Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends
    Selig, EE ; Lynn, RJ ; Zlatic, CO ; Mok, Y-F ; Ecroyd, H ; Gooley, PR ; Griffin, MDW (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2022-08-30)
    Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions. The ACD forms antiparallel homodimers via an extended β-strand, creating a shared β-sheet at the dimer interface. The N- and C-terminal regions mediate formation of higher order oligomers that are thought to act as storage forms for chaperone-active dimers. We investigated the interactions of the ACD of two human sHSPs, αB-crystallin (αB-C) and Hsp27, with apolipoprotein C-II amyloid fibrils using analytical ultracentrifugation and nuclear magnetic resonance spectroscopy. The ACD was found to interact transiently with amyloid fibrils to inhibit fibril elongation and naturally occurring fibril end-to-end joining. This interaction was sensitive to the concentration of fibril ends indicating a 'fibril-capping' interaction. Furthermore, resonances arising from the ACD monomer were attenuated to a greater extent than those of the ACD dimer in the presence of fibrils, suggesting that the monomer may bind fibrils. This hypothesis was supported by mutagenesis studies in which disulfide cross-linked ACD dimers formed by both αB-C and Hsp27 were less effective at inhibiting amyloid fibril elongation and fibril end-to-end joining than ACD constructs lacking disulfide cross-linking. Our results indicate that sHSP monomers inhibit amyloid fibril elongation, highlighting the importance of the dynamic oligomeric nature of sHSPs for client binding.
  • Item
    Thumbnail Image
    Structure of the Pf12 and Pf41 heterodimeric complex of Plasmodium falciparum 6-cysteine proteins.
    Dietrich, MH ; Chan, L-J ; Adair, A ; Boulet, C ; O'Neill, MT ; Tan, LL ; Keremane, S ; Mok, Y-F ; Lo, AW ; Gilson, P ; Tham, W-H (Oxford University Press (OUP), 2022)
    During the different stages of the Plasmodium life cycle, surface-associated proteins establish key interactions with the host and play critical roles in parasite survival. The 6-cysteine (6-cys) protein family is one of the most abundant surface antigens and expressed throughout the Plasmodium falciparum life cycle. This protein family is conserved across Plasmodium species and plays critical roles in parasite transmission, evasion of the host immune response and host cell invasion. Several 6-cys proteins are present on the parasite surface as hetero-complexes but it is not known how two 6-cys proteins interact together. Here, we present a crystal structure of Pf12 bound to Pf41 at 2.85 Å resolution, two P. falciparum proteins usually found on the parasite surface of late schizonts and merozoites. Our structure revealed two critical interfaces required for complex formation with important implications on how different 6-cysteine proteins may interact with each other. Using structure-function analyses, we identified important residues for Pf12-Pf41 complex formation. In addition, we generated 16 nanobodies against Pf12 and Pf41 and showed that several Pf12-specific nanobodies inhibit Pf12-Pf41 complex formation. Using X-ray crystallography, we were able to describe the structural mechanism of an inhibitory nanobody in blocking Pf12-Pf41 complex formation. Future studies using these inhibitory nanobodies will be useful to determine the functional role of these two 6-cys proteins in malaria parasites.
  • Item
    Thumbnail Image
    The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties
    Mills, RD ; Liang, L-Y ; Lio, DS-S ; Mok, Y-F ; Mulhern, TD ; Cao, G ; Griffin, M ; Kenche, VB ; Culvenor, JG ; Cheng, H-C (WILEY, 2018-11)
    The Parkinson's disease (PD)-causative leucine-rich repeat kinase 2 (LRRK2) belongs to the Roco family of G-proteins comprising a Ras-of-complex (Roc) domain followed by a C-terminal of Roc (COR) domain in tandem (called Roc-COR domain). Two prokaryotic Roc-COR domains have been characterized as 'G proteins activated by guanine nucleotide-dependent dimerization' (GADs), which require dimerization for activation of their GTPase activity and bind guanine nucleotides with relatively low affinities. Additionally, LRRK2 Roc domain in isolation binds guanine nucleotides with relatively low affinities. As such, LRRK2 GTPase domain was predicted to be a GAD. Herein, we describe the design and high-level expression of human LRRK2 Roc-COR domain (LRRK2 Roc-COR). Biochemical analyses of LRRK2 Roc-COR reveal that