Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 38
  • Item
    No Preview Available
    Taurine deficiency as a driver of aging.
    Singh, P ; Gollapalli, K ; Mangiola, S ; Schranner, D ; Yusuf, MA ; Chamoli, M ; Shi, SL ; Lopes Bastos, B ; Nair, T ; Riermeier, A ; Vayndorf, EM ; Wu, JZ ; Nilakhe, A ; Nguyen, CQ ; Muir, M ; Kiflezghi, MG ; Foulger, A ; Junker, A ; Devine, J ; Sharan, K ; Chinta, SJ ; Rajput, S ; Rane, A ; Baumert, P ; Schönfelder, M ; Iavarone, F ; di Lorenzo, G ; Kumari, S ; Gupta, A ; Sarkar, R ; Khyriem, C ; Chawla, AS ; Sharma, A ; Sarper, N ; Chattopadhyay, N ; Biswal, BK ; Settembre, C ; Nagarajan, P ; Targoff, KL ; Picard, M ; Gupta, S ; Velagapudi, V ; Papenfuss, AT ; Kaya, A ; Ferreira, MG ; Kennedy, BK ; Andersen, JK ; Lithgow, GJ ; Ali, AM ; Mukhopadhyay, A ; Palotie, A ; Kastenmüller, G ; Kaeberlein, M ; Wackerhage, H ; Pal, B ; Yadav, VK (American Association for the Advancement of Science (AAAS), 2023-06-09)
    Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.
  • Item
    No Preview Available
    A Matched Molecular and Clinical Analysis of the Epithelioid Haemangioendothelioma Cohort in the Stafford Fox Rare Cancer Program and Contextual Literature Review
    Abdelmogod, A ; Papadopoulos, L ; Riordan, S ; Wong, M ; Weltman, M ; Lim, R ; Mcevoy, C ; Fellowes, A ; Fox, S ; Bedo, J ; Penington, J ; Pham, K ; Hofmann, O ; Vissers, JHA ; Grimmond, S ; Ratnayake, G ; Christie, M ; Mitchell, C ; Murray, WK ; Mcclymont, K ; Luk, P ; Papenfuss, AT ; Kee, D ; Scott, CL ; Goldstein, D ; Barker, HE (MDPI, 2023-09)
    BACKGROUND: Epithelioid haemangioendothelioma (EHE) is an ultra-rare malignant vascular tumour with a prevalence of 1 per 1,000,000. It is typically molecularly characterised by a WWTR1::CAMTA1 gene fusion in approximately 90% of cases, or a YAP1::TFE3 gene fusion in approximately 10% of cases. EHE cases are typically refractory to therapies, and no anticancer agents are reimbursed for EHE in Australia. METHODS: We report a cohort of nine EHE cases with comprehensive histologic and molecular profiling from the Walter and Eliza Hall Institute of Medical Research Stafford Fox Rare Cancer Program (WEHI-SFRCP) collated via nation-wide referral to the Australian Rare Cancer (ARC) Portal. The diagnoses of EHE were confirmed by histopathological and immunohistochemical (IHC) examination. Molecular profiling was performed using the TruSight Oncology 500 assay, the TruSight RNA fusion panel, whole genome sequencing (WGS), or whole exome sequencing (WES). RESULTS: Molecular analysis of RNA, DNA or both was possible in seven of nine cases. The WWTR1::CAMTA1 fusion was identified in five cases. The YAP1::TFE3 fusion was identified in one case, demonstrating unique morphology compared to cases with the more common WWTR1::CAMTA1 fusion. All tumours expressed typical endothelial markers CD31, ERG, and CD34 and were negative for pan-cytokeratin. Cases with a WWTR1::CAMTA1 fusion displayed high expression of CAMTA1 and the single case with a YAP1::TFE3 fusion displayed high expression of TFE3. Survival was highly variable and unrelated to molecular profile. CONCLUSIONS: This cohort of EHE cases provides molecular and histopathological characterisation and matching clinical information that emphasises the molecular patterns and variable clinical outcomes and adds to our knowledge of this ultra-rare cancer. Such information from multiple studies will advance our understanding, potentially improving treatment options.
  • Item
    Thumbnail Image
    svaRetro and svaNUMT: modular packages for annotating retrotransposed transcripts and nuclear integration of mitochondrial DNA in genome sequencing data.
    Dong, R ; Cameron, D ; Bedo, J ; Papenfuss, AT (GigaScience Press, 2022)
    Nuclear integration of mitochondrial genomes and retrocopied transcript insertion are biologically important but often-overlooked aspects of structural variant (SV) annotation. While tools for their detection exist, these typically rely on reanalysis of primary data using specialised detectors rather than leveraging calls from general purpose structural variant callers. Such reanalysis potentially leads to additional computational expense and does not take advantage of advances in general purpose structural variant calling. Here, we present svaRetro and svaNUMT; R packages that provide functions for annotating novel genomic events, such as nonreference retrocopied transcripts and nuclear integration of mitochondrial DNA. The packages were developed to work within the Bioconductor framework. We evaluate the performance of these packages to detect events using simulations and public benchmarking datasets, and annotate processed transcripts in a public structural variant database. svaRetro and svaNUMT provide modular, SV-caller agnostic tools for downstream annotation of structural variant calls.
