School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 27
  • Item
    Thumbnail Image
    LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants
    Ali, A ; Cottrell, JJ ; Dunshea, FR (MDPI, 2022-11)
    Polyphenols are considered vital bioactive compounds beneficial for human health. The Australian flora is enriched with polyphenols which are not fully characterized yet. Thus, the main objective of this study was to identify and characterize the Australian native sandalwood nuts, wattle seeds, lemongrass, and old man saltbush for phenolic compounds and their antioxidant activities. In this study, we tentatively identified a total of 155 phenolic compounds including 25 phenolic acids, 55 flavonoids, 22 isoflavonoids, 22 tannins, 22 lignans, 33 stilbenes, 33 coumarins and derivatives, 12 tyrosols and derivatives, and 6 phenolic terpenes. The highest total phenolic content (TPC) (15.09 ± 0.88 mg GAE/g) was quantified in lemongrass, while the lowest TPC (4.17 ± 0.33 mg GAE/g) was measured in wattle seeds. The highest total flavonoid content (TFC) and total condensed tannins (TCT) were measured in lemongrass and wattle seeds, respectively. A total of 18 phenolic metabolites were quantified/semi-quantified in this experiment. Lemongrass contains a vast number of phenolic metabolites.
  • Item
    Thumbnail Image
    Phytochemicals, Antioxidant Activities, and Toxicological Screening of Native Australian Fruits Using Zebrafish Embryonic Model
    Ali, A ; Kiloni, SM ; Caceres-Velez, PR ; Jusuf, PR ; Cottrell, JJ ; Dunshea, FR (MDPI, 2022-12)
    Phytochemicals play a pivotal role in human health and drug discovery. The safety evaluation of plant extracts is a prerequisite to ensure that all phytochemicals are safe before translational development and human exposure. As phytochemicals are natural, they are generally considered safe, although this is not always true. The objective of this study was to investigate and compare the phytochemical composition, antioxidant potential, and safety evaluation of native Australian Muntries (Kunzea pomifera), Kakadu plum (Terminalia ferdinandiana), Davidson plum (Davidsonia) and Quandong peach (Santalum acuminatum) through the in vivo vertebrate zebrafish embryonic model. The highest total phenolic content (TPC; 793.89 ± 22.27 μg GAE/mg) was quantified in Kakadu plum, while the lowest TPC (614.44 ± 31.80 μg GAE/mg) was quantified in Muntries. Developmental alterations, mortality, and morbidity were assessed for toxicological screening of these selected native Australian fruit extracts. In this study, muntries were quantified as having the least LC50 value (169 mg/L) compared to Davidson plum (376 mg/L), Kakadu plum (>480 mg/L), and Quandong peach (>480 mg/L), which indicates that muntries extract was more toxic than other fruit extracts. Importantly, we found that adverse effects were not correlated to the total phenolic content and antioxidant potential of these native Australian fruits and cannot simply be predicted from the in vitro analysis. Conclusively, these selected native Australian fruit extracts are categorized as safe. This study could explore the use of these native Australian fruits in cosmetics, pharmaceuticals, and drug discovery.
  • Item
    Thumbnail Image
    Assessment of Feed Value of Chicory and Lucerne for Poultry, Determination of Bioaccessibility of Their Polyphenols and Their Effects on Caecal Microbiota
    Iqbal, Y ; Ponnampalam, EN ; Le, HH ; Artaiz, O ; Muir, SK ; Jacobs, JL ; Cottrell, JJ ; Dunshea, FR (MDPI, 2022-05)
    Chicory and lucerne possess high feed value for poultry being good sources of protein and fiber. In addition, they are rich in polyphenols that help the body build an integrated antioxidant system to prevent damage from free radicals and positively modulate microbial populations in the gastrointestinal tract. These health-promoting effects of polyphenols depend on their bioaccessibility and absorption in the animal body. The present paper aimed to study the bioaccessibility of polyphenols from chicory and lucerne after subjecting the samples to gastric and intestinal phases of digestion in an in vitro model of chicken gut and assessment of their feed value by measuring the presence of fermentable substrates (in terms of gas production), SCFAs produced and their effects on gut microbiota population during in vitro cecal fermentation. Results revealed that the bioaccessibility of polyphenols varied with different polyphenol compounds. The highest bioaccessibility was recorded for p-hydroxybenzoic acid (90.8%) from chicory following the intestinal phase of digestion. The lowest bioaccessibility was observed for quercetin-3-rhamnoside (12.6%) from chicory after the gastric phase of digestion. From lucerne, the highest bioaccessibility was recorded for kaempferol-3-glucoside (77.5%) after the intestinal phase of digestion. Total gas production was higher for lucerne (39.9 mL/g) than chicory (28.1 mL/g). Similarly, total SCFAs production was higher after 24 h of cecal fermentation with lucerne (42.2 mmol L−1) as compared to chicory (38.1 mmol L−1). Results also revealed that the relative abundance of Clostridium was reduced with chicory (0.225%) and lucerne (0.176%) as compared to the control (0.550%) after 24 h of cecal fermentation. The relative abundance of Streptococcus was reduced by lucerne (4.845%) but was increased with chicory (17.267%) as compared to the control (5.204%) after 24 h of fermentation. These findings indicated that chicory and lucerne differentially affected the microbial populations during in vitro cecal fermentation.
