Medical Biology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Characterization of plasmepsin X as a cross-species antimalarial target
    Guo, Kaiyuan ( 2019)
    The emergence and spread of drug resistance have hindered the campaign for malaria eradication. The development of new drug targets is critical for our anti-malarial arsenal of interventions. Plasmepsins, which are aspartic proteases expressed by malaria parasites, serve important functions for parasite survival. Among the 10 members of this enzyme family, plasmepsin X (PMX) is essential for P. falciparum growth and has been shown to be involved in the egress of merozoites from infected red blood cells and the invasion of merozoites into red blood cells. Several aspartic protease inhibitors have anti-malarial activity on P. falciparum and are proposed to target PfPMX. The aim of this project was to investigate if these compounds affect P. knowlesi growth and whether PMX is a cross-species target for antimalarial development. This work showed that two aspartic protease inhibitors, 49c and 1SR, caused inhibition of P. knowlesi parasite growth. In further studies, live cell imaging demonstrated that these compounds inhibit P. knowlesi parasite growth by blocking parasite egress. Next, the optimal condition for protease activity was characterised after the expression and purification of a functional recombinant P. knowlesi plasmepsin X (rPkPMX). Using a fluorogenic protease assay, both 49c and 1SR were shown to inhibit the activity of rPkPMX. Furthermore, rPkPMX was able to cleave synthetic substrates, which were based on the predicted cleavage sites of PfSUB1, PfRAP1, PfRh2, TgROP1 and TgMIC6 predicted cleavage sites. By screening a panel of aspartic protease inhibitors, the BACE1 inhibitor, LY2886721, was identified as an inhibitor of rPkPMX activity as well as P. knowlesi and P. falciparum parasite growth. Therefore, PMX can be used as a cross-species target for antimalarial drug development.
  • Item
    Thumbnail Image
    Characterisation of the Plasmodium aspartyl proteases DNA-damage inducible protein 1 (DDI1) and Plasmepsin VII (PMVII)
    Davey, Bethany Kate ( 2019)
    Plasmodium falciparum resistance to artemisinin-(ART) based combination therapies (ACTs) and other antimalarials poses a major threat to malaria control and elimination. Current efforts are aimed towards identifying potent antimalarials which inhibit multiple stages of the parasite lifecycle or discovering novel drug targets which may help overcome ART-resistance. This work aimed to characterise two aspartyl proteases of P. falciparum which may hold promise as antimalarial targets. One strategy recently proposed to overcome ART-resistance is the synergistic use of a parasite-selective proteasome inhibitor to sensitise ART-resistant parasites to artemisinin. Therefore, development of an inhibitor targeting a parasite-specific protein involved in the P. falciparum ubiquitin-proteasome system (UPS) could yield a combination therapy to tackle ART-resistance. DNA-damage inducible protein 1 (DDI1) is a previously uncharacterised essential aspartyl protease in P. falciparum. Recent studies have shown that the catalytic domain of human DDI2 upregulates the UPS in mammalian cells. In other organisms, DDI1 plays a role in shuttling proteins to the proteasome for degradation via its ubiquitin-like domain. We hypothesise PfDDI1 is an active aspartyl protease and plays a role in the parasite’s UPS. To investigate the role of DDI1 in the UPS and parasite survival, we identified a DDI1 orthologue in P. falciparum and characterised this using several strategies. We utilised CRISPR-Cas9 to knock out, tag and inducibly knock down DDI1 across the asexual lifecycle of P. falciparum, and study the effect of this on parasites. Expression of recombinant DDI1 proteins provided insight into the protease activity and substrate repertoire of PfDDI1. Together these studies provide insight into the domain architecture, essentiality and function of PfDDI1 and clues into its potential as an antimalarial target. Development of an antimalarial to block parasite transmission between humans and mosquitos is also a viable strategy to reduce malaria burden. In this study, we also explore a potential transmission-blocking target, Plasmepsin VII (PMVII) and create tools to enable further study of this aspartyl protease in sexually reproductive gametocytes. These tools are vital to determine the function and substrate repertoire of PMVII and elucidate its potential as an antimalarial target.