  • Item
    No Preview Available
    Identifying Targets of Protective Antibodies against Severe Malaria in Papua, Indonesia, Using Locally Expressed Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1
    Rambhatla, JS ; Tonkin-Hill, GQ ; Takashima, E ; Tsuboi, T ; Noviyanti, R ; Trianty, L ; Sebayang, BF ; Lampah, DA ; Marfurt, J ; Price, RN ; Anstey, NM ; Papenfuss, AT ; Damelang, T ; Chung, AW ; Duffy, MF ; Rogerson, SJ ; Saeij, JPJ (AMER SOC MICROBIOLOGY, 2022-02)
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.
  • Item
    No Preview Available
    Targeting homologous recombination deficiency in uterine leiomyosarcoma
    Dall, G ; Vandenberg, CJJ ; Nesic, K ; Ratnayake, G ; Zhu, W ; Vissers, JHA ; Bedo, J ; Penington, J ; Wakefield, MJJ ; Kee, D ; Carmagnac, A ; Lim, R ; Shield-Artin, K ; Milesi, B ; Lobley, A ; Kyran, ELL ; O'Grady, E ; Tram, J ; Zhou, W ; Nugawela, D ; Stewart, KP ; Caldwell, R ; Papadopoulos, L ; Ng, APP ; Dobrovic, A ; Fox, SBB ; McNally, O ; Power, JDD ; Meniawy, T ; Tan, TH ; Collins, IMM ; Klein, O ; Barnett, S ; Olesen, I ; Hamilton, A ; Hofmann, O ; Grimmond, S ; Papenfuss, ATT ; Scott, CLL ; Barker, HEE (BMC, 2023-05-04)
    BACKGROUND: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS: A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS: All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS: Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.
  • Item
    Thumbnail Image
    Genome-wide interrogation of structural variation reveals novel African-specific prostate cancer oncogenic drivers
    Gong, T ; Jaratlerdsiri, W ; Jiang, J ; Willet, C ; Chew, T ; Patrick, SM ; Lyons, RJ ; Haynes, A-M ; Pasqualim, G ; Brum, IS ; Stricker, PD ; Mutambirwa, SBA ; Sadsad, R ; Papenfuss, AT ; Bornman, RMS ; Chan, EKF ; Hayes, VM (BMC, 2022-08-31)
    BACKGROUND: African ancestry is a significant risk factor for advanced prostate cancer (PCa). Mortality rates in sub-Saharan Africa are 2.5-fold greater than global averages. However, the region has largely been excluded from the benefits of whole genome interrogation studies. Additionally, while structural variation (SV) is highly prevalent, PCa genomic studies are still biased towards small variant interrogation. METHODS: Using whole genome sequencing and best practice workflows, we performed a comprehensive analysis of SVs for 180 (predominantly Gleason score ≥ 8) prostate tumours derived from 115 African, 61 European and four ancestrally admixed patients. We investigated the landscape and relationship of somatic SVs in driving ethnic disparity (African versus European), with a focus on African men from southern Africa. RESULTS: Duplication events showed the greatest ethnic disparity, with a 1.6- (relative frequency) to 2.5-fold (count) increase in African-derived tumours. Furthermore, we found duplication events to be associated with CDK12 inactivation and MYC copy number gain, and deletion events associated with SPOP mutation. Overall, African-derived tumours were 2-fold more likely to present with a hyper-SV subtype. In addition to hyper-duplication and deletion subtypes, we describe a new hyper-translocation subtype. While we confirm a lower TMPRSS2-ERG fusion-positive rate in tumours from African cases (10% versus 33%), novel African-specific PCa ETS family member and TMPRSS2 fusion partners were identified, including LINC01525, FBXO7, GTF3C2, NTNG1 and YPEL5. Notably, we found 74 somatic SV hotspots impacting 18 new candidate driver genes, with CADM2, LSAMP, PTPRD, PDE4D and PACRG having therapeutic implications for African patients. CONCLUSIONS: In this first African-inclusive SV study for high-risk PCa, we demonstrate the power of SV interrogation for the identification of novel subtypes, oncogenic drivers and therapeutic targets. Identifying a novel spectrum of SVs in tumours derived from African patients provides a mechanism that may contribute, at least in part, to the observed ethnic disparity in advanced PCa presentation in men of African ancestry.
