Surgery (Austin & Northern Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    No Preview Available
    Identifying primary and secondary MLH1 epimutation carriers displaying low-level constitutional MLH1 methylation using droplet digital PCR and genome-wide DNA methylation profiling of colorectal cancers
    Joo, JE ; Mahmood, K ; Walker, R ; Georgeson, P ; Candiloro, I ; Clendenning, M ; Como, J ; Joseland, S ; Preston, S ; Graversen, L ; Wilding, M ; Field, M ; Lemon, M ; Wakeling, J ; Marfan, H ; Susman, R ; Isbister, J ; Edwards, E ; Bowman, M ; Kirk, J ; Ip, E ; McKay, L ; Antill, Y ; Hopper, JL ; Boussioutas, A ; Macrae, FA ; Dobrovic, A ; Jenkins, MA ; Rosty, C ; Winship, IM ; Buchanan, DD (BMC, 2023-06-03)
    BACKGROUND: MLH1 epimutation is characterised by constitutional monoallelic MLH1 promoter hypermethylation, which can cause colorectal cancer (CRC). Tumour molecular profiles of MLH1 epimutation CRCs were used to classify germline MLH1 promoter variants of uncertain significance and MLH1 methylated early-onset CRCs (EOCRCs). Genome-wide DNA methylation and somatic mutational profiles of tumours from two germline MLH1: c.-11C > T and one MLH1: c.-[28A > G; 7C > T] carriers and three MLH1 methylated EOCRCs (< 45 years) were compared with 38 reference CRCs. Methylation-sensitive droplet digital PCR (ddPCR) was used to detect mosaic MLH1 methylation in blood, normal mucosa and buccal DNA. RESULTS: Genome-wide methylation-based Consensus Clustering identified four clusters where the tumour methylation profiles of germline MLH1: c.-11C > T carriers and MLH1 methylated EOCRCs clustered with the constitutional MLH1 epimutation CRCs but not with the sporadic MLH1 methylated CRCs. Furthermore, monoallelic MLH1 methylation and APC promoter hypermethylation in tumour were observed in both MLH1 epimutation and germline MLH1: c.-11C > T carriers and MLH1 methylated EOCRCs. Mosaic constitutional MLH1 methylation in MLH1: c.-11C > T carriers and 1 of 3 MLH1 methylated EOCRCs was identified by methylation-sensitive ddPCR. CONCLUSIONS: Mosaic MLH1 epimutation underlies the CRC aetiology in MLH1: c.-11C > T germline carriers and a subset of MLH1 methylated EOCRCs. Tumour profiling and ultra-sensitive ddPCR methylation testing can be used to identify mosaic MLH1 epimutation carriers.
  • Item
    No Preview Available
    Targeting homologous recombination deficiency in uterine leiomyosarcoma
    Dall, G ; Vandenberg, CJJ ; Nesic, K ; Ratnayake, G ; Zhu, W ; Vissers, JHA ; Bedo, J ; Penington, J ; Wakefield, MJJ ; Kee, D ; Carmagnac, A ; Lim, R ; Shield-Artin, K ; Milesi, B ; Lobley, A ; Kyran, ELL ; O'Grady, E ; Tram, J ; Zhou, W ; Nugawela, D ; Stewart, KP ; Caldwell, R ; Papadopoulos, L ; Ng, APP ; Dobrovic, A ; Fox, SBB ; McNally, O ; Power, JDD ; Meniawy, T ; Tan, TH ; Collins, IMM ; Klein, O ; Barnett, S ; Olesen, I ; Hamilton, A ; Hofmann, O ; Grimmond, S ; Papenfuss, ATT ; Scott, CLL ; Barker, HEE (BMC, 2023-05-04)
    BACKGROUND: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS: A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS: All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS: Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.
