School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Gene expression and RNA splicing explain large proportions of the heritability for complex traits in cattle
    Xiang, R ; Fang, L ; Liu, S ; Macleod, IM ; Liu, Z ; Breen, EJ ; Gao, Y ; Liu, GE ; CattleGTEx Consortium, BA ; Mason, BA ; Chamberlain, AJ ; Wray, NR ; Goddard, ME (ELSEVIER, 2023-10-11)
    Many quantitative trait loci (QTLs) are in non-coding regions. Therefore, QTLs are assumed to affect gene regulation. Gene expression and RNA splicing are primary steps of transcription, so DNA variants changing gene expression (eVariants) or RNA splicing (sVariants) are expected to significantly affect phenotypes. We quantify the contribution of eVariants and sVariants detected from 16 tissues (n = 4,725) to 37 traits of ∼120,000 cattle (average magnitude of genetic correlation between traits = 0.13). Analyzed in Bayesian mixture models, averaged across 37 traits, cis and trans eVariants and sVariants detected from 16 tissues jointly explain 69.2% (SE = 0.5%) of heritability, 44% more than expected from the same number of random variants. This 69.2% includes an average of 24% from trans e-/sVariants (14% more than expected). Averaged across 56 lipidomic traits, multi-tissue cis and trans e-/sVariants also explain 71.5% (SE = 0.3%) of heritability, demonstrating the essential role of proximal and distal regulatory variants in shaping mammalian phenotypes.
  • Item
    Thumbnail Image
    Genetic variation in histone modifications and gene expression identifies regulatory variants in the mammary gland of cattle
    Prowse-Wilkins, CP ; Lopdell, TJ ; Xiang, R ; Vander Jagt, CJ ; Littlejohn, MD ; Chamberlain, AJ ; Goddard, ME (BMC, 2022-12-08)
    BACKGROUND: Causal variants for complex traits, such as eQTL are often found in non-coding regions of the genome, where they are hypothesised to influence phenotypes by regulating gene expression. Many regulatory regions are marked by histone modifications, which can be assayed by chromatin immunoprecipitation followed by sequencing (ChIP-seq). Sequence reads from ChIP-seq form peaks at putative regulatory regions, which may reflect the amount of regulatory activity at this region. Therefore, eQTL which are also associated with differences in histone modifications are excellent candidate causal variants. RESULTS: We assayed the histone modifications H3K4Me3, H3K4Me1 and H3K27ac and mRNA in the mammary gland of up to 400 animals. We identified QTL for peak height (histone QTL), exon expression (eeQTL), allele specific expression (aseQTL) and allele specific binding (asbQTL). By intersecting these results, we identify variants which may influence gene expression by altering regulatory regions of the genome, and may be causal variants for other traits. Lastly, we find that these variants are found in putative transcription factor binding sites, identifying a mechanism for the effect of many eQTL. CONCLUSIONS: We find that allele specific and traditional QTL analysis often identify the same genetic variants and provide evidence that many eQTL are regulatory variants which alter activity at regulatory regions of the bovine genome. Our work provides methodological and biological updates on how regulatory mechanisms interplay at multi-omics levels.
  • Item
    Thumbnail Image
    Putative Causal Variants Are Enriched in Annotated Functional Regions From Six Bovine Tissues (vol 12,664379, 2021)
    Prowse-Wilkins, CP ; Wang, J ; Xiang, R ; Garner, JB ; Goddard, ME ; Chamberlain, AJ (FRONTIERS MEDIA SA, 2021-09-21)
    [This corrects the article DOI: 10.3389/fgene.2021.664379.].