it forms homodimers, with the C-terminal portion of COR mediating its dimerization. Furthermore, it co-purifies and binds Mg2+ GTP/GDP at 1 : 1 stoichiometry, and it hydrolyzes GTP with Km  and kcat  of 22 nM and 4.70 × 10-4  min-1 ,  respectively. Thus, even though LRRK2 Roc-COR forms GAD-like homodimers, it exhibits conventional Ras-like GTPase properties, with high-affinity binding of Mg2+ -GTP/GDP and low intrinsic catalytic activity. The PD-causative Y1699C mutation mapped to the COR domain was previously reported to reduce the GTPase activity of full-length LRRK2. In contrast, this mutation induces no change in the GTPase activity, and only slight perturbations in the secondary structure contents of LRRK2 Roc-COR. As this mutation does not directly affect the GTPase activity of the isolated Roc-COR tandem, it is possible that the effects of this mutation on full-length LRRK2 occur via other functional domains. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
  • Item
    Thumbnail Image
    Polymorphism in disease-related apolipoprotein C-II amyloid fibrils: a structural model for rod-like fibrils
    Zlatic, CO ; Mao, Y ; Todorova, N ; Mok, Y-F ; Howlett, GJ ; Yarovsky, I ; Gooley, PR ; Griffin, MDW (WILEY, 2018-08)
    Human apolipoprotein (apo) C-II is one of several plasma apolipoproteins that form amyloid deposits in vivo and is an independent risk factor for cardiovascular disease. Lipid-free apoC-II readily self-assembles into twisted-ribbon amyloid fibrils but forms straight, rod-like amyloid fibrils in the presence of low concentrations of micellar phospholipids. Charge mutations exerted significantly different effects on rod-like fibril formation compared to their effects on twisted-ribbon fibril formation. For instance, the double mutant, K30D-D69K apoC-II, readily formed twisted-ribbon fibrils, while the rate of rod-like fibril formation in the presence of micellar phospholipid was negligible. Structural analysis of rod-like apoC-II fibrils, using hydrogen-deuterium exchange and NMR analysis showed exchange protection consistent with a core cross-β structure comprising the C-terminal 58-76 region. Molecular dynamics simulations of fibril arrangements for this region favoured a parallel cross-β structure. X-ray fibre diffraction data for aligned rod-like fibrils showed a major meridional spacing at 4.6 Å and equatorial spacings at 9.7, 23.8 and 46.6 Å. The latter two equatorial spacings are not observed for aligned twisted-ribbon fibrils and are predicted for a model involving two cross-β fibrils in an off-set antiparallel structure with four apoC-II units per rise of the β-sheet. This model is consistent with the mutational effects on rod-like apoC-II fibril formation. The lipid-dependent polymorphisms exhibited by apoC-II fibrils could determine the properties of apoC-II in renal amyloid deposits and their potential role in the development of cardiovascular disease.
  • Item
    Thumbnail Image
    SMCHD1's ubiquitin-like domain is required for N-terminal dimerization and chromatin localization
    Gurzau, AD ; Horne, CR ; Mok, Y-F ; Iminitoff, M ; Willson, TA ; Young, SN ; Blewitt, ME ; Murphy, JM (PORTLAND PRESS LTD, 2021-07)
    Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an epigenetic regulator that mediates gene expression silencing at targeted sites across the genome. Our current understanding of SMCHD1's molecular mechanism, and how substitutions within SMCHD1 lead to the diseases, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS), are only emerging. Recent structural studies of its two component domains - the N-terminal ATPase and C-terminal SMC hinge - suggest that dimerization of each domain plays a central role in SMCHD1 function. Here, using biophysical techniques, we demonstrate that the SMCHD1 ATPase undergoes dimerization in a process that is dependent on both the N-terminal UBL (Ubiquitin-like) domain and ATP binding. We show that neither the dimerization event, nor the presence of a C-terminal extension past the transducer domain, affect SMCHD1's in vitro catalytic activity as the rate of ATP turnover remains comparable to the monomeric protein. We further examined the functional importance of the N-terminal UBL domain in cells, revealing that its targeted deletion disrupts the localization of full-length SMCHD1 to chromatin. These findings implicate UBL-mediated SMCHD1 dimerization as a crucial step for chromatin interaction, and thereby for promoting SMCHD1-mediated gene silencing.
