Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    How the evolution of multicellularity set the stage for cancer
    Trigos, AS ; Pearson, RB ; Papenfuss, AT ; Goode, DL (NATURE PUBLISHING GROUP, 2018-01-23)
    Neoplastic growth and many of the hallmark properties of cancer are driven by the disruption of molecular networks established during the emergence of multicellularity. Regulatory pathways and molecules that evolved to impose regulatory constraints upon networks established in earlier unicellular organisms enabled greater communication and coordination between the diverse cell types required for multicellularity, but also created liabilities in the form of points of vulnerability in the network that when mutated or dysregulated facilitate the development of cancer. These factors are usually overlooked in genomic analyses of cancer, but understanding where vulnerabilities to cancer lie in the networks of multicellular species would provide important new insights into how core molecular processes and gene regulation change during tumourigenesis. We describe how the evolutionary origins of genes influence their roles in cancer, and how connections formed between unicellular and multicellular genes that act as key regulatory hubs for normal tissue homeostasis can also contribute to malignant transformation when disrupted. Tumours in general are characterised by increased dependence on unicellular processes for survival, and major dysregulation of the control structures imposed on these processes during the evolution of multicellularity. Mounting molecular evidence suggests altered interactions at the interface between unicellular and multicellular genes play key roles in the initiation and progression of cancer. Furthermore, unicellular network regions activated in cancer show high degrees of robustness and plasticity, conferring increased adaptability to tumour cells by supporting effective responses to environmental pressures such as drug exposure. Examining how the links between multicellular and unicellular regions get disrupted in tumours has great potential to identify novel drivers of cancer, and to guide improvements to cancer treatment by identifying more effective therapeutic strategies. Recent successes in targeting unicellular processes by novel compounds underscore the logic of such approaches. Further gains could come from identifying genes at the interface between unicellular and multicellular processes and manipulating the communication between network regions of different evolutionary ages.
  • Item
    Thumbnail Image
    Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia
    Bell, CC ; Fenne, KA ; Chan, Y-C ; Rambow, F ; Yeung, MM ; Vassiliadis, D ; Lara, L ; Yeh, P ; Martelotto, LG ; Rogiers, A ; Kremer, BE ; Barbash, O ; Mohammad, HP ; Johanson, TM ; Burr, ML ; Dhar, A ; Karpinich, N ; Tian, L ; Tyler, DS ; MacPherson, L ; Shi, J ; Pinnawala, N ; Fong, CY ; Papenfuss, AT ; Grimmond, SM ; Dawson, S-J ; Allan, RS ; Kruger, RG ; Vakoc, CR ; Goode, DL ; Naik, SH ; Gilan, O ; Lam, EYN ; Marine, J-C ; Prinjha, RK ; Dawson, MA (NATURE PORTFOLIO, 2019-06-20)
    Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.
  • Item
    Thumbnail Image
    Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer
    Trigos, A ; Pearson, R ; Papenfuss, A ; Goode, D (eLife Sciences Publications Ltd, 2018-08-09)
    Extensive transcriptional alterations are observed in cancer, many of which activate core biological processes established in unicellular organisms or suppress differentiation pathways formed in metazoans. Through rigorous, integrative analysis of genomics data from a range of solid tumours, we show many transcriptional changes in tumours are tied to mutations disrupting regulatory interactions between unicellular and multicellular genes within human gene regulatory networks (GRNs). Recurrent point mutations were enriched in regulator genes linking unicellular and multicellular subnetworks, while copy-number alterations affected downstream target genes in distinctly unicellular and multicellular regions of the GRN. Our results depict drivers of tumourigenesis as genes that created key regulatory links during the evolution of early multicellular life, whose dysfunction creates widespread dysregulation of primitive elements of the GRN. Several genes we identified as important in this process were associated with drug response, demonstrating the potential clinical value of our approach.
  • Item
    Thumbnail Image
    Bioinformatics Pipelines for Targeted Resequencing and Whole-Exome Sequencing of Human and Mouse Genomes: A Virtual Appliance Approach for Instant Deployment
    Li, J ; Doyle, MA ; Saeed, I ; Wong, SQ ; Mar, V ; Goode, DL ; Caramia, F ; Doig, K ; Ryland, GL ; Thompson, ER ; Hunter, SM ; Halgamuge, SK ; Ellul, J ; Dobrovic, A ; Campbell, IG ; Papenfuss, AT ; McArthur, GA ; Tothill, RW ; Calogero, RA (PUBLIC LIBRARY SCIENCE, 2014-04-21)
    Targeted resequencing by massively parallel sequencing has become an effective and affordable way to survey small to large portions of the genome for genetic variation. Despite the rapid development in open source software for analysis of such data, the practical implementation of these tools through construction of sequencing analysis pipelines still remains a challenging and laborious activity, and a major hurdle for many small research and clinical laboratories. We developed TREVA (Targeted REsequencing Virtual Appliance), making pre-built pipelines immediately available as a virtual appliance. Based on virtual machine technologies, TREVA is a solution for rapid and efficient deployment of complex bioinformatics pipelines to laboratories of all sizes, enabling reproducible results. The analyses that are supported in TREVA include: somatic and germline single-nucleotide and insertion/deletion variant calling, copy number analysis, and cohort-based analyses such as pathway and significantly mutated genes analyses. TREVA is flexible and easy to use, and can be customised by Linux-based extensions if required. TREVA can also be deployed on the cloud (cloud computing), enabling instant access without investment overheads for additional hardware. TREVA is available at http://bioinformatics.petermac.org/treva/.
  • Item
    Thumbnail Image
    Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer
    Trigos, A ; Pearson, R ; Papenfuss, A ; Goode, D (Cold Spring Harbor Laboratory, 2018-08-09)
    Extensive transcriptional alterations are observed in cancer, many of which activate core biological processes established in unicellular organisms or suppress differentiation pathways formed in metazoans. Through rigorous, integrative analysis of genomics data from a range of solid tumours, we show many transcriptional changes in tumours are tied to mutations disrupting regulatory interactions between unicellular and multicellular genes within human gene regulatory networks (GRNs). Recurrent point mutations were enriched in regulator genes linking unicellular and multicellular subnetworks, while copy-number alterations affected downstream target genes in distinctly unicellular and multicellular regions of the GRN. Our results depict drivers of tumourigenesis as genes that created key regulatory links during the evolution of early multicellular life, whose dysfunction creates widespread dysregulation of primitive elements of the GRN. Several genes we identified as important in this process were associated with drug response, demonstrating the potential clinical value of our approach.