Melbourne Dental School - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells
    Lo, AW ; Seers, CA ; Boyce, JD ; Dashper, SG ; Slakeski, N ; Lissel, JP ; Reynolds, EC (BMC, 2009-01-29)
    BACKGROUND: Porphyromonas gingivalis in subgingival dental plaque, as part of a mature biofilm, has been strongly implicated in the onset and progression of chronic periodontitis. In this study using DNA microarray we compared the global gene expression of a P. gingivalis biofilm with that of its planktonic counterpart grown in the same continuous culture. RESULTS: Approximately 18% (377 genes, at 1.5 fold or more, P-value < 0.01) of the P. gingivalis genome was differentially expressed when the bacterium was grown as a biofilm. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in cell envelope biogenesis, DNA replication, energy production and biosynthesis of cofactors, prosthetic groups and carriers. A number of genes encoding transport and binding proteins were up-regulated in P. gingivalis biofilm cells. Several genes predicted to encode proteins involved in signal transduction and transcriptional regulation were differentially regulated and may be important in the regulation of biofilm growth. CONCLUSION: This study analyzing global gene expression provides insight into the adaptive response of P. gingivalis to biofilm growth, in particular showing a down regulation of genes involved in growth and metabolic activity.
  • Item
    Thumbnail Image
    A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation
    Dashper, SG ; Butler, CA ; Lissel, JP ; Paolini, RA ; Hoffmann, B ; Veith, PD ; O'Brien-Simpson, NM ; Snelgrove, SL ; Tsiros, JT ; Reynolds, EC (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2005-07-29)
    FeoB is an atypical transporter that has been shown to exclusively mediate ferrous ion transport in some bacteria. Unusually the genome of the periodontal pathogen Porphyromonas gingivalis has two genes (feoB1 and feoB2) encoding FeoB homologs, both of which are expressed in bicistronic operons. Kinetic analysis of ferrous ion transport by P. gingivalis W50 revealed the presence of a single, high affinity system with a K(t) of 0.31 microM. FeoB1 was found to be solely responsible for this transport as energized cells of the isogenic FeoB1 mutant (W50FB1) did not transport radiolabeled iron, while the isogenic FeoB2 mutant (W50FB2) transported radiolabeled iron at a rate similar to wild type. This was reflected in the iron content of W50FB1 grown in iron excess conditions which was approximately half that of the wild type and W50FB2. The W50FB1 mutant had increased sensitivity to both oxygen and hydrogen peroxide and was avirulent in an animal model of infection whereas W50FB2 exhibited the same virulence as the wild type. Analysis of manganous ion uptake using inductively coupled plasma-mass spectrometry revealed a greater than 3-fold decrease in intracellular manganese accumulation in W50FB2 which was also unable to grow in manganese-limited media. The protein co-expressed with FeoB2 appears to be a novel FeoA-MntR fusion protein that exhibits homology to a manganese-responsive, DNA-binding metalloregulatory protein. These results indicate that FeoB2 is not involved in iron transport but plays a novel role in manganese transport.
  • Item
    Thumbnail Image
    Hemoglobin hydrolysis and heme acquisition by Porphyromonas gingivalis
    Dashper, SG ; Cross, KJ ; Slakeski, N ; Lissel, P ; Aulakh, P ; Moore, C ; Reynolds, EC (BLACKWELL MUNKSGAARD, 2004-02)
    Porphyromonas gingivalis has been implicated in the progression of chronic periodontitis, an inflammatory disease of the supporting tissues of the teeth. This bacterium is a gram-negative, black-pigmented, asaccharolytic anaerobe that relies on the fermentation of amino acids for the production of metabolic energy. The Arg- and Lys-specific extracellular cysteine proteinases of P. gingivalis, RgpA, RgpB and Kgp have been implicated as major virulence factors. In this study we investigated the hydrolysis of human hemoglobin by whole cells of P. gingivalis W50 and the mutants W501 (RgpA-), W50AB (RgpA-RgpB-) and W50ABK (RgpA-RgpB-Kgp-) under strictly anaerobic conditions in a physiological buffer (pH 7.5) using mass spectrometric analysis. Incubation of P. gingivalis W50 with hemoglobin over a period of 30 min resulted in the detection of 20 hemoglobin peptides, all with C-terminal Arg or Lys residues. The majority of the hemoglobin alpha- and beta-chain sequences were recovered as peptides except for two similar regions of the C-terminal half of each chain, alpha(92-127) and beta(83-120). The residues of the unrecovered sequences form part of the interface between the alpha- and beta-chains and an exposed surface area of the hemoglobin tetramer that may be involved in binding to P. gingivalis. P. gingivalis W501 (RgpA-) produced similar peptides to those seen in the wild-type. All identified peptides from the hydrolysis of hemoglobin by the P. gingivalis W50AB (RgpA-RgpB-) mutant were the result of cleavage at Lys. The triple mutant W50ABK was unable to hydrolyze hemoglobin under the assay conditions used, suggesting that on whole cells the major cell surface activity responsible for hydrolysis of hemoglobin is from the RgpA/B and Kgp proteinases. However, the triple proteinase mutant W50ABK grew as well as the wild-type in a medium containing hemoglobin as the only iron source, indicating that the RgpA/B and Kgp proteinases are not essential for iron assimilation from hemoglobin by P. gingivalis.