  • Item
    Thumbnail Image
    Mutant alleles differentially shape fitness and other complex traits in cattle
    Xiang, R ; Breen, EJ ; Bolormaa, S ; Vander Jagt, CJ ; Chamberlain, AJ ; Macleod, IM ; Goddard, ME (NATURE PORTFOLIO, 2021-12-02)
    Mutant alleles (MAs) that have been classically recognised have large effects on phenotype and tend to be deleterious to traits and fitness. Is this the case for mutations with small effects? We infer MAs for 8 million sequence variants in 113k cattle and quantify the effects of MA on 37 complex traits. Heterozygosity for variants at genomic sites conserved across 100 vertebrate species increase fertility, stature, and milk production, positively associating these traits with fitness. MAs decrease stature and fat and protein concentration in milk, but increase gestation length and somatic cell count in milk (the latter indicative of mastitis). However, the frequency of MAs decreasing stature and fat and protein concentration, increasing gestation length and somatic cell count were lower than the frequency of MAs with the opposite effect. These results suggest bias in the mutations direction of effect (e.g. towards reduced protein in milk), but selection operating to reduce the frequency of these MAs. Taken together, our results imply two classes of genomic sites subject to long-term selection: sites conserved across vertebrates show hybrid vigour while sites subject to less long-term selection show a bias in mutation towards undesirable alleles.
  • Item
    Thumbnail Image
    Putative Causal Variants Are Enriched in Annotated Functional Regions From Six Bovine Tissues
    Prowse-Wilkins, CP ; Wang, J ; Xiang, R ; Garner, JB ; Goddard, ME ; Chamberlain, AJ (FRONTIERS MEDIA SA, 2021-06-23)
    Genetic variants which affect complex traits (causal variants) are thought to be found in functional regions of the genome. Identifying causal variants would be useful for predicting complex trait phenotypes in dairy cows, however, functional regions are poorly annotated in the bovine genome. Functional regions can be identified on a genome-wide scale by assaying for post-translational modifications to histone proteins (histone modifications) and proteins interacting with the genome (e.g., transcription factors) using a method called Chromatin immunoprecipitation followed by sequencing (ChIP-seq). In this study ChIP-seq was performed to find functional regions in the bovine genome by assaying for four histone modifications (H3K4Me1, H3K4Me3, H3K27ac, and H3K27Me3) and one transcription factor (CTCF) in 6 tissues (heart, kidney, liver, lung, mammary and spleen) from 2 to 3 lactating dairy cows. Eighty-six ChIP-seq samples were generated in this study, identifying millions of functional regions in the bovine genome. Combinations of histone modifications and CTCF were found using ChromHMM and annotated by comparing with active and inactive genes across the genome. Functional marks differed between tissues highlighting areas which might be particularly important to tissue-specific regulation. Supporting the cis-regulatory role of functional regions, the read counts in some ChIP peaks correlated with nearby gene expression. The functional regions identified in this study were enriched for putative causal variants as seen in other species. Interestingly, regions which correlated with gene expression were particularly enriched for potential causal variants. This supports the hypothesis that complex traits are regulated by variants that alter gene expression. This study provides one of the largest ChIP-seq annotation resources in cattle including, for the first time, in the mammary gland of lactating cows. By linking regulatory regions to expression QTL and trait QTL we demonstrate a new strategy for identifying causal variants in cattle.
  • Item
    Thumbnail Image
    Genome-wide fine-mapping identifies pleiotropic and functional variants that predict many traits across global cattle populations
    Xiang, R ; MacLeod, IM ; Daetwyler, HD ; de Jong, G ; O'Connor, E ; Schrooten, C ; Chamberlain, AJ ; Goddard, ME (NATURE RESEARCH, 2021-02-08)
    The difficulty in finding causative mutations has hampered their use in genomic prediction. Here, we present a methodology to fine-map potentially causal variants genome-wide by integrating the functional, evolutionary and pleiotropic information of variants using GWAS, variant clustering and Bayesian mixture models. Our analysis of 17 million sequence variants in 44,000+ Australian dairy cattle for 34 traits suggests, on average, one pleiotropic QTL existing in each 50 kb chromosome-segment. We selected a set of 80k variants representing potentially causal variants within each chromosome segment to develop a bovine XT-50K genotyping array. The custom array contains many pleiotropic variants with biological functions, including splicing QTLs and variants at conserved sites across 100 vertebrate species. This biology-informed custom array outperformed the standard array in predicting genetic value of multiple traits across populations in independent datasets of 90,000+ dairy cattle from the USA, Australia and New Zealand.
