Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Modelling the effect of roughness density on turbulent forced convection
    Abu Rowin, W ; Zhong, K ; Saurav, T ; Jelly, T ; Hutchins, N ; Chung, D (Cambridge University Press, 2024-01-11)
    By examining a systematic set of direct numerical simulations, we develop a model which captures the effect of roughness density on global and local heat transfer in forced convection. The surfaces considered are zero-skewed three-dimensional sinusoidal rough walls with solidities, Λ (defined as the frontal area divided by the total plan area), ranging from low Λ=0.09, medium Λ=0.18 to high Λ=0.36. For each solidity, we vary the roughness height characterised by the roughness Reynolds number, k+, from transitionally rough to fully rough conditions. The findings indicate that, as the fully rough regime is approached, there is a pronounced breakdown in the analogy between heat and momentum transfer, whereby the velocity roughness function ΔU+ continues to increase and the temperature roughness function ΔΘ+ attains a peak with increasing k+. This breakdown occurs at higher sand-grain roughness Reynolds numbers (k+s) with increasing solidity. Locally, we find that the heat transfer can be meaningfully partitioned into two categories: exposed, high-shear regions experiencing higher heat transfer obeying a local Reynolds analogy and sheltered, reversed-flow regions experiencing lower and spatially uniform heat transfer. The relative contribution of these distinct mechanisms to the global heat transfer depends on the fraction of the total surface area covered by these regions, which ultimately depends on Λ. These insights enable us to develop a model for the rough-wall heat-transfer coefficient, Ch,k(k+,Λ,Pr), where Pr is the molecular Prandtl number, that assumes different heat-transfer laws in exposed and sheltered regions. We show that the exposed–sheltered surface-area fractions can be modelled through simple ray tracing that is solely dependent on the surface topography and a prescribed sheltering angle. Model predictions compare well when applied to heat-transfer data of traverse ribs from the literature.
  • Item
    No Preview Available
    High-Fidelity Computational Assessment of Aero-Thermal Performance and the Reynolds' Analogy for Additively Manufactured Anisotropic Surface Roughness
    Jelly, TO ; Abu Rowin, W ; Hutchins, N ; Chung, D ; Tanimoto, K ; Oda, T ; Sandberg, RD (ASME, 2023-11-01)
    Abstract Direct numerical simulations of incompressible turbulent forced convection over irregular, anisotropic surface roughness in a pressure-driven plane channel flow have been performed. Heat transfer was simulated by solving the passive scalar transport equation with Prandtl number Pr = 0.7. The roughness topographies under investigation here are based on an X-ray computed tomography scan of an additively manufactured internal cooling passage, which had an irregular, multiscale and mildly non-Gaussian height distribution. Three different roughness topographies and three different friction Reynolds numbers (Reτ = 395, 590, 720) were considered, along with reference smooth-wall simulations at matched Reτ. By systematically varying the roughness topography and flow conditions, a direct computational assessment of aero-thermal performance (pressure losses and heat transfer) and the Reynolds analogy factor, i.e., 2Ch/Cf, where Ch is the heat-transfer coefficient (Stanton number) and Cf is the skin-friction coefficient, was conducted. The results highlight the profound impact that the roughness orientation (relative to the flow direction) has upon the aero-thermal performance of additively manufactured internal passages, with transverse-aligned roughness augmenting heat transfer by as much as 33%, relative to its streamwise-aligned counterpart. An interrogation of velocity and temperature statistics in the near-wall region was also performed, which underlined the growing dissimilarity between heat transfer and drag as fully rough conditions are approached.
  • Item
    No Preview Available
    Investigation of cold-wire spatial and temporal resolution issues in thermal turbulent boundary layers
    Xia, Y ; Rowin, WA ; Jelly, T ; Marusic, I ; Hutchins, N (ELSEVIER SCIENCE INC, 2022-04)
  • Item
    Thumbnail Image
    Heat Transfer Coefficient Estimation for Turbulent Boundary Layers
    Wang, S ; Xia, Y ; Abu Rowin, W ; Marusic, I ; Sandberg, R ; Chung, D ; Hutchins, N ; Tanimoto, K ; Oda, T (The University of Queensland, 2020-12-11)
    Convective heat transfer in rough wall-bounded turbulent flows is prevalent in many engineering applications, such as in gas turbines and heat exchangers. At present, engineers lack the design tools to accurately predict the convective heat transfer in the presence of non-smooth boundaries. Accordingly, a new turbulent boundary layer facility has been commissioned, where the temperature of an interchangeable test surface can be precisely controlled, and conductive heat losses are minimized. Using this facility, we can estimate the heat transfer coefficient (Stanton number, St), through measurement of the power supplied to the electrical heaters and also from measurements of the thermal and momentum boundary layers evolving over this surface. These methods have been initially investigated over a shorter smooth prototype heated surface and compared with existing St prediction models. Preliminary results suggest that we can accurately estimate St in this facility.