  • Item
    Thumbnail Image
    A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin
    Qiu, D ; Pei, JV ; Rosling, JEO ; Thathy, V ; Li, D ; Xue, Y ; Tanner, JD ; Penington, JS ; Aw, YTV ; Aw, JYH ; Xu, G ; Tripathi, AK ; Gnadig, NF ; Yeo, T ; Fairhurst, KJ ; Stokes, BH ; Murithi, JM ; Kumpornsin, K ; Hasemer, H ; Dennis, ASM ; Ridgway, MC ; Schmitt, EK ; Straimer, J ; Papenfuss, AT ; Lee, MCS ; Corry, B ; Sinnis, P ; Fidock, DA ; van Dooren, GG ; Kirk, K ; Lehane, AM (NATURE PORTFOLIO, 2022-09-30)
    Diverse compounds target the Plasmodium falciparum Na+ pump PfATP4, with cipargamin and (+)-SJ733 the most clinically-advanced. In a recent clinical trial for cipargamin, recrudescent parasites emerged, with most having a G358S mutation in PfATP4. Here, we show that PfATP4G358S parasites can withstand micromolar concentrations of cipargamin and (+)-SJ733, while remaining susceptible to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in Toxoplasma gondii ATP4, decrease the sensitivity of ATP4 to inhibition by cipargamin and (+)-SJ733, thereby protecting parasites from disruption of Na+ regulation. The G358S mutation reduces the affinity of PfATP4 for Na+ and is associated with an increase in the parasite's resting cytosolic [Na+]. However, no defect in parasite growth or transmissibility is observed. Our findings suggest that PfATP4 inhibitors in clinical development should be tested against PfATP4G358S parasites, and that their combination with unrelated antimalarials may mitigate against resistance development.
  • Item
    Thumbnail Image
    Epithelial-to-Mesenchymal Transition Supports Ovarian Carcinosarcoma Tumorigenesis and Confers Sensitivity to Microtubule Targeting with Eribulin
    Ho, GY ; Kyran, EL ; Bedo, J ; Wakefield, MJ ; Ennis, DP ; Mirza, HB ; Vandenberg, CJ ; Lieschke, E ; Farrell, A ; Hadla, A ; Lim, R ; Dall, G ; Vince, JE ; Chua, NK ; Kondrashova, O ; Upstill-Goddard, R ; Bailey, U-M ; Dowson, S ; Roxburgh, P ; Glasspool, RM ; Bryson, G ; Biankin, AV ; Cooke, SL ; Ratnayake, G ; McNally, O ; Traficante, N ; DeFazio, A ; Weroha, SJ ; Bowtell, DD ; McNeish, IA ; Papenfuss, AT ; Scott, CL ; Barker, HE (AMER ASSOC CANCER RESEARCH, 2022-12-01)
    UNLABELLED: Ovarian carcinosarcoma (OCS) is an aggressive and rare tumor type with limited treatment options. OCS is hypothesized to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analyzed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated that the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumors. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts. Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a downregulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate that EMT plays a key role in OCS tumorigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes. SIGNIFICANCE: Genomic analyses and preclinical models of ovarian carcinosarcoma support the conversion theory for disease development and indicate that microtubule inhibitors could be used to suppress EMT and stimulate antitumor immunity.
  • Item
    Thumbnail Image
    Relationship of circulating Plasmodium falciparum lifecycle stage to circulating parasitemia and total parasite biomass
    Duffy, MF ; Tonkin-Hill, GQ ; Trianty, L ; Noviyanti, R ; Nguyen, HHT ; Rambhatla, JS ; McConville, MJ ; Rogerson, SJ ; Brown, GV ; Price, RN ; Anstey, NM ; Day, KP ; Papenfuss, AT (NATURE PORTFOLIO, 2022-09-23)
  • Item
    Thumbnail Image
    Removing unwanted variation from large-scale RNA sequencing data with PRPS
    Molania, R ; Foroutan, M ; Gagnon-Bartsch, JA ; Gandolfo, LC ; Jain, A ; Sinha, A ; Olshansky, G ; Dobrovic, A ; Papenfuss, AT ; Speed, TP (NATURE PORTFOLIO, 2023-01)
    Accurate identification and effective removal of unwanted variation is essential to derive meaningful biological results from RNA sequencing (RNA-seq) data, especially when the data come from large and complex studies. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we examined several sources of unwanted variation and demonstrate here how these can significantly compromise various downstream analyses, including cancer subtype identification, association between gene expression and survival outcomes and gene co-expression analysis. We propose a strategy, called pseudo-replicates of pseudo-samples (PRPS), for deploying our recently developed normalization method, called removing unwanted variation III (RUV-III), to remove the variation caused by library size, tumor purity and batch effects in TCGA RNA-seq data. We illustrate the value of our approach by comparing it to the standard TCGA normalizations on several TCGA RNA-seq datasets. RUV-III with PRPS can be used to integrate and normalize other large transcriptomic datasets coming from multiple laboratories or platforms.