V ; Ruybal-Pésantez, S ; Narh, CA ; Deed, SL ; Argyropoulos, DC ; Ghansah, A ; Agyei, SA ; Segbaya, S ; Desewu, K ; Williams, I ; Simpson, JA ; Malm, K ; Pascual, M ; Koram, KA ; Day, KP ; Ashton, R (Public Library of Science (PLoS), 2022)
    High-malaria burden countries in sub-Saharan Africa are shifting from malaria control towards elimination. Hence, there is need to gain a contemporary understanding of how indoor residual spraying (IRS) with non-pyrethroid insecticides when combined with long-lasting insecticidal nets (LLINs) impregnated with pyrethroid insecticides, contribute to the efforts of National Malaria Control Programmes to interrupt transmission and reduce the reservoir of Plasmodium falciparum infections across all ages. Using an interrupted time-series study design, four age-stratified malariometric surveys, each of ~2,000 participants, were undertaken pre- and post-IRS in Bongo District, Ghana. Following the application of three-rounds of IRS, P. falciparum transmission intensity declined, as measured by a >90% reduction in the monthly entomological inoculation rate. This decline was accompanied by reductions in parasitological parameters, with participants of all ages being significantly less likely to harbor P. falciparum infections at the end of the wet season post-IRS (aOR = 0.22 [95% CI: 0.19-0.26], p-value < 0.001). In addition, multiplicity of infection (MOI var ) was measured using a parasite fingerprinting tool, designed to capture within-host genome diversity. At the end of the wet season post-IRS, the prevalence of multi-genome infections declined from 75.6% to 54.1%. This study demonstrates that in areas characterized by high seasonal malaria transmission, IRS in combination with LLINs can significantly reduce the reservoir of P. falciparum infection. Nonetheless despite this success, 41.6% of the population, especially older children and adolescents, still harboured multi-genome infections. Given the persistence of this diverse reservoir across all ages, these data highlight the importance of sustaining vector control in combination with targeted chemotherapy to move high-transmission settings towards pre-elimination. This study also points to the benefits of molecular surveillance to ensure that incremental achievements are not lost and that the goals advocated for in the WHO's High Burden to High Impact strategy are realized.
  • Item
    No Preview Available
    Age-specific patterns of DBLα var diversity can explain why residents of high malaria transmission areas remain susceptible to Plasmodium falciparum blood stage infection throughout life
    Ruybal-Pesantez, S ; Tiedje, KE ; Pilosof, S ; Tonkin-Hill, G ; He, Q ; Rask, TS ; Amenga-Etego, L ; Oduro, AR ; Koram, KA ; Pascual, M ; Day, KP (ELSEVIER SCI LTD, 2022-10)
    Immunity to Plasmodium falciparum is non-sterilising, thus individuals residing in malaria-endemic areas are at risk of infection throughout their lifetime. Here we seek to find a genomic epidemiological explanation for why residents of all ages harbour blood stage infections despite lifelong exposure to P. falciparum in areas of high transmission. We do this by exploring, for the first known time, the age-specific patterns of diversity of variant antigen encoding (var) genes in the reservoir of infection. Microscopic and submicroscopic P. falciparum infections were analysed at the end of the wet and dry seasons in 2012-2013 for a cohort of 1541 residents aged from 1 to 91 years in an area characterised by high seasonal malaria transmission in Ghana. By sequencing the near ubiquitous Duffy-binding-like alpha domain (DBLα) that encodes immunogenic domains, we defined var gene diversity in an estimated 1096 genomes detected in sequential wet and dry season sampling of this cohort. Unprecedented var (DBLα) diversity was observed in all ages with 42,399 unique var types detected. There was a high degree of maintenance of types between seasons (>40% seen more than once), with many of the same types, especially upsA, appearing multiple times in isolates from different individuals. Children and adolescents were found to be significant reservoirs of var DBLα diversity compared with adults. Var repertoires within individuals were highly variable, with children having more related var repertoires compared to adolescents and adults. Individuals of all ages harboured multiple genomes with var repertoires unrelated to those infecting other hosts. High turnover of parasites with diverse isolate var repertoires was also observed in all ages. These age-specific patterns are best explained by variant-specific immune selection. The observed level of var diversity for the population was then used to simulate the development of variant-specific immunity to the diverse var types under conservative assumptions. Simulations showed that the extent of observed var diversity with limited repertoire relatedness was sufficient to explain why adolescents and adults in this community remain susceptible to blood stage infection, even with multiple genomes.