  • Item
    Thumbnail Image
    Removing unwanted variation from large-scale RNA sequencing data with PRPS
    Molania, R ; Foroutan, M ; Gagnon-Bartsch, JA ; Gandolfo, LC ; Jain, A ; Sinha, A ; Olshansky, G ; Dobrovic, A ; Papenfuss, AT ; Speed, TP (NATURE PORTFOLIO, 2023-01)
    Accurate identification and effective removal of unwanted variation is essential to derive meaningful biological results from RNA sequencing (RNA-seq) data, especially when the data come from large and complex studies. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we examined several sources of unwanted variation and demonstrate here how these can significantly compromise various downstream analyses, including cancer subtype identification, association between gene expression and survival outcomes and gene co-expression analysis. We propose a strategy, called pseudo-replicates of pseudo-samples (PRPS), for deploying our recently developed normalization method, called removing unwanted variation III (RUV-III), to remove the variation caused by library size, tumor purity and batch effects in TCGA RNA-seq data. We illustrate the value of our approach by comparing it to the standard TCGA normalizations on several TCGA RNA-seq datasets. RUV-III with PRPS can be used to integrate and normalize other large transcriptomic datasets coming from multiple laboratories or platforms.
  • Item
    Thumbnail Image
    Characterization of a RAD51C-silenced high-grade serous ovarian cancer model during development of PARP inhibitor resistance
    Hurley, RM ; McGehee, CD ; Nesic, K ; Correia, C ; Weiskittel, TM ; Kelly, RL ; Venkatachalam, A ; Hou, X ; Pathoulas, NM ; Meng, XW ; Kondrashova, O ; Radke, MR ; Schneider, PA ; Flatten, KS ; Peterson, KL ; Becker, MA ; Wong, EM ; Southey, MS ; Dobrovic, A ; Lin, KK ; Harding, TC ; McNeish, I ; Ross, CA ; Wagner, JM ; Wakefield, MJ ; Scott, CL ; Haluska, P ; Hendrickson, AEW ; Karnitz, LM ; Swisher, EM ; Li, H ; Weroha, SJ ; Kaufmann, SH (OXFORD UNIV PRESS, 2021-09)
    Acquired PARP inhibitor (PARPi) resistance in BRCA1- or BRCA2-mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. RAD51C is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors RAD51C promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment in vivo. PH039 acquired PARPi resistance by the third treatment cycle and grew through subsequent treatment with either niraparib or rucaparib. Transcriptional profiling throughout the course of resistance development showed widespread pathway level changes along with a marked increase in RAD51C mRNA, which reflected loss of RAD51C promoter methylation. Analysis of ovarian cancer samples from the ARIEL2 Part 1 clinical trial of rucaparib monotherapy likewise indicated an association between loss of RAD51C methylation prior to on-study biopsy and limited response. Interestingly, the PARPi resistant PH039 model remained platinum sensitive. Collectively, these results not only indicate that PARPi treatment pressure can reverse RAD51C methylation and restore RAD51C expression, but also provide a model for studying the clinical observation that PARPi and platinum sensitivity are sometimes dissociated.
