School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Sharing of either phenotypes or genetic variants can increase the accuracy of genomic prediction of feed efficiency
    Bolormaa, S ; MacLeod, IM ; Khansefid, M ; Marett, LC ; Wales, WJ ; Miglior, F ; Baes, CF ; Schenkel, FS ; Connor, EE ; Manzanilla-Pech, CI ; Stothard, P ; Herman, E ; Nieuwhof, GJ ; Goddard, ME ; Pryce, JE (BMC, 2022-09-06)
    BACKGROUND: Sharing individual phenotype and genotype data between countries is complex and fraught with potential errors, while sharing summary statistics of genome-wide association studies (GWAS) is relatively straightforward, and thus would be especially useful for traits that are expensive or difficult-to-measure, such as feed efficiency. Here we examined: (1) the sharing of individual cow data from international partners; and (2) the use of sequence variants selected from GWAS of international cow data to evaluate the accuracy of genomic estimated breeding values (GEBV) for residual feed intake (RFI) in Australian cows. RESULTS: GEBV for RFI were estimated using genomic best linear unbiased prediction (GBLUP) with 50k or high-density single nucleotide polymorphisms (SNPs), from a training population of 3797 individuals in univariate to trivariate analyses where the three traits were RFI phenotypes calculated using 584 Australian lactating cows (AUSc), 824 growing heifers (AUSh), and 2526 international lactating cows (OVE). Accuracies of GEBV in AUSc were evaluated by either cohort-by-birth-year or fourfold random cross-validations. GEBV of AUSc were also predicted using only the AUS training population with a weighted genomic relationship matrix constructed with SNPs from the 50k array and sequence variants selected from a meta-GWAS that included only international datasets. The genomic heritabilities estimated using the AUSc, OVE and AUSh datasets were moderate, ranging from 0.20 to 0.36. The genetic correlations (rg) of traits between heifers and cows ranged from 0.30 to 0.95 but were associated with large standard errors. The mean accuracies of GEBV in Australian cows were up to 0.32 and almost doubled when either overseas cows, or both overseas cows and AUS heifers were included in the training population. They also increased when selected sequence variants were combined with 50k SNPs, but with a smaller relative increase. CONCLUSIONS: The accuracy of RFI GEBV increased when international data were used or when selected sequence variants were combined with 50k SNP array data. This suggests that if direct sharing of data is not feasible, a meta-analysis of summary GWAS statistics could provide selected SNPs for custom panels to use in genomic selection programs. However, since this finding is based on a small cross-validation study, confirmation through a larger study is recommended.
  • Item
    Thumbnail Image
    Evaluation of updated Feed Saved breeding values developed in Australian Holstein dairy cattle.
    Bolormaa, S ; MacLeod, IM ; Khansefid, M ; Marett, LC ; Wales, WJ ; Nieuwhof, GJ ; Baes, CF ; Schenkel, FS ; Goddard, ME ; Pryce, JE (American Dairy Science Association, 2022-03)
    Although selection for increased milk production traits has led to a genetic increase in body weight (BW), the genetic gain in milk production has exceeded the gain in BW, so gross feed efficiency has improved. Nonetheless, greater gains may be possible by directly selecting for a measure of feed efficiency. Australia first introduced Feed Saved (FS) estimated breeding value (EBV) in 2015. Feed Saved combines residual feed intake (RFI) genomic EBV and maintenance requirements calculated from mature BW EBV. The FS EBV was designed to enable the selection of cows for reduced energy requirements with similar milk production. In this study, we used a reference population of 3,711 animals in a multivariate analysis including Australian heifers (AUSh), Australian cows (AUSc), and overseas cows (OVEc) to update the Australian EBV for lifetime RFI (i.e., a breeding value that incorporated RFI in growing and lactating cows) and to recalculate the FS EBV in Australian Holstein bulls (AUSb). The estimates of genomic heritabilities using univariate (only AUSc or AUSh) to trivariate (including the OVEc) analyses were similar. Genomic heritabilities for RFI were estimated as 0.18 for AUSc, 0.27 for OVEc, and 0.36 for AUSh. The genomic correlation for RFI between AUSc and AUSh was 0.47 and that between AUSc and OVEc was 0.94, but these estimates were associated with large standard errors (range: 0.18-0.28). The reliability of lifetime RFI (a component of FS) in the trivariate analysis (i.e., including OVEc) increased from 11% to 20% compared with the 2015 model and was greater, by 12%, than in a bivariate analysis in which the reference population included only AUSc and AUSh. By applying the prediction equation of the 2020 model, the average reliability of the FS EBV in 20,816 AUSb that were born between 2010 and 2020 improved from 33% to 43%. Previous selection strategies-that is, using the predecessor of the Balanced Performance Index (Australian Profit Ranking index) that did not include FS-have resulted in an unfavorable genetic trend in FS. However, this unfavorable trend has stabilized since 2015, when FS was included in the Balanced Performance Index, and is expected to move in a favorable direction with selection on Balanced Performance Index or the Health Weighted Index. Doubling the reference population, particularly by incorporating international data for feed efficiency, has improved the reliability of the FS EBV. This could lead to increased genetic gain for feed efficiency in the Australian industry.
