Surgery (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    PDCD1 Polymorphisms May Predict Response to Anti-PD-1 Blockade in Patients With Metastatic Melanoma
    Parakh, S ; Musafer, A ; Paessler, S ; Witkowski, T ; Suen, CSNLW ; Tutuka, CSA ; Carlino, MS ; Menzies, AM ; Scolyer, RA ; Cebon, J ; Dobrovic, A ; Long, GV ; Klein, O ; Behren, A (FRONTIERS MEDIA SA, 2021-06-09)
    A significant number of patients (pts) with metastatic melanoma do not respond to anti-programmed cell death 1 (PD1) therapies. Identifying predictive biomarkers therefore remains an urgent need. We retrospectively analyzed plasma DNA of pts with advanced melanoma treated with PD-1 antibodies, nivolumab or pembrolizumab, for five PD-1 genotype single nucleotide polymorphisms (SNPs): PD1.1 (rs36084323, G>A), PD1.3 (rs11568821, G>A), PD1.5 (rs2227981, C>T) PD1.6 (rs10204225, G>A) and PD1.9 (rs2227982, C>T). Clinico-pathological and treatment parameters were collected, and presence of SNPs correlated with response, progression free survival (PFS) and overall survival (OS). 115 patients were identified with a median follow up of 18.7 months (range 0.26 - 52.0 months). All were Caucasian; 27% BRAF V600 mutation positive. At PD-1 antibody commencement, 36% were treatment-naïve and 52% had prior ipilimumab. The overall response rate was 43%, 19% achieving a complete response. Overall median PFS was 11.0 months (95% CI 5.4 - 17.3) and median OS was 31.1 months (95% CI 23.2 - NA). Patients with the G/G genotype had more complete responses than with A/G genotype (16.5% vs. 2.6% respectively) and the G allele of PD1.3 rs11568821 was significantly associated with a longer median PFS than the AG allele, 14.1 vs. 7.0 months compared to the A allele (p=0.04; 95% CI 0.14 - 0.94). No significant association between the remaining SNPs and responses, PFS or OS were observed. Despite limitations in sample size, this is the first study to demonstrate an association of a germline PD-1 polymorphism and PFS in response to anti-PD-1 therapy in pts with metastatic melanoma. Extrinsic factors like host germline polymorphisms should be considered with tumor intrinsic factors as predictive biomarkers for immune checkpoint regulators.
  • Item
    Thumbnail Image
    Ropporin-1 and 1B Are Widely Expressed in Human Melanoma and Evoke Strong Humoral Immune Responses
    Da Gama Duarte, J ; Woods, K ; Quigley, LT ; Deceneux, C ; Tutuka, C ; Witkowski, T ; Ostrouska, S ; Hudson, C ; Tsao, SC-H ; Pasam, A ; Dobrovic, A ; Blackburn, JM ; Cebon, J ; Behren, A (MDPI, 2021-04)
    Antibodies that block immune regulatory checkpoints (programmed cell death 1, PD-1 and cytotoxic T-lymphocyte-associated antigen 4, CTLA-4) to mobilise immunity have shown unprecedented clinical efficacy against cancer, demonstrating the importance of antigen-specific tumour recognition. Despite this, many patients still fail to benefit from these treatments and additional approaches are being sought. These include mechanisms that boost antigen-specific immunity either by vaccination or adoptive transfer of effector cells. Other than neoantigens, epigenetically regulated and shared antigens such as NY-ESO-1 are attractive targets; however, tissue expression is often heterogeneous and weak. Therefore, peptide-specific therapies combining multiple antigens rationally selected to give additive anti-cancer benefits are necessary to achieve optimal outcomes. Here, we show that Ropporin-1 (ROPN1) and 1B (ROPN1B), cancer restricted antigens, are highly expressed and immunogenic, inducing humoral immunity in patients with advanced metastatic melanoma. By multispectral immunohistochemistry, 88.5% of melanoma patients tested (n = 54/61) showed ROPN1B expression in at least 1 of 2/3 tumour cores in tissue microarrays. Antibody responses against ROPN1A and ROPN1B were detected in 71.2% of melanoma patients tested (n = 74/104), with increased reactivity seen with more advanced disease stages. Thus, ROPN1A and ROPN1B may indeed be viable targets for cancer immunotherapy, alone or in combination with other cancer antigens, and could be combined with additional therapies such as immune checkpoint blockade.