Audiology and Speech Pathology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Stuttering associated with a pathogenic variant in the chaperone protein cyclophilin 40
    Morgan, AT ; Scerri, TS ; Vogel, AP ; Reid, CA ; Quach, M ; Jackson, VE ; McKenzie, C ; Burrows, EL ; Bennett, MF ; Turner, SJ ; Reilly, S ; Horton, SE ; Block, S ; Kefalianos, E ; Frigerio-Domingues, C ; Sainz, E ; Rigbye, KA ; Featherby, TJ ; Richards, KL ; Kueh, A ; Herold, MJ ; Corbett, MA ; Gecz, J ; Helbig, I ; Thompson-Lake, DGY ; Liegeois, FJ ; Morell, RJ ; Hung, A ; Drayna, D ; Scheffer, IE ; Wright, DK ; Bahlo, M ; Hildebrand, MS (OXFORD UNIV PRESS, 2023-12-01)
    Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.
  • Item
    Thumbnail Image
    Atypical development of Broca's area in a large family with inherited stuttering
    Thompson-Lake, DGY ; Scerri, TS ; Block, S ; Turner, SJ ; Reilly, S ; Kefalianos, E ; Bonthrone, AF ; Helbig, I ; Bahlo, M ; Scheffer, IE ; Hildebrand, MS ; Liegeois, FJ ; Morgan, AT (OXFORD UNIV PRESS, 2022-04-29)
    Developmental stuttering is a condition of speech dysfluency, characterized by pauses, blocks, prolongations and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, 16 family members were included in genotyping analysis. T1-weighted and diffusion-weighted MRI scans were conducted on seven family members (six male; aged 9-63 years) with two age and sex matched controls without stuttering (n = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca's area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of P < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left P = 0.017; right P = 0.037), and a larger right globus pallidus was associated with more severe stuttering (rho = 0.86, P = 0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca's area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering.
  • Item
    Thumbnail Image
    Self-reported impact of developmental stuttering across the lifespan
    Boyce, JO ; Jackson, VE ; van Reyk, O ; Parker, R ; Vogel, AP ; Eising, E ; Horton, SE ; Gillespie, NA ; Scheffer, IE ; Amor, DJ ; Hildebrand, MS ; Fisher, SE ; Martin, NG ; Reilly, S ; Bahlo, M ; Morgan, AT (WILEY, 2022-10)
    AIM: To examine the phenomenology of stuttering across the lifespan in the largest prospective cohort to date. METHOD: Participants aged 7 years and older with a history of developmental stuttering were recruited. Self-reported phenotypic data were collected online including stuttering symptomatology, co-occurring phenotypes, genetic predisposition, factors associated with stuttering severity, and impact on anxiety, education, and employment. RESULTS: A total of 987 participants (852 adults: 590 males, 262 females, mean age 49 years [SD = 17 years 10 months; range = 18-93 years] and 135 children: 97 males, 38 females, mean age 11 years 4 months [SD = 3 years; range = 7-17 years]) were recruited. Stuttering onset occurred at age 3 to 6 years in 64.0%. Blocking (73.2%) was the most frequent phenotype; 75.9% had sought stuttering therapy and 15.5% identified as having recovered. Half (49.9%) reported a family history. There was a significant negative correlation with age for both stuttering frequency and severity in adults. Most were anxious due to stuttering (90.4%) and perceived stuttering as a barrier to education and employment outcomes (80.7%). INTERPRETATION: The frequent persistence of stuttering and the high proportion with a family history suggest that stuttering is a complex trait that does not often resolve, even with therapy. These data provide new insights into the phenotype and prognosis of stuttering, information that is critically needed to encourage the development of more effective speech therapies. WHAT THIS PAPER ADDS: Half of the study cohort had a family history of stuttering. While 75.9% of participants had sought stuttering therapy, only 15.5% identified as having recovered. There was a significant negative correlation between age and stuttering frequency and severity in adults.
  • Item
    No Preview Available
    Severe childhood speech disorder: Gene discovery highlights transcriptional dysregulation
    Hildebrand, MS ; Jackson, VE ; Scerri, TS ; Van Reyk, O ; Coleman, M ; Braden, RO ; Turner, S ; Rigbye, KA ; Boys, A ; Barton, S ; Webster, R ; Fahey, M ; Saunders, K ; Parry-Fielder, B ; Paxton, G ; Hayman, M ; Coman, D ; Goel, H ; Baxter, A ; Ma, A ; Davis, N ; Reilly, S ; Delatycki, M ; Liegeois, FJ ; Connelly, A ; Gecz, J ; Fisher, SE ; Amor, DJ ; Scheffer, IE ; Bahlo, M ; Morgan, AT (LIPPINCOTT WILLIAMS & WILKINS, 2020-05-19)
    OBJECTIVE: Determining the genetic basis of speech disorders provides insight into the neurobiology of human communication. Despite intensive investigation over the past 2 decades, the etiology of most speech disorders in children remains unexplained. To test the hypothesis that speech disorders have a genetic etiology, we performed genetic analysis of children with severe speech disorder, specifically childhood apraxia of speech (CAS). METHODS: Precise phenotyping together with research genome or exome analysis were performed on children referred with a primary diagnosis of CAS. Gene coexpression and gene set enrichment analyses were conducted on high-confidence gene candidates. RESULTS: Thirty-four probands ascertained for CAS were studied. In 11/34 (32%) probands, we identified highly plausible pathogenic single nucleotide (n = 10; CDK13, EBF3, GNAO1, GNB1, DDX3X, MEIS2, POGZ, SETBP1, UPF2, ZNF142) or copy number (n = 1; 5q14.3q21.1 locus) variants in novel genes or loci for CAS. Testing of parental DNA was available for 9 probands and confirmed that the variants had arisen de novo. Eight genes encode proteins critical for regulation of gene transcription, and analyses of transcriptomic data found CAS-implicated genes were highly coexpressed in the developing human brain. CONCLUSION: We identify the likely genetic etiology in 11 patients with CAS and implicate 9 genes for the first time. We find that CAS is often a sporadic monogenic disorder, and highly genetically heterogeneous. Highly penetrant variants implicate shared pathways in broad transcriptional regulation, highlighting the key role of transcriptional regulation in normal speech development. CAS is a distinctive, socially debilitating clinical disorder, and understanding its molecular basis is the first step towards identifying precision medicine approaches.