Medicine, Dentistry & Health Sciences Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens.
    Dai, Z ; Sheridan, JM ; Gearing, LJ ; Moore, DL ; Su, S ; Wormald, S ; Wilcox, S ; O'Connor, L ; Dickins, RA ; Blewitt, ME ; Ritchie, ME (F1000Research, 2014)
    Pooled library sequencing screens that perturb gene function in a high-throughput manner are becoming increasingly popular in functional genomics research. Irrespective of the mechanism by which loss of function is achieved, via either RNA interference using short hairpin RNAs (shRNAs) or genetic mutation using single guide RNAs (sgRNAs) with the CRISPR-Cas9 system, there is a need to establish optimal analysis tools to handle such data. Our open-source processing pipeline in edgeR provides a complete analysis solution for screen data, that begins with the raw sequence reads and ends with a ranked list of candidate genes for downstream biological validation. We first summarize the raw data contained in a fastq file into a matrix of counts (samples in the columns, genes in the rows) with options for allowing mismatches and small shifts in sequence position. Diagnostic plots, normalization and differential representation analysis can then be performed using established methods to prioritize results in a statistically rigorous way, with the choice of either the classic exact testing methodology or generalized linear modeling that can handle complex experimental designs. A detailed users' guide that demonstrates how to analyze screen data in edgeR along with a point-and-click implementation of this workflow in Galaxy are also provided. The edgeR package is freely available from http://www.bioconductor.org.
  • Item
    Thumbnail Image
    BiocPkgTools: Toolkit for mining the Bioconductor package ecosystem.
    Su, S ; Carey, VJ ; Shepherd, L ; Ritchie, M ; Morgan, MT ; Davis, S (F1000 Research Ltd, 2019)
    Motivation: The Bioconductor project, a large collection of open source software for the comprehension of large-scale biological data, continues to grow with new packages added each week, motivating the development of software tools focused on exposing package metadata to developers and users. The resulting BiocPkgTools package facilitates access to extensive metadata in computable form covering the Bioconductor package ecosystem, facilitating downstream applications such as custom reporting, data and text mining of Bioconductor package text descriptions, graph analytics over package dependencies, and custom search approaches. Results: The BiocPkgTools package has been incorporated into the Bioconductor project, installs using standard procedures, and runs on any system supporting R. It provides functions to load detailed package metadata, longitudinal package download statistics, package dependencies, and Bioconductor build reports, all in "tidy data" form. BiocPkgTools can convert from tidy data structures to graph structures, enabling graph-based analytics and visualization. An end-user-friendly graphical package explorer aids in task-centric package discovery. Full documentation and example use cases are included. Availability: The BiocPkgTools software and complete documentation are available from Bioconductor ( https://bioconductor.org/packages/BiocPkgTools).