School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Genome variants associated with RNA splicing variations in bovine are extensive shared between tissues
    Xiang, R ; Hayes, BJ ; Vander Jagt, CJ ; MacLeod, IM ; Khansefid, M ; Bowman, PJ ; Yuan, Z ; Prowse-Wilkins, CP ; Reich, CM ; Mason, BA ; Garner, JB ; Marett, LC ; Chen, Y ; Bolormaa, S ; Daetwyler, HD ; Chamberlain, AJ ; Goddard, ME (BMC, 2018-07-04)
    BACKGROUND: Mammalian phenotypes are shaped by numerous genome variants, many of which may regulate gene transcription or RNA splicing. To identify variants with regulatory functions in cattle, an important economic and model species, we used sequence variants to map a type of expression quantitative trait loci (expression QTLs) that are associated with variations in the RNA splicing, i.e., sQTLs. To further the understanding of regulatory variants, sQTLs were compare with other two types of expression QTLs, 1) variants associated with variations in gene expression, i.e., geQTLs and 2) variants associated with variations in exon expression, i.e., eeQTLs, in different tissues. RESULTS: Using whole genome and RNA sequence data from four tissues of over 200 cattle, sQTLs identified using exon inclusion ratios were verified by matching their effects on adjacent intron excision ratios. sQTLs contained the highest percentage of variants that are within the intronic region of genes and contained the lowest percentage of variants that are within intergenic regions, compared to eeQTLs and geQTLs. Many geQTLs and sQTLs are also detected as eeQTLs. Many expression QTLs, including sQTLs, were significant in all four tissues and had a similar effect in each tissue. To verify such expression QTL sharing between tissues, variants surrounding (±1 Mb) the exon or gene were used to build local genomic relationship matrices (LGRM) and estimated genetic correlations between tissues. For many exons, the splicing and expression level was determined by the same cis additive genetic variance in different tissues. Thus, an effective but simple-to-implement meta-analysis combining information from three tissues is introduced to increase power to detect and validate sQTLs. sQTLs and eeQTLs together were more enriched for variants associated with cattle complex traits, compared to geQTLs. Several putative causal mutations were identified, including an sQTL at Chr6:87392580 within the 5th exon of kappa casein (CSN3) associated with milk production traits. CONCLUSIONS: Using novel analytical approaches, we report the first identification of numerous bovine sQTLs which are extensively shared between multiple tissue types. The significant overlaps between bovine sQTLs and complex traits QTL highlight the contribution of regulatory mutations to phenotypic variations.
  • Item
    Thumbnail Image
    Extensive variation between tissues in allele specific expression in an outbred mammal
    Chamberlain, AJ ; Vander Jagt, CJ ; Hayes, BJ ; Khansefid, M ; Marett, LC ; Millen, CA ; Nguyen, TTT ; Goddard, ME (BMC, 2015-11-23)
    BACKGROUND: Allele specific gene expression (ASE), with the paternal allele more expressed than the maternal allele or vice versa, appears to be a common phenomenon in humans and mice. In other species the extent of ASE is unknown, and even in humans and mice there are several outstanding questions. These include; to what extent is ASE tissue specific? how often does the direction of allele expression imbalance reverse between tissues? how often is only one of the two alleles expressed? is there a genome wide bias towards expression of the paternal or maternal allele; and finally do genes that are nearby on a chromosome share the same direction of ASE? Here we use gene expression data (RNASeq) from 18 tissues from a single cow to investigate each of these questions in turn, and then validate some of these findings in two tissues from 20 cows. RESULTS: Between 40 and 100 million sequence reads were generated per tissue across three replicate samples for each of the eighteen tissues from the single cow (the discovery dataset). A bovine gene expression atlas was created (the first from RNASeq data), and differentially expressed genes in each tissue were identified. To analyse ASE, we had access to unambiguously phased genotypes for all heterozygous variants in the cow's whole genome sequence, where these variants were homozygous in the whole genome sequence of her sire, and as a result we were able to map reads to parental genomes, to determine SNP and genes showing ASE in each tissue. In total 25,251 heterozygous SNP within 7985 genes were tested for ASE in at least one tissue. ASE was pervasive, 89 % of genes tested had significant ASE in at least one tissue. This large proportion of genes displaying ASE was confirmed in the two tissues in a validation dataset. For individual tissues the proportion of genes showing significant ASE varied from as low as 8-16 % of those tested in thymus to as high as 71-82 % of those tested in lung. There were a number of cases where the direction of allele expression imbalance reversed between tissues. For example the gene SPTY2D1 showed almost complete paternal allele expression in kidney and thymus, and almost complete maternal allele expression in the brain caudal lobe and brain cerebellum. Mono allelic expression (MAE) was common, with 1349 of 4856 genes (28 %) tested with more than one heterozygous SNP showing MAE. Across all tissues, 54.17 % of all genes with ASE favoured the paternal allele. Genes that are closely linked on the chromosome were more likely to show higher expression of the same allele (paternal or maternal) than expected by chance. We identified several long runs of neighbouring genes that showed either paternal or maternal ASE, one example was five adjacent genes (GIMAP8, GIMAP7 copy1, GIMAP4, GIMAP7 copy 2 and GIMAP5) that showed almost exclusive paternal expression in brain caudal lobe. CONCLUSIONS: Investigating the extent of ASE across 18 bovine tissues in one cow and two tissues in 20 cows demonstrated 1) ASE is pervasive in cattle, 2) the ASE is often MAE but ranges from MAE to slight overexpression of the major allele, 3) the ASE is most often tissue specific and that more than half the time displays divergent allele specific expression patterns across tissues, 4) across all genes there is a slight bias towards expression of the paternal allele and 5) genes expressing the same parental allele are clustered together more than expected by chance, and there are several runs of large numbers of genes expressing the same parental allele.