  • Item
    Thumbnail Image
    Crystal structure of TcpK in complex with oriT DNA of the antibiotic resistance plasmid pCW3
    Traore, DAK ; Wisniewski, JA ; Flanigan, SF ; Conroy, PJ ; Panjikar, S ; Mok, Y-F ; Lao, C ; Griffin, MDW ; Adams, V ; Rood, JI ; Whisstock, JC (NATURE PUBLISHING GROUP, 2018-09-13)
    Conjugation is fundamental for the acquisition of new genetic traits and the development of antibiotic resistance in pathogenic organisms. Here, we show that a hypothetical Clostridium perfringens protein, TcpK, which is encoded by the tetracycline resistance plasmid pCW3, is essential for efficient conjugative DNA transfer. Our studies reveal that TcpK is a member of the winged helix-turn-helix (wHTH) transcription factor superfamily and that it forms a dimer in solution. Furthermore, TcpK specifically binds to a nine-nucleotide sequence that is present as tandem repeats within the pCW3 origin of transfer (oriT). The X-ray crystal structure of the TcpK-TcpK box complex reveals a binding mode centered on and around the β-wing, which is different from what has been previously shown for other wHTH proteins. Structure-guided mutagenesis experiments validate the specific interaction between TcpK and the DNA molecule. Additional studies highlight that the TcpK dimer is important for specific DNA binding.
  • Item
    No Preview Available
    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation
    Zhao, H ; Ghirlando, R ; Alfonso, C ; Arisaka, F ; Attali, I ; Bain, DL ; Bakhtina, MM ; Becker, DF ; Bedwell, GJ ; Bekdemir, A ; Besong, TMD ; Birck, C ; Brautigam, CA ; Brennerman, W ; Byron, O ; Bzowska, A ; Chaires, JB ; Chaton, CT ; Coelfen, H ; Connaghan, KD ; Crowley, KA ; Curth, U ; Daviter, T ; Dean, WL ; Diez, AI ; Ebel, C ; Eckert, DM ; Eisele, LE ; Eisenstein, E ; England, P ; Escalante, C ; Fagan, JA ; Fairman, R ; Finn, RM ; Fischle, W ; Garcia de la Torre, J ; Gor, J ; Gustafsson, H ; Hall, D ; Harding, SE ; Hernandez Cifre, JG ; Herr, AB ; Howell, EE ; Isaac, RS ; Jao, S-C ; Jose, D ; Kim, S-J ; Kokona, B ; Kornblatt, JA ; Kosek, D ; Krayukhina, E ; Krzizike, D ; Kusznir, EA ; Kwon, H ; Larson, A ; Laue, TM ; Le Roy, A ; Leech, AP ; Lilie, H ; Luger, K ; Luque-Ortega, JR ; Ma, J ; May, CA ; Maynard, EL ; Modrak-Wojcik, A ; Mok, Y-F ; Muecke, N ; Nagel-Steger, L ; Narlikar, GJ ; Noda, M ; Nourse, A ; Obsil, T ; Park, CK ; Park, J-K ; Pawelek, PD ; Perdue, EE ; Perkins, SJ ; Perugini, MA ; Peterson, CL ; Peverelli, MG ; Piszczek, G ; Prag, G ; Prevelige, PE ; Raynal, BDE ; Rezabkova, L ; Richter, K ; Ringel, AE ; Rosenberg, R ; Rowe, AJ ; Rufer, AC ; Scott, DJ ; Seravalli, JG ; Solovyova, AS ; Song, R ; Staunton, D ; Stoddard, C ; Stott, K ; Strauss, HM ; Streicher, WW ; Sumida, JP ; Swygert, SG ; Szczepanowski, RH ; Tessmer, I ; Toth, RT ; Tripathy, A ; Uchiyama, S ; Uebel, SFW ; Unzai, S ; Gruber, AV ; von Hippel, PH ; Wandrey, C ; Wang, S-H ; Weitzel, SE ; Wielgus-Kutrowska, B ; Wolberger, C ; Wolff, M ; Wright, E ; Wu, Y-S ; Wubben, JM ; Schuck, P ; Langowski, J (PUBLIC LIBRARY SCIENCE, 2015-05-21)
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.
  • Item
    Thumbnail Image
    The ataxin-1 interactome reveals direct connection with multiple disrupted nuclear transport pathways
    Zhang, S ; Williamson, NA ; Duvick, L ; Lee, A ; Orr, HT ; Korlin-Downs, A ; Yang, P ; Mok, Y-F ; Jans, DA ; Bogoyevitch, MA (Nature Research, 2020-07-03)
    The expanded polyglutamine (polyQ) tract form of ataxin-1 drives disease progression in spinocerebellar ataxia type 1 (SCA1). Although known to form distinctive intranuclear bodies, the cellular pathways and processes that polyQ-ataxin-1 influences remain poorly understood. Here we identify the direct and proximal partners constituting the interactome of ataxin-1[85Q] in Neuro-2a cells, pathways analyses indicating a significant enrichment of essential nuclear transporters, pointing to disruptions in nuclear transport processes in the presence of elevated levels of ataxin-1. Our direct assessments of nuclear transporters and their cargoes confirm these observations, revealing disrupted trafficking often with relocalisation of transporters and/or cargoes to ataxin-1[85Q] nuclear bodies. Analogous changes in importin-β1, nucleoporin 98 and nucleoporin 62 nuclear rim staining are observed in Purkinje cells of ATXN1[82Q] mice. The results highlight a disruption of multiple essential nuclear protein trafficking pathways by polyQ-ataxin-1, a key contribution to furthering understanding of pathogenic mechanisms initiated by polyQ tract proteins.
