School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Synthesis of the Alkylsulfonate Metabolites Cysteinolic Acid, 3-Amino-2-hydroxypropanesulfonate, and 2,3-Dihydroxypropanesulfonate
    Burchill, L ; Zudich, L ; van der Peet, PL ; White, JM ; Williams, SJ (AMER CHEMICAL SOC, 2022-03-18)
    Chiral hydroxy- and aminohydroxysulfonic acids are widespread in the marine and terrestrial environment. Here we report simple methods for the synthesis of d- and l-cysteinolic acid (from (Boc-d-Cys-OH)2 and (Boc-l-Cys-OH)2, respectively), R- and S-3-amino-2-hydroxypropanesulfonate (from S- and R-epichlorohydrin, respectively), and R- and S-2,3-dihydroxypropanesulfonate (from S- and R-epichlorohydrin, respectively). d-Cysteinolate bile salts were generated by coupling with cholic and chenodeoxycholic acids. A series of single-crystal 3D X-ray structures confirmed the absolute configurations of the aminosulfonates. By comparison of optical rotation, we assign naturally occurring 3-amino-2-hydroxypropanesulfonate from Gateloupia livida as possessing the R-configuration. This simple synthetic approach will support future studies of the occurrence, chemotaxonomic distribution, and metabolism of these alkylsulfonates.
  • Item
    Thumbnail Image
    Synthesis and structure of clozapine N-oxide hemi(hydrochloride): an infinite hydrogen-bonded poly[n]catenane
    van der Peet, PL ; Joyce, RD ; Ott, H ; Marcuccio, SM ; White, JM ; Williams, SJ (INT UNION CRYSTALLOGRAPHY, 2022-10)
    The structure of the title compound, 2C18H19ClN4O·HCl or (CNO)2·HCl (C36H39Cl3N8O2), at 100 K has tetra-gonal (I4/m) symmetry. The dihedral angle between the benzene rings of the fused ring system of the CNO mol-ecule is 40.08 (6)° and the equivalent angle between the seven-membered ring and its pendant N-oxide ring is 31.14 (7)°. The structure contains a very strong, symmetrical O-H⋯O hydrogen bond [O⋯O = 2.434 (2) Å] between two equivalent R 3N+-O- moieties, which share a proton lying on a crystallographic twofold rotation axis. These units then form a (CNO)4·(HCl)2 ring by way of two equivalent N-H⋯Cl hydrogen bonds (Cl- site symmetry m). These rings are catenated into infinite chains propagating along the c-axis direction by way of shape complementarity and directional C-H⋯N and C-H⋯π inter-actions.
  • Item
    Thumbnail Image
    Synthesis of glycoconjugate fragments of mycobacterial phosphatidylinositol mannosides and lipomannan
    Cao, B ; White, JM ; Williams, SJ (BEILSTEIN-INSTITUT, 2011-03-28)
    Mycobacterium tuberculosis, the causitive agent of tuberculosis (TB), possesses a complex cell wall containing mannose-rich glycophospholids termed phosphatidylinositol mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). These glycophospholipids play important roles in cell wall function and host-pathogen interactions. Synthetic PIM/LM/LAM substructures are useful biochemical tools to delineate and dissect the fine details of mannose glycophospholipid biosynthesis and their interactions with host cells. We report the efficient synthesis of a series of azidooctyl di- and trimannosides possessing the following glycan structures: α-Man-1,6-α-Man, α-Man-1,6-α-Man-1,6-α-Man, α-Man-1,2-α-Man-1,6-α-Man and 2,6-di-(α-Man)-α-Man. The synthesis includes the use of non-benzyl protecting groups compatible with the azido group and preparation of the branched trisaccharide structure 2,6-di-(α-Man)-α-Man through a double glycosylation of a 3,4-butanediacetal-protected mannoside. The azidooctyl groups of these synthetic mannans were elaborated to fluorescent glycoconjugates and squaric ester derivatives useful for further conjugation studies.
  • Item
    Thumbnail Image
    Combined Inhibitor Free-Energy Landscape and Structural Analysis Reports on the Mannosidase Conformational Coordinate
    Williams, RJ ; Iglesias-Fernandez, J ; Stepper, J ; Jackson, A ; Thompson, AJ ; Lowe, EC ; White, JM ; Gilbert, HJ ; Rovira, C ; Davies, GJ ; Williams, SJ (WILEY-V C H VERLAG GMBH, 2014-01-20)
    Mannosidases catalyze the hydrolysis of a diverse range of polysaccharides and glycoconjugates, and the various sequence-based mannosidase families have evolved ingenious strategies to overcome the stereoelectronic challenges of mannoside chemistry. Using a combination of computational chemistry, inhibitor design and synthesis, and X-ray crystallography of inhibitor/enzyme complexes, it is demonstrated that mannoimidazole-type inhibitors are energetically poised to report faithfully on mannosidase transition-state conformation, and provide direct evidence for the conformational itinerary used by diverse mannosidases, including β-mannanases from families GH26 and GH113. Isofagomine-type inhibitors are poor mimics of transition-state conformation, owing to the high energy barriers that must be crossed to attain mechanistically relevant conformations, however, these sugar-shaped heterocycles allow the acquisition of ternary complexes that span the active site, thus providing valuable insight into active-site residues involved in substrate recognition.
