Mechanical Engineering - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    High-Performance Visual Closed-Loop Robot Control
    Corke, Peter Ian ( 1994)
    This thesis addresses the use of monocular eye-in-hand machine vision to control the position of a robot manipulator for dynamically challenging tasks. Such tasks are defined as those where the robot motion required approaches or exceeds the performance limits stated by the manufacturer. Computer vision systems have been used for robot control for over two decades now, but have rarely been used for high-performance visual closed-loop control. This has largely been due to technological limitations in image processing, but since the mid 1980sadvances have made it feasible to apply computer vision techniques at a sufficiently high rate to guide a robot or close a feedback control loop. Visual servoing is the use of computer vision for closed-loop control of a robot manipulator, and has the potential to solve a number of problems that currently limit the potential of robots in industry and advanced applications. This thesis introduces a distinction between visual kinematic and visual dynamic control. The former is well addressed in the literature and is concerned with how the manipulator should move in response to perceived visual features. The latter is concerned with dynamic effects due to the manipulator and machine vision sensor which limit performance and must be explicitly addressed in order to achieve high-performance control. This is the principle focus of the thesis. In order to achieve high-performance it is necessary to have accurate models of the system to be controlled (the robot) and the sensor (the camera and vision system).Despite the long history of research in these areas individually, and combined in visual servoing, it is apparent that many issues have not been addressed in sufficient depth, and that much of the relevant information is spread through a very diverse literature. Another contribution of this thesis is to draw together this disparate information and present it in a systematic and consistent manner. This thesis also has a strong theme of experimentation. Experiments are used to develop realistic models which are used for controller synthesis, and these controllers are then verified experimentally.