  • Item
    Thumbnail Image
    A Comparative Study for Nutritional and Phytochemical Profiling of Coffea arabica (C. arabica) from Different Origins and Their Antioxidant Potential and Molecular Docking
    Ali, A ; Zahid, HF ; Cottrell, JJ ; Dunshea, FR (MDPI, 2022-08)
    Coffee is the most widely used beverage globally and contains many bioactive compounds, including phenolic compounds, alkaloids, triterpenes, organic acids, amino acids, hormones, and fatty acids. The main objective of this study was the comparative profiling of Australian, Colombian, Ethiopian, and Peruvian C. arabica using LC-ESI-QTOF-MS/MS. In this study, we tentatively identified 136 bioactive metabolites, including five (05) organic acids, six (06) alkaloids, three (03) amino acids (l-phenylalanine, l-tyrosine, and l-pyroglutamic acid), two (02) hormones (melatonin and serotonin), two fatty acids, one (01) furopyrans (goniothalenol), one (01) carotenoid (crocetin), three (03) terpenoids, thirty-eight (38) phenolic acids, forty-one (41) flavonoids, five (05) stilbenes, three (03) lignans and twenty-three (23) other polyphenols in C. arabica. The highest TPC value (17.74 ± 0.32 mg GAE/g) was measured in Colombian coffee while the lowest TPC value (10.24 ± 0.73 mg GAE/g) was in Peruvian coffee. Colombian coffee has a higher antioxidant potential than other studied coffee samples. A total of nineteen phenolic metabolites were mapped through LC-MS/MS. Quinic acid derivatives were quantified in higher concentrations than other metabolites. Furthermore, molecular docking predicted that chlorogenic acid is a main bioactive compound that contributes to anti-Alzheimer and anti-diabetic activities of C. arabica. The obtained results indicate that C. arabica contains a vast number of bioactive compounds which have potential health benefits. Furthermore, research could be conducted to validate the effect of these metabolites on the flavor profile of coffee beverages.
  • Item
    Thumbnail Image
    Gestational heat stress alters skeletal muscle gene expression profiles and vascularity in fetal pigs in a sexually dimorphic manner
    Zhao, W ; Green, MP ; Marth, CD ; Liu, F ; Le, HH ; Lynch, GS ; Bell, AW ; Leury, BJ ; Dunshea, FR ; Cottrell, JJ (BMC, 2022-07-15)
    BACKGROUND: There is evidence that sow heat stress (HS) during gestation affects fetal development with implications for impaired muscle growth. We have previously demonstrated that maternal HS during early to mid-gestation compromised muscle fibre hyperplasia in developing fetal pigs. Thus, we hypothesised these phenotypic changes are associated with a change in expression of genes regulating fetal skeletal muscle development and metabolism. To test this, at d 60 of gestation, RNA sequencing and immunohistochemistry were performed on fetal longissimus dorsi (LD) muscle biopsies collected from pregnant gilts that had experienced either thermoneutral control (CON, 20 °C, n = 7 gilts, 18 LD samples) or controlled HS (cyclic 28 to 33 °C, n = 8 gilts, 23 LD samples) conditions for 3 weeks. RESULTS: A total of 282 genes were differentially expressed between the HS and CON groups in female LD muscles (false discovery rate (FDR) ≤ 0.05), whereas no differentially expressed genes were detected in male LD muscles between the two groups (FDR > 0.05). Gestational HS increased the expression of genes associated with transcription corepressor activity, adipogenesis cascades, negative regulation of angiogenesis and pro-inflammatory signalling in female LD muscles. Immunohistochemical analyses revealed a decreased muscle vascularity density in fetuses from HS group for both sexes compared to those from the CON group (P = 0.004). CONCLUSIONS: These results reveal gilt HS during early to mid-gestation altered gene expression profiles in fetal LD muscles in a sexually dimorphic manner. The molecular responses, including transcription and angiogenesis repressions and enhanced adipogenesis cascades, were exclusively observed in females. However, the associated reductions in muscle vascularity were observed independently of sexes. Collectively this may indicate female fetal pigs are more adaptive to gestational HS in terms of gene expression changes, and/or there may be sexually dimorphic differences with respect to the timing of muscle molecular responses to gestational HS.