  • Item
    Thumbnail Image
    Genome variants associated with RNA splicing variations in bovine are extensive shared between tissues
    Xiang, R ; Hayes, BJ ; Vander Jagt, CJ ; MacLeod, IM ; Khansefid, M ; Bowman, PJ ; Yuan, Z ; Prowse-Wilkins, CP ; Reich, CM ; Mason, BA ; Garner, JB ; Marett, LC ; Chen, Y ; Bolormaa, S ; Daetwyler, HD ; Chamberlain, AJ ; Goddard, ME (BMC, 2018-07-04)
    BACKGROUND: Mammalian phenotypes are shaped by numerous genome variants, many of which may regulate gene transcription or RNA splicing. To identify variants with regulatory functions in cattle, an important economic and model species, we used sequence variants to map a type of expression quantitative trait loci (expression QTLs) that are associated with variations in the RNA splicing, i.e., sQTLs. To further the understanding of regulatory variants, sQTLs were compare with other two types of expression QTLs, 1) variants associated with variations in gene expression, i.e., geQTLs and 2) variants associated with variations in exon expression, i.e., eeQTLs, in different tissues. RESULTS: Using whole genome and RNA sequence data from four tissues of over 200 cattle, sQTLs identified using exon inclusion ratios were verified by matching their effects on adjacent intron excision ratios. sQTLs contained the highest percentage of variants that are within the intronic region of genes and contained the lowest percentage of variants that are within intergenic regions, compared to eeQTLs and geQTLs. Many geQTLs and sQTLs are also detected as eeQTLs. Many expression QTLs, including sQTLs, were significant in all four tissues and had a similar effect in each tissue. To verify such expression QTL sharing between tissues, variants surrounding (±1 Mb) the exon or gene were used to build local genomic relationship matrices (LGRM) and estimated genetic correlations between tissues. For many exons, the splicing and expression level was determined by the same cis additive genetic variance in different tissues. Thus, an effective but simple-to-implement meta-analysis combining information from three tissues is introduced to increase power to detect and validate sQTLs. sQTLs and eeQTLs together were more enriched for variants associated with cattle complex traits, compared to geQTLs. Several putative causal mutations were identified, including an sQTL at Chr6:87392580 within the 5th exon of kappa casein (CSN3) associated with milk production traits. CONCLUSIONS: Using novel analytical approaches, we report the first identification of numerous bovine sQTLs which are extensively shared between multiple tissue types. The significant overlaps between bovine sQTLs and complex traits QTL highlight the contribution of regulatory mutations to phenotypic variations.
  • Item
    Thumbnail Image
    Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits
    Xiang, R ; van den Berg, I ; MacLeod, IM ; Hayes, BJ ; Prowse-Wilkins, CP ; Wang, M ; Bolormaa, S ; Liu, Z ; Rochfort, SJ ; Reich, CM ; Mason, BA ; Vander Jagt, CJ ; Daetwyler, HD ; Lund, MS ; Chamberlain, AJ ; Goddard, ME (NATL ACAD SCIENCES, 2019-09-24)
    Many genome variants shaping mammalian phenotype are hypothesized to regulate gene transcription and/or to be under selection. However, most of the evidence to support this hypothesis comes from human studies. Systematic evidence for regulatory and evolutionary signals contributing to complex traits in a different mammalian model is needed. Sequence variants associated with gene expression (expression quantitative trait loci [eQTLs]) and concentration of metabolites (metabolic quantitative trait loci [mQTLs]) and under histone-modification marks in several tissues were discovered from multiomics data of over 400 cattle. Variants under selection and evolutionary constraint were identified using genome databases of multiple species. These analyses defined 30 sets of variants, and for each set, we estimated the genetic variance the set explained across 34 complex traits in 11,923 bulls and 32,347 cows with 17,669,372 imputed variants. The per-variant trait heritability of these sets across traits was highly consistent (r > 0.94) between bulls and cows. Based on the per-variant heritability, conserved sites across 100 vertebrate species and mQTLs ranked the highest, followed by eQTLs, young variants, those under histone-modification marks, and selection signatures. From these results, we defined a Functional-And-Evolutionary Trait Heritability (FAETH) score indicating the functionality and predicted heritability of each variant. In additional 7,551 cattle, the high FAETH-ranking variants had significantly increased genetic variances and genomic prediction accuracies in 3 production traits compared to the low FAETH-ranking variants. The FAETH framework combines the information of gene regulation, evolution, and trait heritability to rank variants, and the publicly available FAETH data provide a set of biological priors for cattle genomic selection worldwide.