  • Item
    Thumbnail Image
    PDCD1 Polymorphisms May Predict Response to Anti-PD-1 Blockade in Patients With Metastatic Melanoma
    Parakh, S ; Musafer, A ; Paessler, S ; Witkowski, T ; Suen, CSNLW ; Tutuka, CSA ; Carlino, MS ; Menzies, AM ; Scolyer, RA ; Cebon, J ; Dobrovic, A ; Long, GV ; Klein, O ; Behren, A (FRONTIERS MEDIA SA, 2021-06-09)
    A significant number of patients (pts) with metastatic melanoma do not respond to anti-programmed cell death 1 (PD1) therapies. Identifying predictive biomarkers therefore remains an urgent need. We retrospectively analyzed plasma DNA of pts with advanced melanoma treated with PD-1 antibodies, nivolumab or pembrolizumab, for five PD-1 genotype single nucleotide polymorphisms (SNPs): PD1.1 (rs36084323, G>A), PD1.3 (rs11568821, G>A), PD1.5 (rs2227981, C>T) PD1.6 (rs10204225, G>A) and PD1.9 (rs2227982, C>T). Clinico-pathological and treatment parameters were collected, and presence of SNPs correlated with response, progression free survival (PFS) and overall survival (OS). 115 patients were identified with a median follow up of 18.7 months (range 0.26 - 52.0 months). All were Caucasian; 27% BRAF V600 mutation positive. At PD-1 antibody commencement, 36% were treatment-naïve and 52% had prior ipilimumab. The overall response rate was 43%, 19% achieving a complete response. Overall median PFS was 11.0 months (95% CI 5.4 - 17.3) and median OS was 31.1 months (95% CI 23.2 - NA). Patients with the G/G genotype had more complete responses than with A/G genotype (16.5% vs. 2.6% respectively) and the G allele of PD1.3 rs11568821 was significantly associated with a longer median PFS than the AG allele, 14.1 vs. 7.0 months compared to the A allele (p=0.04; 95% CI 0.14 - 0.94). No significant association between the remaining SNPs and responses, PFS or OS were observed. Despite limitations in sample size, this is the first study to demonstrate an association of a germline PD-1 polymorphism and PFS in response to anti-PD-1 therapy in pts with metastatic melanoma. Extrinsic factors like host germline polymorphisms should be considered with tumor intrinsic factors as predictive biomarkers for immune checkpoint regulators.
  • Item
    Thumbnail Image
    Molecular and clinical determinants of response and resistance to rucaparib for recurrent ovarian cancer treatment in ARIEL2 (Parts 1 and 2)
    Swisher, EM ; Kwan, TT ; Oza, AM ; Tinker, A ; Ray-Coquard, I ; Oaknin, A ; Coleman, RL ; Aghajanian, C ; Konecny, GE ; O'Malley, DM ; Leary, A ; Provencher, D ; Welch, S ; Chen, L-M ; Hendrickson, AEW ; Ma, L ; Ghatage, P ; Kristeleit, RS ; Dorigo, O ; Musafer, A ; Kaufmann, SH ; Elvin, JA ; Lin, D ; Chambers, SK ; Dominy, E ; Lan-Thanh, V ; Goble, S ; Maloney, L ; Giordano, H ; Harding, T ; Dobrovic, A ; Scott, CL ; Lin, KK ; McNeish, IA (NATURE RESEARCH, 2021-05-03)
    ARIEL2 (NCT01891344) is a single-arm, open-label phase 2 study of the PARP inhibitor (PARPi) rucaparib in relapsed high-grade ovarian carcinoma. In this post hoc exploratory biomarker analysis of pre- and post-platinum ARIEL2 samples, RAD51C and RAD51D mutations and high-level BRCA1 promoter methylation predict response to rucaparib, similar to BRCA1/BRCA2 mutations. BRCA1 methylation loss may be a major cross-resistance mechanism to platinum and PARPi. Genomic scars associated with homologous recombination deficiency are irreversible, persisting even as platinum resistance develops, and therefore are predictive of rucaparib response only in platinum-sensitive disease. The RAS, AKT, and cell cycle pathways may be additional modulators of PARPi sensitivity.