  • Item
    Thumbnail Image
    The impact of indoor residual spraying on Plasmodium falciparum microsatellite variation in an area of high seasonal malaria transmission in Ghana, West Africa
    Argyropoulos, DC ; Ruybal-Pesantez, S ; Deed, SL ; Oduro, AR ; Dadzie, SK ; Appawu, MA ; Asoala, V ; Pascual, M ; Koram, KA ; Day, KP ; Tiedje, KE (WILEY, 2021-08)
    Here, we report the first population genetic study to examine the impact of indoor residual spraying (IRS) on Plasmodium falciparum in humans. This study was conducted in an area of high seasonal malaria transmission in Bongo District, Ghana. IRS was implemented during the dry season (November-May) in three consecutive years between 2013 and 2015 to reduce transmission and attempt to bottleneck the parasite population in humans towards lower diversity with greater linkage disequilibrium. The study was done against a background of widespread use of long-lasting insecticidal nets, typical for contemporary malaria control in West Africa. Microsatellite genotyping with 10 loci was used to construct 392 P. falciparum multilocus infection haplotypes collected from two age-stratified cross-sectional surveys at the end of the wet seasons pre- and post-IRS. Three-rounds of IRS, under operational conditions, led to a >90% reduction in transmission intensity and a 35.7% reduction in the P. falciparum prevalence (p < .001). Despite these declines, population genetic analysis of the infection haplotypes revealed no dramatic changes with only a slight, but significant increase in genetic diversity (He : pre-IRS = 0.79 vs. post-IRS = 0.81, p = .048). Reduced relatedness of the parasite population (p < .001) was observed post-IRS, probably due to decreased opportunities for outcrossing. Spatiotemporal genetic differentiation between the pre- and post-IRS surveys (D = 0.0329 [95% CI: 0.0209 - 0.0473], p = .034) was identified. These data provide a genetic explanation for the resilience of P. falciparum to short-term IRS programmes in high-transmission settings in sub-Saharan Africa.
  • Item
    Thumbnail Image
    Activation and clustering of a Plasmodium falciparum var gene are affected by subtelomeric sequences
    Duffy, MF ; Tang, J ; Sumardy, F ; Nguyen, HHT ; Selvarajah, SA ; Josling, GA ; Day, KP ; Petter, M ; Brown, GV (WILEY, 2017-01)
    The Plasmodium falciparum var multigene family encodes the cytoadhesive, variant antigen PfEMP1. P. falciparum antigenic variation and cytoadhesion specificity are controlled by epigenetic switching between the single, or few, simultaneously expressed var genes. Most var genes are maintained in perinuclear clusters of heterochromatic telomeres. The active var gene(s) occupy a single, perinuclear var expression site. It is unresolved whether the var expression site forms in situ at a telomeric cluster or whether it is an extant compartment to which single chromosomes travel, thus controlling var switching. Here we show that transcription of a var gene did not require decreased colocalisation with clusters of telomeres, supporting var expression site formation in situ. However following recombination within adjacent subtelomeric sequences, the same var gene was persistently activated and did colocalise less with telomeric clusters. Thus, participation in stable, heterochromatic, telomere clusters and var switching are independent but are both affected by subtelomeric sequences. The var expression site colocalised with the euchromatic mark H3K27ac to a greater extent than it did with heterochromatic H3K9me3. H3K27ac was enriched within the active var gene promoter even when the var gene was transiently repressed in mature parasites and thus H3K27ac may contribute to var gene epigenetic memory.
  • Item
    Thumbnail Image
    A high parasite density environment induces transcriptional changes and cell death in Plasmodium falciparum blood stages
    Chou, ES ; Abidi, SZ ; Teye, M ; Leliwa-Sytek, A ; Rask, TS ; Cobbold, SA ; Tonkin-Hill, GQ ; Subramaniam, KS ; Sexton, AE ; Creek, DJ ; Daily, JP ; Duffy, MF ; Day, KP (WILEY, 2018-03)
    UNLABELLED: Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. DATABASE: Gene expression data are available in the GEO databases under the accession number GSE91188.