  • Item
    Thumbnail Image
    Gram scale preparation of clozapine N-oxide (CNO), a synthetic small molecule actuator for muscarinic acetylcholine DREADDs
    van der Peet, PL ; Gunawan, C ; Abdul-Ridha, A ; Ma, S ; Scott, DJ ; Gundlach, AL ; Bathgate, RAD ; White, JM ; Williams, SJ (ELSEVIER SCIENCE BV, 2018)
    Chemogenetics uses engineered proteins that are controlled by small molecule actuators, allowing in vivo functional studies of proteins with temporal and dose control, and include Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). One major class of DREADDs are mutated muscarinic receptors that are unresponsive to acetylcholine, and are activated by administration of clozapine N-oxide (CNO). However, CNO is available in only small amounts and large scale studies involving animals and multiple cohorts are prohibitively expensive for many investigators. The precursor, clozapine, is also expensive when purchased from specialist suppliers. Here we report: •A simple extraction method of clozapine from commercial tablets;•A simple preparation of CNO from clozapine, and for the first time its single-crystal X-ray structure; and•That the CNO prepared by this method specifically activates the DREADD receptor hM3Dq in vivo. This method provides large quantities of CNO suitable for large-scale DREADD applications that is identical to commercial material.
  • Item
    No Preview Available
    Structure-reactivity correlations of the abnormal Beckmann reaction of dihydrolevoglucosenone oxime
    Alhifthi, A ; Harris, BL ; Goerigk, L ; White, JM ; Williams, SJ (ROYAL SOC CHEMISTRY, 2017-12-21)
    A structural, spectroscopic and computational study of a series of oximes was undertaken to investigate how geometric and structural changes relevant to the reaction coordinate for the Beckmann reaction (normal Beckmann) and Beckmann fragmentation (abnormal Beckmann) manifest in the ground state. X-ray structures of a range of oximes derived from dihydrolevoglucosan (Cyrene™; which undergoes the abnormal Beckmann reaction), in which the oxygen substituent was systematically varied were determined. As the electron demand of the OR group increased, the major structural changes included lengthening of the N-OR bond distance, and a decrease in the magnitude of the C2[double bond, length as m-dash]N-O bond angle, consistent with the changes seen for cyclohexanone oximes, which undergo the normal Beckmann reaction. However, unique to the Cyrene oximes, an increase in the length of the fissile C1-C2 bond was observed, which correlated with a decrease in the 13C-13C 1-bond coupling constants as the electron demand of the OR substituent increased. Computational studies of Cyrene and cyclohexanone oximes using Natural Bond Orbital analysis support an electronic structure involving n(O) → σ*C1-C2 and σC1-C2 → σ*N-O localized orbital interactions.
  • Item
    Thumbnail Image
    Total syntheses of cis-cyclopropane fatty acids: dihydromalvalic acid, dihydrosterculic acid, lactobacillic acid, and 9,10-methylenehexadecanoic acid
    Shah, S ; White, JM ; Williams, SJ (ROYAL SOC CHEMISTRY, 2014)
    cis-Cyclopropane fatty acids (cis-CFAs) are widespread constituents of the seed oils of subtropical plants, membrane components of bacteria and protozoa, and the fats and phospholipids of animals. We describe a systematic approach to the synthesis of enantiomeric pairs of four cis-CFAs: cis-9,10-methylenehexadecanoic acid, lactobacillic acid, dihydromalvalic acid, and dihydrosterculic acid. The approach commences with Rh2(OAc)4-catalyzed cyclopropenation of 1-octyne and 1-decyne, and hinges on the preparative scale chromatographic resolution of racemic 2-alkylcycloprop-2-ene-1-carboxylic acids using a homochiral Evan's auxiliary. Saturation of the individual diastereomeric N-cycloprop-2-ene-1-carbonylacyloxazolidines, followed by elaboration to alkylcyclopropylmethylsulfones, allowed Julia-Kocienski olefination with various ω-aldehyde-esters. Finally, saponification and diimide reduction afforded the individual cis-CFA enantiomers.