  • Item
    Thumbnail Image
    Meta-analysis for milk fat and protein percentage using imputed sequence variant genotypes in 94,321 cattle from eight cattle breeds
    van den Berg, I ; Xiang, R ; Jenko, J ; Pausch, H ; Boussaha, M ; Schrooten, C ; Tribout, T ; Gjuvsland, AB ; Boichard, D ; Nordbo, O ; Sanchez, M-P ; Goddard, ME (BMC, 2020-07-07)
    BACKGROUND: Sequence-based genome-wide association studies (GWAS) provide high statistical power to identify candidate causal mutations when a large number of individuals with both sequence variant genotypes and phenotypes is available. A meta-analysis combines summary statistics from multiple GWAS and increases the power to detect trait-associated variants without requiring access to data at the individual level of the GWAS mapping cohorts. Because linkage disequilibrium between adjacent markers is conserved only over short distances across breeds, a multi-breed meta-analysis can improve mapping precision. RESULTS: To maximise the power to identify quantitative trait loci (QTL), we combined the results of nine within-population GWAS that used imputed sequence variant genotypes of 94,321 cattle from eight breeds, to perform a large-scale meta-analysis for fat and protein percentage in cattle. The meta-analysis detected (p ≤ 10-8) 138 QTL for fat percentage and 176 QTL for protein percentage. This was more than the number of QTL detected in all within-population GWAS together (124 QTL for fat percentage and 104 QTL for protein percentage). Among all the lead variants, 100 QTL for fat percentage and 114 QTL for protein percentage had the same direction of effect in all within-population GWAS. This indicates either persistence of the linkage phase between the causal variant and the lead variant across breeds or that some of the lead variants might indeed be causal or tightly linked with causal variants. The percentage of intergenic variants was substantially lower for significant variants than for non-significant variants, and significant variants had mostly moderate to high minor allele frequencies. Significant variants were also clustered in genes that are known to be relevant for fat and protein percentages in milk. CONCLUSIONS: Our study identified a large number of QTL associated with fat and protein percentage in dairy cattle. We demonstrated that large-scale multi-breed meta-analysis reveals more QTL at the nucleotide resolution than within-population GWAS. Significant variants were more often located in genic regions than non-significant variants and a large part of them was located in potentially regulatory regions.
  • Item
    Thumbnail Image
    Effect direction meta-analysis of GWAS identifies extreme, prevalent and shared pleiotropy in a large mammal
    Xiang, R ; van den Berg, I ; MacLeod, IM ; Daetwyler, HD ; Goddard, ME (NATURE PUBLISHING GROUP, 2020-02-28)
    In genome-wide association studies (GWAS), variants showing consistent effect directions across populations are considered as true discoveries. We model this information in an Effect Direction MEta-analysis (EDME) to quantify pleiotropy using GWAS of 34 Cholesky-decorrelated traits in 44,000+ cattle with sequence variants. The effect-direction agreement between independent bull and cow datasets was used to quantify the false discovery rate by effect direction (FDRed) and the number of affected traits for prioritised variants. Variants with multi-trait p < 1e-6 affected 1∼22 traits with an average of 10 traits. EDME assigns pleiotropic variants to each trait which informs the biology behind complex traits. New pleiotropic loci are identified, including signals from the cattle FTO locus mirroring its bystander effects on human obesity. When validated in the 1000-Bull Genome database, the prioritized pleiotropic variants consistently predicted expected phenotypic differences between dairy and beef cattle. EDME provides robust approaches to control GWAS FDR and quantify pleiotropy.