Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Remodeling of Carbon Metabolism during Sulfoglycolysis in Escherichia coli
    Mui, JW-Y ; De Souza, DP ; Saunders, EC ; McConville, MJ ; Williams, SJ ; Atomi, H (AMER SOC MICROBIOLOGY, 2023-02-28)
    Sulfoquinovose (SQ) is a major metabolite in the global sulfur cycle produced by nearly all photosynthetic organisms. One of the major pathways involved in the catabolism of SQ in bacteria such as Escherichia coli is a variant of the glycolytic Embden-Meyerhof-Parnas (EMP) pathway termed the sulfoglycolytic EMP (sulfo-EMP) pathway, which leads to the consumption of three of the six carbons of SQ and the excretion of 2,3-dihydroxypropanesulfonate (DHPS). Comparative metabolite profiling of aerobically glucose (Glc)-grown and SQ-grown E. coli cells was undertaken to identify the metabolic consequences of the switch from glycolysis to sulfoglycolysis. Sulfoglycolysis was associated with the diversion of triose phosphates (triose-P) to synthesize sugar phosphates (gluconeogenesis) and an unexpected accumulation of trehalose and glycogen storage carbohydrates. Sulfoglycolysis was also associated with global changes in central carbon metabolism, as indicated by the changes in the levels of intermediates in the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway (PPP), polyamine metabolism, pyrimidine metabolism, and many amino acid metabolic pathways. Upon entry into stationary phase and the depletion of SQ, E. coli cells utilize their glycogen, indicating a reversal of metabolic fluxes to allow glycolytic metabolism. IMPORTANCE The sulfosugar sulfoquinovose is estimated to be produced on a scale of 10 billion metric tons per annum, making it a major organosulfur species in the biosulfur cycle. The microbial degradation of sulfoquinovose through sulfoglycolysis allows the utilization of its carbon content and contributes to the biomineralization of its sulfur. However, the metabolic consequences of microbial growth on sulfoquinovose are unclear. We use metabolomics to identify the metabolic adaptations that Escherichia coli undergoes when grown on sulfoquinovose versus glucose. This revealed the increased flux into storage carbohydrates through gluconeogenesis and the reduced flux of carbon into the TCA cycle and downstream metabolism. These changes are relieved upon entry into stationary phase and reversion to glycolytic metabolism. This work provides new insights into the metabolic consequences of microbial growth on an abundant sulfosugar.
  • Item
    Thumbnail Image
    Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine?
    McConville, MJ ; Saunders, EC ; Kloehn, J ; Dagley, MJ (F1000 Research Ltd, 2015)
    A number of medically important microbial pathogens target and proliferate within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or non-hydrolytic vacuolar compartments, a few, including protists belonging to the genus Leishmania, proliferate long-term within mature lysosome compartments.  How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that Leishmania virulence is intimately linked to programmed changes in the growth rate and carbon metabolism of the obligate intra-macrophage stages. We propose that activation of a slow growth and a stringent metabolic response confers resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight the importance of metabolic processes as key virulence determinants in Leishmania.
  • Item
    Thumbnail Image
    Metabolic characteristics of CD8+ T cell subsets in young and aged individuals are not predictive of functionality (vol 11, 2857, 2020)
    Quinn, KM ; Hussain, T ; Kraus, F ; Formosa, LE ; Lam, WK ; Dagley, MJ ; Saunders, EC ; Assmus, LM ; Wynne-Jones, E ; Loh, L ; van de Sandt, CE ; Cooper, L ; Good-Jacobson, KL ; Kedzierska, K ; Mackay, LK ; McConville, MJ ; Ramm, G ; Ryan, MT ; La Gruta, NL (NATURE PUBLISHING GROUP, 2020-07-09)
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
  • Item
    Thumbnail Image
    Metabolic characteristics of CD8+ T cell subsets in young and aged individuals are not predictive of functionality
    Quinn, KM ; Hussain, T ; Kraus, F ; Formosa, LE ; Lam, WK ; Dagley, MJ ; Saunders, EC ; Assmus, LM ; Wynne-Jones, E ; Loh, L ; van de Sandt, CE ; Cooper, L ; Good-Jacobson, KL ; Kedzierska, K ; Mackay, LK ; McConville, MJ ; Ramm, G ; Ryan, MT ; La Gruta, NL (NATURE PUBLISHING GROUP, 2020-06-05)
    Virtual memory T (TVM) cells are antigen-naïve CD8+ T cells that exist in a semi-differentiated state and exhibit marked proliferative dysfunction in advanced age. High spare respiratory capacity (SRC) has been proposed as a defining metabolic characteristic of antigen-experienced memory T (TMEM) cells, facilitating rapid functionality and survival. Given the semi-differentiated state of TVM cells and their altered functionality with age, here we investigate TVM cell metabolism and its association with longevity and functionality. Elevated SRC is a feature of TVM, but not TMEM, cells and it increases with age in both subsets. The elevated SRC observed in aged mouse TVM cells and human CD8+ T cells from older individuals is associated with a heightened sensitivity to IL-15. We conclude that elevated SRC is a feature of TVM, but not TMEM, cells, is driven by physiological levels of IL-15, and is not indicative of enhanced functionality in CD8+ T cells.