  • Item
    Thumbnail Image
    Genetic parameters for methane emission traits in Australian dairy cows
    Richardson, CM ; Nguyen, TTT ; Abdelsayed, M ; Moate, PJ ; Williams, SRO ; Chud, TCS ; Schenkel, FS ; Goddard, ME ; van den Berg, I ; Cocks, BG ; Marett, LC ; Wales, WJ ; Pryce, JE (ELSEVIER SCIENCE INC, 2021-01)
    Methane is a greenhouse gas of high interest to the dairy industry, with 57% of Australia's dairy emissions attributed to enteric methane. Enteric methane emissions also constitute a loss of approximately 6.5% of ingested energy. Genetic selection offers a unique mitigation strategy to decrease the methane emissions of dairy cattle, while simultaneously improving their energy efficiency. Breeding objectives should focus on improving the overall sustainability of dairy cattle by reducing methane emissions without negatively affecting important economic traits. Common definitions for methane production, methane yield, and methane intensity are widely accepted, but there is not yet consensus for the most appropriate method to calculate residual methane production, as the different methods have not been compared. In this study, we examined 9 definitions of residual methane production. Records of individual cow methane, dry matter intake (DMI), and energy corrected milk (ECM) were obtained from 379 animals and measured over a 5-d period from 12 batches across 5 yr using the SF6 tracer method and an electronic feed recording system, respectively. The 9 methods of calculating residual methane involved genetic and phenotypic regression of methane production on a combination of DMI and ECM corrected for days in milk, parity, and experimental batch using phenotypes or direct genomic values. As direct genomic values (DGV) for DMI are not routinely evaluated in Australia at this time, DGV for FeedSaved, which is derived from DGV for residual feed intake and estimated breeding value for bodyweight, were used. Heritability estimates were calculated using univariate models, and correlations were estimated using bivariate models corrected for the fixed effects of year-batch, days in milk, and lactation number, and fitted using a genomic relationship matrix. Residual methane production candidate traits had low to moderate heritability (0.10 ± 0.09 to 0.21 ± 0.10), with residual methane production corrected for ECM being the highest. All definitions of residual methane were highly correlated phenotypically (>0.87) and genetically (>0.79) with one another and moderately to highly with other methane candidate traits (>0.59), with high standard errors. The results suggest that direct selection for a residual methane production trait would result in indirect, favorable improvement in all other methane traits. The high standard errors highlight the importance of expanding data sets by measuring more animals for their methane emissions and DMI, or through exploration of proxy traits and combining data via international collaboration.
  • Item
    Thumbnail Image
    Genome variants associated with RNA splicing variations in bovine are extensive shared between tissues
    Xiang, R ; Hayes, BJ ; Vander Jagt, CJ ; MacLeod, IM ; Khansefid, M ; Bowman, PJ ; Yuan, Z ; Prowse-Wilkins, CP ; Reich, CM ; Mason, BA ; Garner, JB ; Marett, LC ; Chen, Y ; Bolormaa, S ; Daetwyler, HD ; Chamberlain, AJ ; Goddard, ME (BMC, 2018-07-04)
    BACKGROUND: Mammalian phenotypes are shaped by numerous genome variants, many of which may regulate gene transcription or RNA splicing. To identify variants with regulatory functions in cattle, an important economic and model species, we used sequence variants to map a type of expression quantitative trait loci (expression QTLs) that are associated with variations in the RNA splicing, i.e., sQTLs. To further the understanding of regulatory variants, sQTLs were compare with other two types of expression QTLs, 1) variants associated with variations in gene expression, i.e., geQTLs and 2) variants associated with variations in exon expression, i.e., eeQTLs, in different tissues. RESULTS: Using whole genome and RNA sequence data from four tissues of over 200 cattle, sQTLs identified using exon inclusion ratios were verified by matching their effects on adjacent intron excision ratios. sQTLs contained the highest percentage of variants that are within the intronic region of genes and contained the lowest percentage of variants that are within intergenic regions, compared to eeQTLs and geQTLs. Many geQTLs and sQTLs are also detected as eeQTLs. Many expression QTLs, including sQTLs, were significant in all four tissues and had a similar effect in each tissue. To verify such expression QTL sharing between tissues, variants surrounding (±1 Mb) the exon or gene were used to build local genomic relationship matrices (LGRM) and estimated genetic correlations between tissues. For many exons, the splicing and expression level was determined by the same cis additive genetic variance in different tissues. Thus, an effective but simple-to-implement meta-analysis combining information from three tissues is introduced to increase power to detect and validate sQTLs. sQTLs and eeQTLs together were more enriched for variants associated with cattle complex traits, compared to geQTLs. Several putative causal mutations were identified, including an sQTL at Chr6:87392580 within the 5th exon of kappa casein (CSN3) associated with milk production traits. CONCLUSIONS: Using novel analytical approaches, we report the first identification of numerous bovine sQTLs which are extensively shared between multiple tissue types. The significant overlaps between bovine sQTLs and complex traits QTL highlight the contribution of regulatory mutations to phenotypic variations.