  • Item
    Thumbnail Image
    Reducing the Fermentability of Wheat with a Starch Binding Agent Reduces Some of the Negative Effects of Heat Stress in Sheep
    Prathap, P ; Chauhan, SS ; Leury, BJ ; Cottrell, JJ ; Joy, A ; Zhang, M ; Dunshea, FR (MDPI, 2022-06)
    The objective of this study was to investigate the effects of reducing the fermentability of grains on thermoregulatory responses in heat stressed (HS) lambs. To achieve this, wheat grain treated with a commercial starch binding agent, Bioprotect, is compared to maize, which has already demonstrated effects in ameliorating heat stress-induced thermoregulation responses and untreated wheat grains. An initial in vitro experiment was conducted to examine cumulative gas production from the fermentation of wheat grain with different dosages of the commercial starch binding agent, Bioprotect. Based on the in vitro results, an in vivo lamb experiment was conducted using 24 Merino lambs (1 year old; 42.6 ± 3.6 kg BW). The lambs were offered one of three dietary treatments: a wheat-based diet (WD), a Bioprotect treated wheat-based diet (BD), and a maize-based diet (MD). Three successive 1-week experimental periods were conducted with lambs from all dietary groups (P1, P2, and P3). During P1, lambs were exposed to a TN environment and fed a 1.7× Maintenance feed intake (MF) level; in P2, lambs were kept in a HS environment and fed a 1.7× MF level; and in P3, animals were kept in a HS environment and fed a 2× MF level. The in vitro experiment revealed a reduction in cumulative gas production (p < 0.05) from the Bioprotect treated wheat compared to untreated wheat samples. In the in vivo component of the study, the replacement of wheat with maize or 2% Bioprotect-treated wheat reduced the respiration rate (p < 0.001) and heart rate (p ≤ 0.01) of lambs during HS. There was a reduction in the concentration of blood gas variables such as a base excess of blood (BE(b)) and extracellular fluid (BE(ecf)), bicarbonate (CHCO3−), the partial pressure of carbon dioxide (pCO2), the total concentration of carbon dioxide (ctCO2), and sodium (Na+) (p ≤ 0.001 for all) during the periods of HS compared to the thermoneutral conditions. Moreover, BD- and MD-fed lambs had a higher blood potassium concentration (K+) than the WD-fed lambs (p = 0.008). The results of the present study suggest that Bioprotect can be a viable feed treatment strategy for treating rapidly fermentable grains such as wheat to alleviate the effects of HS. Further, Bioprotect-treated wheat could be an option to replace maize in concentrate rations in jurisdictions where maize is cost-prohibitive or unavailable.
  • Item
    No Preview Available
    Review: What have we learned about the effects of heat stress on the pig industry?
    Liu, F ; Zhao, W ; Le, HH ; Cottrell, JJ ; Green, MP ; Leury, BJ ; Dunshea, FR ; Bell, AW (ELSEVIER, 2022-06)
    Pig production faces seasonal fluctuations. The low farrowing rate of sows mated in summer, increased carcass fatness of progeny born to the sows mated in summer, and slower growth rate of finisher pigs in summer are three economically important impacts identified in the pig industry. The purpose of this review is to examine advances over the past decade in understanding the mechanisms underlying the three impacts associated with summer conditions, particularly heat stress (HS), and to provide possible amelioration strategies. For impact 1, summer mating results in low farrowing rates mainly caused by the high frequency of early pregnancy disruptions. The contributions of semen DNA damage, poor oocyte quality, local progesterone concentrations, and suboptimal embryonic oestrogen secretion are discussed, as these all may contribute to HS-mediated effects around conception. Despite this, it is still unclear what the underlying mechanisms might be and thus, there is currently a lack of commercially viable solutions. For impact 2, there have been recent advances in the understanding of gestational HS on both the sow and foetus, with gestational HS implicated in decreased foetal muscle fibre number, a greater proportion of lighter piglets, and increased carcass fatness at slaughter. So far, no effective strategies have been developed to mitigate the impacts associated with gestational HS on foetuses. For impact 3, the slowed growth rate of pigs during summer is one reason for the reduced carcass weights in summer. Studies have shown that the reduction in growth rates may be due to more than reductions in feed intake alone, and the impaired intestinal barrier function and inflammatory response may also play a role. In addition, it is consistently reported that HS attenuates fat mobilisation which can potentially exacerbate carcass fatness when carcass weight is increased. Novel feed additives have exhibited the potential to reduce the impacts of HS on intestinal barrier function in grower pigs. Collectively, based on these three impacts, the economic loss associated with HS can be estimated. A review of these impacts is warranted to better align the future research directions with the needs of the pig industry. Ultimately, a better understanding of the underlying mechanisms and continuous investments in developing commercially viable strategies to combat HS will benefit the pig industry.