  • Item
    Thumbnail Image
    Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism
    Saunders, EC ; Ng, WW ; Kloehn, J ; Chambers, JM ; Ng, M ; McConville, MJ ; Wilson, ME (PUBLIC LIBRARY SCIENCE, 2014-01)
    Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using (13)C-stable isotope resolved metabolomics and (2)H2O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid β-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate) and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA) cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism.
  • Item
    Thumbnail Image
    Characterization of Metabolically Quiescent Leishmania Parasites in Murine Lesions Using Heavy Water Labeling
    Kloehn, J ; Saunders, EC ; O'Callaghan, S ; Dagley, MJ ; McConville, MJ ; Sacks, DL (PUBLIC LIBRARY SCIENCE, 2015-02)
    Information on the growth rate and metabolism of microbial pathogens that cause long-term chronic infections is limited, reflecting the absence of suitable tools for measuring these parameters in vivo. Here, we have measured the replication and physiological state of Leishmania mexicana parasites in murine inflammatory lesions using 2H2O labeling. Infected BALB/c mice were labeled with 2H2O for up to 4 months, and the turnover of parasite DNA, RNA, protein and membrane lipids estimated from the rate of deuterium enrichment in constituent pentose sugars, amino acids, and fatty acids, respectively. We show that the replication rate of parasite stages in these tissues is very slow (doubling time of ~12 days), but remarkably constant throughout lesion development. Lesion parasites also exhibit markedly lower rates of RNA synthesis, protein turnover and membrane lipid synthesis than parasite stages isolated from ex vivo infected macrophages or cultured in vitro, suggesting that formation of lesions induces parasites to enter a semi-quiescent physiological state. Significantly, the determined parasite growth rate accounts for the overall increase in parasite burden indicating that parasite death and turnover of infected host cells in these lesions is minimal. We propose that the Leishmania response to lesion formation is an important adaptive strategy that minimizes macrophage activation, providing a permissive environment that supports progressive expansion of parasite burden. This labeling approach can be used to measure the dynamics of other host-microbe interactions in situ.
  • Item
    Thumbnail Image
    Membrane targeting of the small myristoylated protein 2 (SMP-2) in Leishmania major
    Heng, J ; Saunders, EC ; Gooley, PR ; McConville, MJ ; Naderer, T ; Tull, D (ELSEVIER SCIENCE BV, 2013-07)
    Leishmania parasites express three highly conserved small myristoylated proteins (SMPs) that are targeted to distinct membranes. SMP-1 is exclusively found in the flagellum, depending on myristoylation and palmitoylation. In contrast, monoacylated SMP-2 and SMP-4 are localized to the flagellar pocket and plasma membrane, respectively. Here, we demonstrate that unlike SMP-4, SMP-2 resides in detergent resistant membranes, but can be readily solubilized in the presence of high concentrations of salt. We provide evidence that in detergent resistant membranes, SMP-2 forms high molecular weight complexes in vivo. Association with detergent resistant membranes was abrogated in the presence of a C-terminal tag suggesting acylation independent targeting signals. In addition, the N-terminal region of SMP-2 contains sufficient information for membrane targeting, as a GFP-chimera localizes to the flagellar pocket. Thus while the core sequences of the SMPs are highly conserved, individual members have evolved different mechanisms for their diverse membrane localization.