  • Item
    Thumbnail Image
    Ropporin-1 and 1B Are Widely Expressed in Human Melanoma and Evoke Strong Humoral Immune Responses
    Da Gama Duarte, J ; Woods, K ; Quigley, LT ; Deceneux, C ; Tutuka, C ; Witkowski, T ; Ostrouska, S ; Hudson, C ; Tsao, SC-H ; Pasam, A ; Dobrovic, A ; Blackburn, JM ; Cebon, J ; Behren, A (MDPI, 2021-04)
    Antibodies that block immune regulatory checkpoints (programmed cell death 1, PD-1 and cytotoxic T-lymphocyte-associated antigen 4, CTLA-4) to mobilise immunity have shown unprecedented clinical efficacy against cancer, demonstrating the importance of antigen-specific tumour recognition. Despite this, many patients still fail to benefit from these treatments and additional approaches are being sought. These include mechanisms that boost antigen-specific immunity either by vaccination or adoptive transfer of effector cells. Other than neoantigens, epigenetically regulated and shared antigens such as NY-ESO-1 are attractive targets; however, tissue expression is often heterogeneous and weak. Therefore, peptide-specific therapies combining multiple antigens rationally selected to give additive anti-cancer benefits are necessary to achieve optimal outcomes. Here, we show that Ropporin-1 (ROPN1) and 1B (ROPN1B), cancer restricted antigens, are highly expressed and immunogenic, inducing humoral immunity in patients with advanced metastatic melanoma. By multispectral immunohistochemistry, 88.5% of melanoma patients tested (n = 54/61) showed ROPN1B expression in at least 1 of 2/3 tumour cores in tissue microarrays. Antibody responses against ROPN1A and ROPN1B were detected in 71.2% of melanoma patients tested (n = 74/104), with increased reactivity seen with more advanced disease stages. Thus, ROPN1A and ROPN1B may indeed be viable targets for cancer immunotherapy, alone or in combination with other cancer antigens, and could be combined with additional therapies such as immune checkpoint blockade.
  • Item
  • Item
    Thumbnail Image
    Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain
    Ye, Z ; Chatterton, Z ; Pflueger, J ; Damiano, JA ; McQuillan, L ; Harvey, AS ; Malone, S ; Do, H ; Maixner, W ; Schneider, A ; Nolan, B ; Wood, M ; Lee, WS ; Gillies, G ; Pope, K ; Wilson, M ; Lockhart, PJ ; Dobrovic, A ; Scheffer, IE ; Bahlo, M ; Leventer, RJ ; Lister, R ; Berkovic, SF ; Hildebrand, MS (OXFORD UNIV PRESS, 2021)
    Brain somatic mutations are an increasingly recognized cause of epilepsy, brain malformations and autism spectrum disorders and may be a hidden cause of other neurodevelopmental and neurodegenerative disorders. At present, brain mosaicism can be detected only in the rare situations of autopsy or brain biopsy. Liquid biopsy using cell-free DNA derived from cerebrospinal fluid has detected somatic mutations in malignant brain tumours. Here, we asked if cerebrospinal fluid liquid biopsy can be used to detect somatic mosaicism in non-malignant brain diseases. First, we reliably quantified cerebrospinal fluid cell-free DNA in 28 patients with focal epilepsy and 28 controls using droplet digital PCR. Then, in three patients we identified somatic mutations in cerebrospinal fluid: in one patient with subcortical band heterotopia the LIS1 p. Lys64* variant at 9.4% frequency; in a second patient with focal cortical dysplasia the TSC1 p. Phe581His*6 variant at 7.8% frequency; and in a third patient with ganglioglioma the BRAF p. Val600Glu variant at 3.2% frequency. To determine if cerebrospinal fluid cell-free DNA was brain-derived, whole-genome bisulphite sequencing was performed and brain-specific DNA methylation patterns were found to be significantly enriched (P = 0.03). Our proof of principle study shows that cerebrospinal fluid liquid biopsy is valuable in investigating mosaic neurological disorders where brain tissue is unavailable.
  • Item
    Thumbnail Image
    Donor-specific cell-free DNA as a biomarker in liver transplantation: A review.
    McClure, T ; Goh, SK ; Cox, D ; Muralidharan, V ; Dobrovic, A ; Testro, AG (Baishideng Publishing Group Inc., 2020-11-28)
    Due to advances in modern medicine, liver transplantation has revolutionised the prognosis of many previously incurable liver diseases. This progress has largely been due to advances in immunosuppressant therapy. However, despite the judicious use of immunosuppression, many liver transplant recipients still experience complications such as rejection, which necessitates diagnosis via invasive liver biopsy. There is a clear need for novel, minimally-invasive tests to optimise immunosuppression and improve patient outcomes. An emerging biomarker in this ''precision medicine'' liver transplantation field is that of donor-specific cell free DNA. In this review, we detail the background and methods of detecting this biomarker, examine its utility in liver transplantation and discuss future research directions that may be most impactful.