School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Scattering of Visible Light by Au-PNIPAM Core-Shell Microgels
    Tadgell, B ; Ponomareva, E ; Karg, M ; Mulvaney, P (AMER CHEMICAL SOC, 2022-09-15)
  • Item
    No Preview Available
    Temperature-Jump Spectroscopy of Gold-Poly(N-isopropylacrylamide) Core-Shell Microgels
    Tadgell, B ; Ponomareva, E ; Karg, M ; Mulvaney, P (AMER CHEMICAL SOC, 2022-03-03)
  • Item
    Thumbnail Image
    The fuzzy sphere morphology is responsible for the increase in light scattering during the shrinkage of thermoresponsive microgels
    Ponomareva, E ; Tadgell, B ; Hildebrandt, M ; Kruesmann, M ; Prevost, S ; Mulvaney, P ; Karg, M (ROYAL SOC CHEMISTRY, 2022-01-26)
    Thermoresponsive microgels undergo a volume phase transition from a swollen state under good solvent conditions to a collapsed state under poor solvent conditions. The most prominent examples of such responsive systems are based on poly-(N-isopropylacrylamide). When cross-linked with N,N'-methylenebisacrylamide, such microgels typically possess a fuzzy-spherelike morphology with a higher cross-linked core and a loosely cross-linked fuzzy shell. Despite the efforts devoted to understanding the internal structure of microgels and their kinetics during collapse/swelling, the origins of the accompanying changes in light scattering intensity have barely been addressed. In this work, we study core-shell microgels that contain small gold nanoparticle cores with microgel shells of different thicknesses and cross-linker densities. All microgels are small enough to fulfill the Rayleigh-Debye-Gans criterion at all stages of swelling. Due to the high X-ray contrast of the gold cores, we can use absolute intensity small-angle X-ray scattering to determine the number density in the dilute dispersions. This allows us to extract polymer volume fractions of the microgels at different stages of swelling from form factor analysis of small-angle neutron scattering data. We match our findings to results from temperature-dependent absorbance measurements. The increase in absorbance during the shrinkage of the microgels is related to the transition from fuzzy spheres to hard sphere-like scattering objects with a rather homogeneous density profile. We provide a first attempt to model experimental spectra using finite difference time domain simulations that take into account the structural changes during the volume phase transition. Our findings significantly contribute to the understanding of the optical properties of thermoresponsive microgels. Further, we provide polymer volume fractions and microgel refractive indices as a function of the swelling state.
  • Item
    Thumbnail Image
    Detection of Halomethanes Using Cesium Lead Halide Perovskite Nanocrystals
    Yin, W ; Li, H ; Chesman, ASR ; Tadgell, B ; Scully, AD ; Wang, M ; Huang, W ; McNeill, CR ; Wong, WWH ; Medhekar, N ; Mulvaney, P ; Jasieniak, JJ (AMER CHEMICAL SOC, 2021-01-26)
    The extensive use of halomethanes (CH3X, X = F, Cl, Br, I) as refrigerants, propellants, and pesticides has drawn serious concern due to their adverse biological and atmospheric impact. However, there are currently no portable rapid and accurate monitoring systems for their detection. This work introduces an approach for the selective and sensitive detection of halomethanes using photoluminescence spectral shifts in cesium lead halide perovskite nanocrystals. Focusing on iodomethane (CH3I) as a model system, it is shown that cesium lead bromide (CsPbBr3) nanocrystals can undergo rapid (<5 s) halide exchange, but only after exposure to oleylamine to induce nucleophilic substitution of the CH3I and release the iodide species. The extent of the halide exchange is directly dependent on the CH3I concentration, with the photoluminescence emission of the CsPbBr3 nanocrystals exhibiting a redshift of more than 150 nm upon the addition of 10 ppmv of CH3I. This represents the widest detection range and the highest sensitivity to the detection of halomethanes using a low-cost and portable approach reported to date. Furthermore, inherent selectivity for halomethanes compared to other organohalide analogues is achieved through the dramatic differences in their alkylation reactivity.