  • Item
    Thumbnail Image
    A Cyclic Peptide Inhibitor of ApoC-II Peptide Fibril Formation: Mechanistic Insight from NMR and Molecular Dynamics Analysis
    Griffin, MDW ; Yeung, L ; Hung, A ; Todorova, N ; Mok, Y-F ; Karas, JA ; Gooley, PR ; Yarovsky, I ; Howlett, GJ (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2012-03-09)
    The misfolding and aggregation of proteins to form amyloid fibrils is a characteristic feature of several common age-related diseases. Agents that directly inhibit formation of amyloid fibrils represent one approach to combating these diseases. We have investigated the potential of a cyclic peptide to inhibit fibril formation by fibrillogenic peptides from human apolipoprotein C-II (apoC-II). Cyc[60-70] was formed by disulfide cross-linking of cysteine residues added to the termini of the fibrillogenic peptide comprising apoC-II residues 60-70. This cyclic peptide did not self-associate into fibrils. However, substoichiometric concentrations of cyc[60-70] significantly delayed fibril formation by the fibrillogenic, linear peptides apoC-II[60-70] and apoC-II[56-76]. Reduction of the disulfide bond or scrambling the amino acid sequence within cyc[60-70] significantly impaired its inhibitory activity. The solution structure of cyc[60-70] was solved using NMR spectroscopy, revealing a well-defined structure comprising a hydrophilic face and a more hydrophobic face containing the Met60, Tyr63, Ile66 and Phe67 side chains. Molecular dynamics (MD) studies identified a flexible central region within cyc[60-70], while MD simulations of "scrambled" cyc[60-70] indicated an increased formation of intramolecular hydrogen bonds and a reduction in the overall flexibility of the peptide. Our structural studies suggest that the inhibitory activity of cyc[60-70] is mediated by an elongated structure with inherent flexibility and distinct hydrophobic and hydrophilic faces, enabling cyc[60-70] to interact transiently with fibrillogenic peptides and inhibit fibril assembly. These results suggest that cyclic peptides based on amyloidogenic core peptides could be useful as specific inhibitors of amyloid fibril formation.
  • Item
    Thumbnail Image
    The Anti-Cancer IgM Monoclonal Antibody PAT-SM6 Binds with High Avidity to the Unfolded Protein Response Regulator GRP78
    Rosenes, Z ; Mulhern, TD ; Hatters, DM ; Ilag, LL ; Power, BE ; Hosking, C ; Hensel, F ; Howlett, GJ ; Mok, Y-F ; Pizzo, SV (PUBLIC LIBRARY SCIENCE, 2012-09-19)
    The monoclonal IgM antibody PAT-SM6 derived from human tumours induces apoptosis in tumour cells and is considered a potential anti-cancer agent. A primary target for PAT-SM6 is the unfolded protein response regulator GRP78, over-expressed externally on the cell surface of tumour cells. Small angle X-ray scattering (SAXS) studies of human GRP78 showed a two-domain dumbbell-shaped monomer, while SAXS analysis of PAT-SM6 revealed a saucer-shaped structure accommodating five-fold symmetry, consistent with previous studies of related proteins. Sedimentation velocity analysis of GRP78 and PAT-SM6 mixtures indicated weak complex formation characterized by dissociation constants in the high micromolar concentration range. In contrast, enzyme-linked immunosorbant assays (ELISAs) showed strong and specific interactions between PAT-SM6 and immobilized GRP78. The apparent binding constant estimated from a PAT-SM6 saturation curve correlated strongly with the concentration of GRP78 used to coat the microtiter tray. Experiments using polyclonal antiGRP78 IgG antibodies or a monoclonal IgG derivative of PAT-SM6 did not show a similar dependence. Competition experiments with soluble GRP78 indicated more effective inhibition of PAT-SM6 binding at low GRP78 coating concentrations. These observations suggest an avidity-based binding mechanism that depends on the multi-point attachment of PAT-SM6 to GRP78 clustered on the surface of the tray. Analysis of ELISA data at high GRP78 coating concentrations yielded an apparent dissociation constant of approximately 4 nM. We propose that the biological action of PAT-SM6 in tumour cell apoptosis may depend on the multivalent nature of PAT-SM6 and the high avidity of its interaction with multiple GRP78 molecules clustered on the tumour cell surface.