Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Ceramides Contained in LDL Are Elevated in Type 2 Diabetes and Promote Inflammation and Skeletal Muscle Insulin Resistance
    Boon, J ; Hoy, AJ ; Stark, R ; Brown, RD ; Meex, RC ; Henstridge, DC ; Schenk, S ; Meikle, PJ ; Horowitz, JF ; Kingwell, BA ; Bruce, CR ; Watt, MJ (AMER DIABETES ASSOC, 2013-02)
    Dysregulated lipid metabolism and inflammation are linked to the development of insulin resistance in obesity, and the intracellular accumulation of the sphingolipid ceramide has been implicated in these processes. Here, we explored the role of circulating ceramide on the pathogenesis of insulin resistance. Ceramide transported in LDL is elevated in the plasma of obese patients with type 2 diabetes and correlated with insulin resistance but not with the degree of obesity. Treating cultured myotubes with LDL containing ceramide promoted ceramide accrual in cells and was accompanied by reduced insulin-stimulated glucose uptake, Akt phosphorylation, and GLUT4 translocation compared with LDL deficient in ceramide. LDL-ceramide induced a proinflammatory response in cultured macrophages via toll-like receptor-dependent and -independent mechanisms. Finally, infusing LDL-ceramide into lean mice reduced insulin-stimulated glucose uptake, and this was due to impaired insulin action specifically in skeletal muscle. These newly identified roles of LDL-ceramide suggest that strategies aimed at reducing hepatic ceramide production or reducing ceramide packaging into lipoproteins may improve skeletal muscle insulin action.
  • Item
    Thumbnail Image
    Statin action favors normalization of the plasma lipidome in the atherogenic mixed dyslipidemia of MetS: potential relevance to statin-associated dysglycemia
    Meikle, PJ ; Wong, G ; Tan, R ; Giral, P ; Robillard, P ; Orsoni, A ; Hounslow, N ; Magliano, DJ ; Shaw, JE ; Curran, JE ; Blangero, J ; Kingwell, BA ; Chapman, MJ (ELSEVIER, 2015-12)
    The impact of statin treatment on the abnormal plasma lipidome of mixed dyslipidemic patients with metabolic syndrome (MetS), a group at increased risk of developing diabetes, was evaluated. Insulin-resistant hypertriglyceridemic hypertensive obese males (n = 12) displaying MetS were treated with pitavastatin (4 mg/day) for 180 days; healthy normolipidemic age-matched nonobese males (n = 12) acted as controls. Statin treatment substantially normalized triglyceride (-41%), remnant cholesterol (-55%), and LDL-cholesterol (-39%), with minor effect on HDL-cholesterol (+4%). Lipidomic analysis, normalized to nonHDL-cholesterol in order to probe statin-induced differences in molecular composition independently of reduction in plasma cholesterol, revealed increment in 132 of 138 lipid species that were subnormal at baseline and significantly shifted toward the control group on statin treatment. Increment in alkyl- and alkenylphospholipids (plasmalogens) was prominent, and consistent with significant statin-induced increase in plasma polyunsaturated fatty acid levels. Comparison of the statin-mediated lipidomic changes in MetS with the abnormal plasma lipidomic profile characteristic of prediabetes and T2D in the Australian Diabetes, Obesity, and Lifestyle Study and San Antonio Family Heart Study cohorts by hypergeometric analysis revealed a significant shift toward the lipid profile of controls, indicative of a marked trend toward a normolipidemic phenotype. Pitavastatin attenuated the abnormal plasma lipidome of MetS patients typical of prediabetes and T2D.
  • Item
    Thumbnail Image
    Plasma Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations Are Positively Associated with Brown Adipose Tissue Activity in Humans
    Xiang, AS ; Giles, C ; Loh, RKC ; Formosa, MF ; Eikelis, N ; Lambert, GW ; Meikle, PJ ; Kingwell, BA ; Carey, AL (MDPI, 2020-10)
    Brown adipose tissue (BAT) activation is a possible therapeutic strategy to increase energy expenditure and improve metabolic homeostasis in obesity. Recent studies have revealed novel interactions between BAT and circulating lipid species-in particular, the non-esterified fatty acid (NEFA) and oxylipin lipid classes. This study aimed to identify individual lipid species that may be associated with cold-stimulated BAT activity in humans. A panel of 44 NEFA and 41 oxylipin species were measured using mass-spectrometry-based lipidomics in the plasma of fourteen healthy male participants before and after 90 min of mild cold exposure. Lipid measures were correlated with BAT activity measured via 18F-fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT), along with norepinephrine (NE) concentration (a surrogate marker of sympathetic activity). The study identified a significant increase in total NEFA concentration following cold exposure that was positively associated with NE concentration change. Individually, 33 NEFA and 11 oxylipin species increased significantly in response to cold exposure. The concentration of the omega-3 NEFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at baseline was significantly associated with BAT activity, and the cold-induced change in 18 NEFA species was significantly associated with BAT activity. No significant associations were identified between BAT activity and oxylipins.
  • Item
    Thumbnail Image
    Skeletal Muscle Insulin Resistance Associated with Cholesterol-Induced Activation of Macrophages Is Prevented by High Density Lipoprotein
    Carey, AL ; Siebel, AL ; Reddy-Luthmoodoo, M ; Natoli, AK ; D'Souza, W ; Meikle, PJ ; Sviridov, D ; Drew, BG ; Kingwell, BA ; Kanzaki, M (PUBLIC LIBRARY SCIENCE, 2013-02-21)
    Emerging evidence suggests that high density lipoprotein (HDL) may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with excess adiposity and ectopic lipid deposition.