  • Item
    Thumbnail Image
    Extensive variation between tissues in allele specific expression in an outbred mammal
    Chamberlain, AJ ; Vander Jagt, CJ ; Hayes, BJ ; Khansefid, M ; Marett, LC ; Millen, CA ; Nguyen, TTT ; Goddard, ME (BMC, 2015-11-23)
    BACKGROUND: Allele specific gene expression (ASE), with the paternal allele more expressed than the maternal allele or vice versa, appears to be a common phenomenon in humans and mice. In other species the extent of ASE is unknown, and even in humans and mice there are several outstanding questions. These include; to what extent is ASE tissue specific? how often does the direction of allele expression imbalance reverse between tissues? how often is only one of the two alleles expressed? is there a genome wide bias towards expression of the paternal or maternal allele; and finally do genes that are nearby on a chromosome share the same direction of ASE? Here we use gene expression data (RNASeq) from 18 tissues from a single cow to investigate each of these questions in turn, and then validate some of these findings in two tissues from 20 cows. RESULTS: Between 40 and 100 million sequence reads were generated per tissue across three replicate samples for each of the eighteen tissues from the single cow (the discovery dataset). A bovine gene expression atlas was created (the first from RNASeq data), and differentially expressed genes in each tissue were identified. To analyse ASE, we had access to unambiguously phased genotypes for all heterozygous variants in the cow's whole genome sequence, where these variants were homozygous in the whole genome sequence of her sire, and as a result we were able to map reads to parental genomes, to determine SNP and genes showing ASE in each tissue. In total 25,251 heterozygous SNP within 7985 genes were tested for ASE in at least one tissue. ASE was pervasive, 89 % of genes tested had significant ASE in at least one tissue. This large proportion of genes displaying ASE was confirmed in the two tissues in a validation dataset. For individual tissues the proportion of genes showing significant ASE varied from as low as 8-16 % of those tested in thymus to as high as 71-82 % of those tested in lung. There were a number of cases where the direction of allele expression imbalance reversed between tissues. For example the gene SPTY2D1 showed almost complete paternal allele expression in kidney and thymus, and almost complete maternal allele expression in the brain caudal lobe and brain cerebellum. Mono allelic expression (MAE) was common, with 1349 of 4856 genes (28 %) tested with more than one heterozygous SNP showing MAE. Across all tissues, 54.17 % of all genes with ASE favoured the paternal allele. Genes that are closely linked on the chromosome were more likely to show higher expression of the same allele (paternal or maternal) than expected by chance. We identified several long runs of neighbouring genes that showed either paternal or maternal ASE, one example was five adjacent genes (GIMAP8, GIMAP7 copy1, GIMAP4, GIMAP7 copy 2 and GIMAP5) that showed almost exclusive paternal expression in brain caudal lobe. CONCLUSIONS: Investigating the extent of ASE across 18 bovine tissues in one cow and two tissues in 20 cows demonstrated 1) ASE is pervasive in cattle, 2) the ASE is often MAE but ranges from MAE to slight overexpression of the major allele, 3) the ASE is most often tissue specific and that more than half the time displays divergent allele specific expression patterns across tissues, 4) across all genes there is a slight bias towards expression of the paternal allele and 5) genes expressing the same parental allele are clustered together more than expected by chance, and there are several runs of large numbers of genes expressing the same parental allele.