  • Item
    Thumbnail Image
    An investigation of cold-wire spatial resolution using a DNS database
    Xia, Y ; Rowin, W ; Jelly, T ; Chung, D ; Marusic, I ; Hutchins, N (The University of Queensland, 2020-12-11)
    The effect of spatial resolution of cold-wire anemometry on both the variance and energy spectrum of temperature fluctuations is analyzed through the use of a numerical database. Temperature fluctuation snapshots from a direct numerical simulation (DNS) of a heated smooth-wall turbulent channel flow are spatially averaged in the spanwise direction to simulate the wire filtering. The results show that the wire length does not affect the mean temperature while it significantly attenuates the variance of temperature fluctuations, particularly in the vicinity of the wall. As the filter length grows, the peaks of the one- and two-dimensional energy spectrograms are further attenuated. Limited attenuation is seen when the filter length is smaller than 30 wall units in the vicinity of the wall, whereas a complete suppression of the near-wall energetic peak is observed when the filter length exceeds 100 wall units.
  • Item
    No Preview Available
    Aerosolisation in endonasal endoscopic pituitary surgery
    Dhillon, RS ; Nguyen, L ; Abu Rowin, W ; Humphries, RS ; Kevin, K ; Ward, JD ; Yule, A ; Phan, TD ; Zhao, YC ; Wynne, D ; McNeill, PM ; Hutchins, N ; Scott, DA (SPRINGER, 2021-08)
    PURPOSE: To determine the particle size, concentration, airborne duration and spread during endoscopic endonasal pituitary surgery in actual patients in a theatre setting. METHODS: This observational study recruited a convenience sample of three patients. Procedures were performed in a positive pressure operating room. Particle image velocimetry and spectrometry with air sampling were used for aerosol detection. RESULTS: Intubation and extubation generated small particles (< 5 µm) in mean concentrations 12 times greater than background noise (p < 0.001). The mean particle concentrations during endonasal access were 4.5 times greater than background (p = 0.01). Particles were typically large (> 75 µm), remained airborne for up to 10 s and travelled up to 1.1 m. Use of a microdebrider generated mean aerosol concentrations 18 times above baseline (p = 0.005). High-speed drilling did not produce aerosols greater than baseline. Pituitary tumour resection generated mean aerosol concentrations less than background (p = 0.18). Surgical drape removal generated small and large particles in mean concentrations 6.4 times greater than background (p < 0.001). CONCLUSION: Intubation and extubation generate large amounts of small particles that remain suspended in air for long durations and disperse through theatre. Endonasal access and pituitary tumour resection generate smaller concentrations of larger particles which are airborne for shorter periods and travel shorter distances.
  • Item
    No Preview Available
    Nasal preparation with local anesthetic should be considered an aerosol-generating procedure
    Dhillon, RS ; Nguyen, LV ; Rowin, WA ; Humphries, RS ; Kevin, K ; Ward, JD ; Yule, A ; Phan, TD ; Wynne, D ; McNeill, PM ; Hutchins, N ; Scott, DA ; Zhao, YC (WILEY, 2021-06)
  • Item
    No Preview Available
    Aerosolisation during tracheal intubation and extubation in an operating theatre setting
    Dhillon, RS ; Rowin, WA ; Humphries, RS ; Kevin, K ; Ward, JD ; Phan, TD ; Nguyen, LV ; Wynne, DD ; Scott, DA (WILEY, 2021-02)
    Aerosol-generating procedures such as tracheal intubation and extubation pose a potential risk to healthcare workers because of the possibility of airborne transmission of infection. Detailed characterisation of aerosol quantities, particle size and generating activities has been undertaken in a number of simulations but not in actual clinical practice. The aim of this study was to determine whether the processes of facemask ventilation, tracheal intubation and extubation generate aerosols in clinical practice, and to characterise any aerosols produced. In this observational study, patients scheduled to undergo elective endonasal pituitary surgery without symptoms of COVID-19 were recruited. Airway management including tracheal intubation and extubation was performed in a standard positive pressure operating room with aerosols detected using laser-based particle image velocimetry to detect larger particles, and spectrometry with continuous air sampling to detect smaller particles. A total of 482,960 data points were assessed for complete procedures in three patients. Facemask ventilation, tracheal tube insertion and cuff inflation generated small particles 30-300 times above background noise that remained suspended in airflows and spread from the patient's facial region throughout the confines of the operating theatre. Safe clinical practice of these procedures should reflect these particle profiles. This adds to data that inform decisions regarding the appropriate precautions to take in a real-world setting.