  • Item
    Thumbnail Image
    Digital technologies to assess yoghurt quality traits and consumers acceptability
    Gupta, MK ; Viejo, CG ; Fuentes, S ; Torrico, DD ; Saturno, PC ; Gras, SL ; Dunshea, FR ; Cottrell, JJ (WILEY, 2022-10)
  • Item
    Thumbnail Image
    Plant and Dairy-Based Yogurts: A Comparison of Consumer Sensory Acceptability Linked to Textural Analysis
    Gupta, MK ; Torrico, DD ; Ong, L ; Gras, SL ; Dunshea, FR ; Cottrell, JJ (MDPI, 2022-02)
    Yogurt, readily available in plant and dairy-based formulations, is widely consumed and linked with health benefits. This research is aimed to understand the sensory and textural spectrum of commercially available dairy and plant-based yogurts. In a preliminary study, qualitative focus group discussions (4 groups; n = 32) were used to determine perceptions of 28 dairy and plant-based yogurts, identifying positive consumer perceptions of plant-based yogurts. A smaller subset of five spoonable and one drinkable yogurts-(Reference, Soy, Coconut, Cookies, Berry, and Drinkable) was subsequently selected for rheological and structural measurements, showing wide variations in the microstructure and rheology of selected yogurt samples. A quantitative blind sensory tasting (n = 117) showed varying yogurt acceptability, with Berry being the least-liked and Cookies being the most-liked yogurt, in terms of overall liking. The multi-factor analysis confirmed that compositional and textural elements, including protein content, gel firmness, and consistency coefficient, displayed a positive relationship with overall liking. In contrast, fat, sugar, and calories were negatively correlated to the overall liking. This research showed that texture and other compositional factors are significant determinants of the consumer acceptability of yogurt products and are essential properties to consider in product development.
  • Item
    Thumbnail Image
    Compensatory feeding during early gestation for sows with a high weight loss after a summer lactation increased piglet birth weight but reduced litter size
    Liu, F ; Braden, CJ ; Smits, RJ ; Craig, JR ; Henman, DJ ; Brewster, CJ ; Morrison, RS ; Athorn, RZ ; Leury, BJ ; Zhao, W ; Cottrell, JJ ; Dunshea, FR ; Bell, AW (OXFORD UNIV PRESS INC, 2021-09)
    Sows mated in summer produce a greater proportion of born-light piglets (<1.1 kg) which contributes to increased carcass fatness in the progeny population. The reasons for the low birth weight of these piglets remain unclear, and there have been few successful mitigation strategies identified. We hypothesized that: 1) the low birth weight of progeny born to sows mated in summer may be associated with weight loss during the previous summer lactation; and 2) increasing early gestation feed allowance for the sows with high lactational weight loss in summer can help weight recovery and improve progeny birth weight. Sows were classified as having either low (av. 1%) or high (av. 7%) lactational weight loss in their summer lactation. All the sows with low lactational weight loss (LLStd) and half of the sows with high lactational weight loss received a standard gestation feeding regime (HLStd) (2.6 kg/d; day 0-30 gestation), whereas the rest of the sows with high lactational weight loss received a compensatory feed allowance (HLComp) (3.5 kg/d; day 0-30 gestation). A comparison of LLStd (n = 75) versus HLStd sows (n = 78) showed that this magnitude of weight loss over summer lactation did not affect the average piglet or litter birth weight, but such results may be influenced by the higher litter size (P = 0.030) observed in LLStd sows. A comparison of HLStd versus HLComp (n = 81) sows showed that the compensatory feeding increased (P = 0.021) weight gain of gestating sows by 6 kg, increased (P = 0.009) average piglet birth weight by 0.12 kg, tended to reduce (P = 0.054) the percentage of born-light piglets from 23.5% to 17.1% but reduced the litter size by 1.4 (P = 0.014). A subgroup of progeny stratified as born-light (0.8-1.1 kg) or -normal (1.3-1.7 kg) from each sow treatment were monitored for growth performance from weaning until 100 kg weight. The growth performance and carcass backfat of progeny were not affected by sow treatments. Born-light progeny had lower feed intake, lower growth rate, higher G:F, and higher carcass backfat than born-normal progeny (all P < 0.05). In summary, compensatory feeding from day 0 to 30 gestation in the sows with high weight loss during summer lactation reduced the percentage of born-light progeny at the cost of a lower litter size, which should improve growth rate and carcass leanness in the progeny population born to sows with high lactational weight loss.